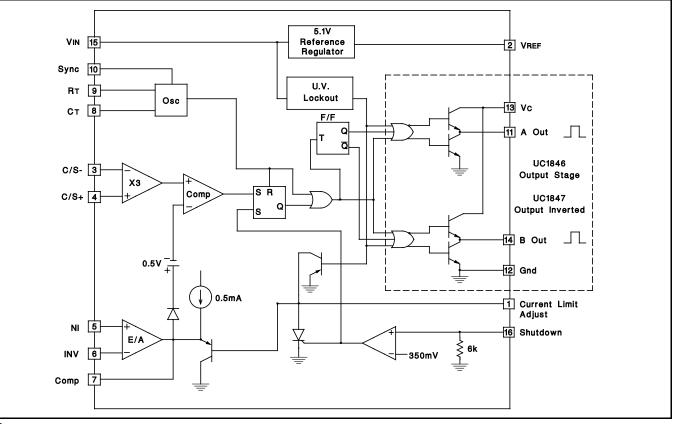


FEATURES

- Automatic Feed Forward Compensation
- Programmable Pulse-by-Pulse Current Limiting
- Automatic Symmetry Correction in Push-pull Configuration
- Enhanced Load Response Characteristics
- Parallel Operation Capability for Modular Power Systems
- Differential Current Sense Amplifier with Wide Common Mode Range
- Double Pulse Suppression
- 500mA (Peak) Totem-pole Outputs
- ±1% Bandgap Reference
- Under-voltage Lockout
- Soft Start Capability
- Shutdown Terminal
- 500kHZ Operation

BLOCK DIAGRAM

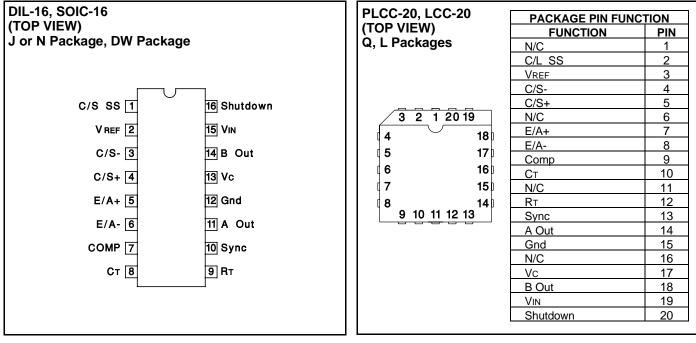

DESCRIPTION

The UC1846/7 family of control ICs provides all of the necessary features to implement fixed frequency, current mode control schemes while maintaining a minimum external parts count. The superior performance of this technique can be measured in improved line regulation, enhanced load response characteristics, and a simpler, easier-to-design control loop. Topological advantages include inherent pulse-by-pulse current limiting capability, automatic symmetry correction for push-pull converters, and the ability to parallel "power modules" while maintaining equal current sharing.

Protection circuitry includes built-in under-voltage lockout and programmable current limit in addition to soft start capability. A shutdown function is also available which can initiate either a complete shutdown with automatic restart or latch the supply off.

Other features include fully latched operation, double pulse suppression, deadline adjust capability, and a $\pm1\%$ trimmed bandgap reference.

The UC1846 features low outputs in the OFF state, while the UC1847 features high outputs in the OFF state.


UC1846/7 UC2846/7 UC3846/7

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage (Pin 15)	+40V
Collector Supply Voltage (Pin 13)	+40V
Output Current, Source or Sink (Pins 11, 14)	500mA
Analog Inputs (Pins 3, 4, 5, 6, 16)	0.3V to +V _{IN}
Reference Output Current (Pin 2)	
Sync Output Current (Pin 10)	5mA
Error Amplifier Output Current (Pin 7)	5mA
Soft Start Sink Current (Pin 1)	
Oscillator Charging Current (Pin 9)	
Power Dissipation at TA=25°C	1000mW
Power Dissipation at Tc=25°C	2000mW
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10 seconds	+300°C
Note 1. All voltages are with respect to Ground, Pin 13.	1 ,

negative out of the speficied terminal. Consult Packaging Section of Databook for thermal limitations and considerations of packages. Pin numbers refer to DIL and SOIC packages only.

CONNECTION DIAGRAMS

ELECTRICAL CHARACTERISTICS (Unless otherwise stated, these specifications apply for TA=-55°C to +125°C for UC1846/7; -40°C to +85°C for the UC2846/7; and 0°C to +70°C for the UC3846/7; VIN=15V, RT=10k, CT=4.7nF, TA=TJ.)

PARAMETER	TEST CONDITIONS		846/UC [/] 846/UC/		UC3			
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Reference Section								
Output Voltage	TJ=25°C, IO=1mA	5.05	5.10	5.15	5.00	5.10	5.20	V
Line Regulation	VIN=8V to 40V		5	20		5	20	mV
Load Regulation	IL=1mA to 10mA		3	15		3	15	mV
Temperature Stability	Over Operating Range, (Note 2)		0.4			0.4		mV/°C
Total Output Variation	Line, Load, and Temperature (Note 2)	5.00		5.20	4.95		5.25	V
Output Noise Voltage	10Hz≤ f ≤10kHz, TJ=25°C (Note 2)		100			100		μV
Long Term Stability	TJ=125°C, 1000 Hrs. (Note 2)		5			5		mV
Short Circuit Output Current	Vref=0V	-10	-45		-10	-45		mA

ELECTRICAL (Unless otherwise stated, these specifications apply for TA=-55°C to +125°C for UC1846/7; -40°C to +85°C for the UC2846/7; and 0°C to +70°C for the UC3846/7; VIN=15V, RT=10k, CT=4.7nF, TA=TJ.)

PARAMETER	TEST CONDITIONS		846/UC 846/UC		UC3846/UC3847			
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Oscillator Section								
Initial Accuracy	TJ=25°C	39	43	47	39	43	47	kHz
Voltage Stability	VIN=8V to 40V		-1	2		-1	2	%
Temperature Stability	Over Operating Range (Note 2)		-1			-1		%
Sync Output High Level		3.9	4.35		3.9	4.35		V
Sync Output Low Level			2.3	2.5		2.3	2.5	V
Sync Input High Level	Pin 8=0V	3.9			3.9			V
Sync Input Low Level	Pin 8=0V			2.5			2.5	V
Sync Input Current	Sync Voltage=3.9V, Pin 8=0V		1.3	1.5		1.3	1.5	mA
Error Amp Section								
Input Offset Voltage			0.5	5		0.5	10	mV
Input Bias Current			-0.6	-1		-0.6	-2	μA
Input Offset Current			40	250		40	250	nA
Common Mode Range	VIN=8V to 40V	0		VIN-2V	0		VIN-2V	V
Open Loop Voltage Gain	$\Delta Vo=1.2$ to 3V, Vcm=2V	80	105		80	105		dB
Unity Gain Bandwidth	TJ=25°C (Note 2)	0.7	1.0		0.7	1.0		MHz
CMRR	V _{CM} =0V to 38V, V _{IN} =40V	75	100		75	100		dB
PSRR	VIN=8V to 40V	80	105		80	105		dB
Output Sink Current	VID=-15mV to -5V, VPIN 7=1.2V	2	6		2	6		mA
Output Source Current	VID=15mV to 5V, VPIN 7=2.5V	-0.4	-0.5		-0.4	-0.5		mA
High Level Output Voltage	RL=(Pin 7) 15kΩ	4.3	4.6		4.3	4.6		V
Low Level Output Voltage			0.7	1		0.7	1	V
Current Sense Amplifier Sect	ion							
Amplifier Gain	VPIN 3=0V, Pin 1 Open (Notes 3 & 4)	2.5	2.75	3.0	2.5	2.75	3.0	V
Maximum Differential Input	Pin 1 Open (Note 3)							
Signal (VPIN 4-VPIN 3)	R∟ (Pin 7)=15kW	1.1	1.2		1.1	1.2		V
Input Offset Voltage	VPIN 1=0.5V, Pin 7 Open (Note 3)		5	25		5	25	mV
CMRR	VCM=1V to 12V	60	83		60	83		dB
PSRR	VIN=8V to 40V	60	84		60	84		dB
Input Bias Current	VPIN 1=0.5V, Pin 7 Open (Note 3)		-2.5	-10		-2.5	-10	μA
Input Offset Current	VPIN 1=0.5V, Pin 7 Open (Note 3)		0.08	1		0.08	1	μA
Input Common Mode Range		0		VIN-3	0		VIN-3	V
Delay to Outputs	TJ=25°C, (Note 2)		200	500		200	500	ns
Current Limit Adjust Section								
Current Limit Offset	VPIN 3=0V, VPIN 4=0V, Pin 7 Open							
	(Note 3)	0.45	0.5	0.55	0.45	0.5	0.55	V
Input Bias Current	VPIN 5=VREF, VPIN 6=0V		-10	-30		-10	-30	μA
Shutdown Terminal Section								
Threshold Voltage		250	350	400	250	350	400	mV
Input Voltage Range		0		Vin	0		Vin	V
Minimum Latching Current	(Note 6)							
(IPIN 1)		3.0	1.5		3.0	1.5		mA

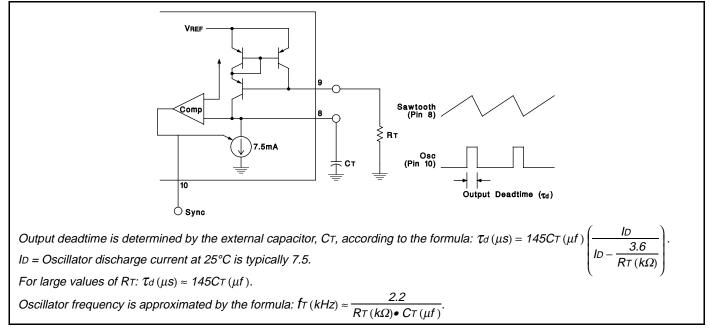
ELECTRICAL (Unless otherwise stated, these specifications apply for TA=-55°C to +125°C for UC1846/7; -40°C to +85°C for the UC2846/7; and 0°C to +70°C for the UC3846/7; VIN=15V, RT=10k, CT=4.7nF, TA=T,L)

PARAMETER	TEST CONDITIONS	UC1 UC2	UC3846/UC3847					
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Shutdown Terminal Section	(cont.)							
Maximum Non-Latching	(Note 7)							
Current (IPIN 1)			1.5	0.8		1.5	0.8	mA
Delay to Outputs	TJ=25°C (Note 2)		300	600		300	600	ns
Output Section								
Collector-Emitter Voltage		40			40			V
Collector Leakage Current	Vc=40V (Note 5)			200			200	μA
Output Low Level	ISINK=20mA		0.1	0.4		0.1	0.4	V
	ISINK=100mA		0.4	2.1		0.4	2.1	V
Output High Level	ISOURCE=20mA	13	13.5		13	13.5		V
	ISOURCE=100mA	12	13.5		12	13.5		V
Rise Time	CL=1nF, TJ=25°C (Note 2)		50	300		50	300	ns
Fall Time	CL=1nF, TJ=25°C (Note 2)		50	300		50	300	ns
Under-Voltage Lockout Sect	ion							
Start-Up Threshold			7.7	8.0		7.7	8.0	V
Threshold Hysteresis			0.75			0.75		V
Total Standby Current								
Supply Current			17	21		17	21	mA

Note 2. These parameters, although guaranteed over the recommended operating conditions, are not 100% tested in production. Note 3. Parameter measured at trip point of latch with $V_{PIN 5} = V_{REF}$, $V_{PIN 6} = 0V$.

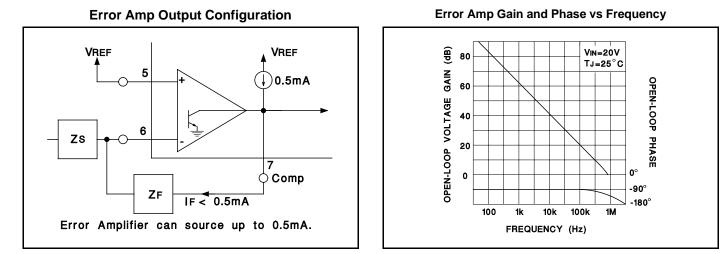
to 1.0V.

Note 4. Amplifier gain defined as:

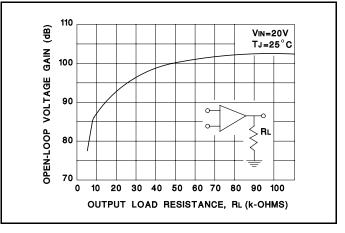

$$G = \frac{\Delta VPIN7}{\Delta VPIN4}; \Delta VPIN4 = 0$$

Note 5. Applies to UC1846/UC2846/UC3846 only due to polarity of outputs. Note 6. Current into Pin 1 guaranteed to latch circuit in shutdown state.

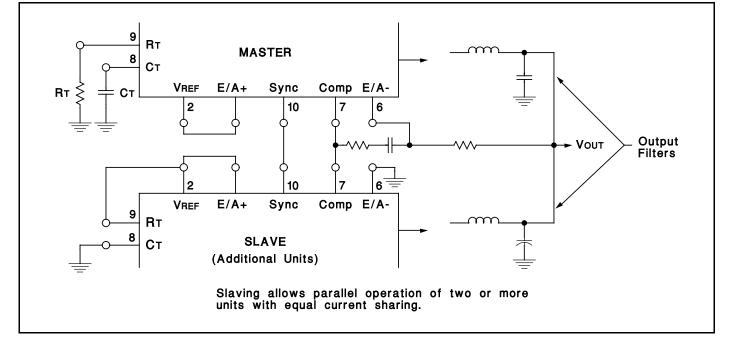
Note 7. Current into Pin 1 guaranteed not to latch circuit in shutdown state.

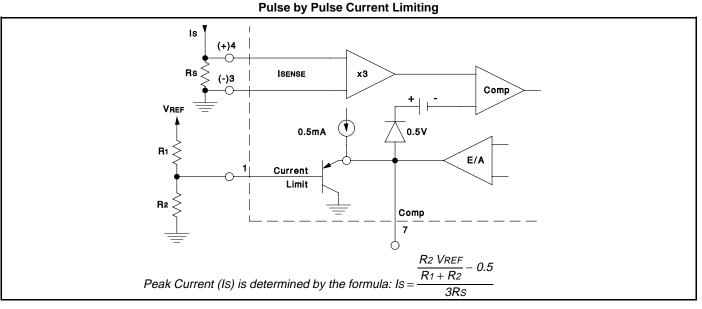

APPLICATIONS DATA

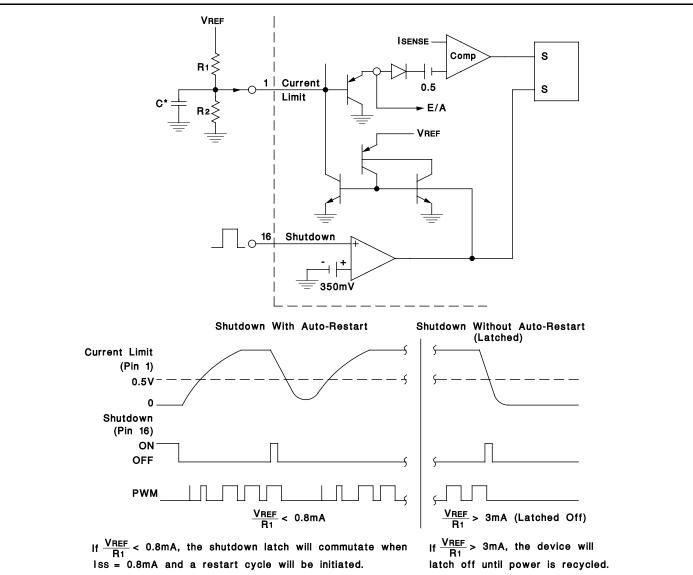
Oscillator Circuit



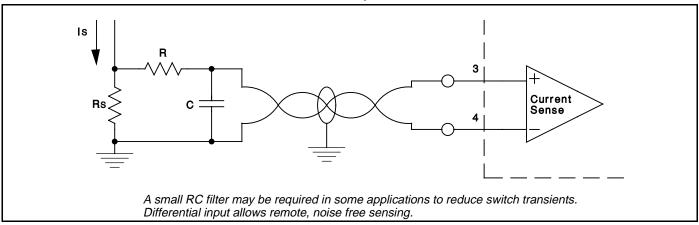
UC1846/7 UC2846/7 UC3846/7


APPLICATIONS DATA (cont.)

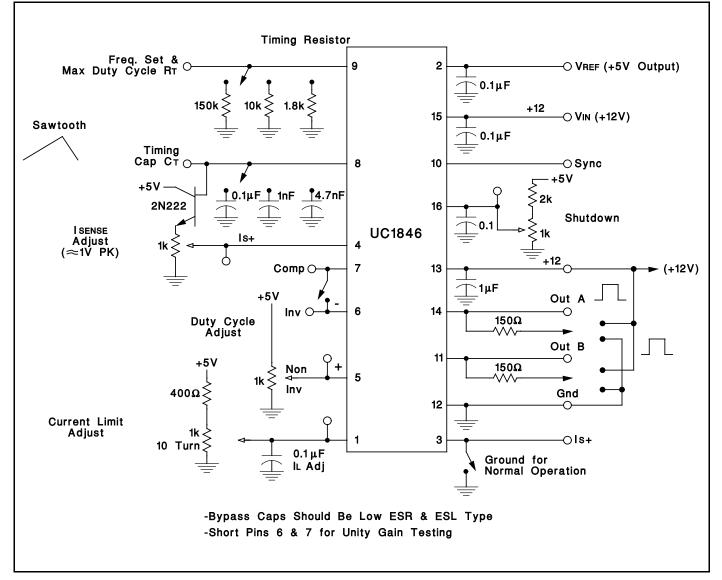

Error Amp Open-Logic D.C. Gain vs Load Resistance


Parallel Operation

APPLICATIONS DATA (cont.)



Soft Start and Shutdown /Restart Functions



APPLICATIONS DATA (cont.)

UNITRODE CORPORATION 7 CONTINENTAL BLVD. • MERRIMACK, NH 03054 TEL. (603) 424-2410 • FAX (603)424-3460

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

😻 Texas Instruments	THE WORLI	D LEADER	IN DSP AND	ANALOG					
Search Power Portal	Advanced Search	🖬 TI Home	II TI&ME	🗆 Employment					
	🗖 Tech Support	🖬 Comments	🖬 Site Map	🖬 TI Global					
/	Power Mana	gement							
Power Management Home >> Power Management > PWM Power Supply Products > Current Mode									

×

UC1846, CURRENT MODE PWM CONTROLLER

Device Status: Active

- > Description
- > Features
- > Datasheets
- > <u>Pricing/Samples/Availability</u>
- Application Notes
- > <u>Applications</u>

Parameter Name	UC1846
Shutdown	Yes
Output Type	Dual Alternating, Totem Pole
Output Current (mA)	500
Frequency (max) (kHz)	500
Pulse - by - Pulse Isense	Yes
Reference Voltage (V)	5.1
Vref tol (%)	1
Duty Cycle (max) (%)	50
Operating Supply Current (mA)	17
Operating Supply (max) (V)	40
Operating Supply (min) (V)	7
PWM Outputs (#)	2
Error Amplifier GBW (mHz)	1

Description

Unitrode Products

The UC1846/7 family of control ICs provides all of the necessary features to implement fixed frequency, current mode control schemes while maintaining a minimum external parts count. The superior performance of this technique can be measured in improved line regulation, enhanced load response characteristics, and a simpler, easier-to-design control loop. Topological advantages include inherent pulse-by-pulse current limiting capability, automatic symmetry correction for push-pull converters, and the ability to parallel "power modules" while maintaining equal current sharing.

Protection circuitry includes built-in under-voltage lockout and programmable current limit in addition to soft start capability. A shut-down function is also available which can initiate

either a complete shutdown with automatic restart or latch the supply off.

Other features include fully latched operation, double pulse suppression, deadline adjust capability, and a $\pm 1\%$ trimmed bandgap reference.

The UC1846 features low outputs in the OFF state, while the UC1847 features high outputs in the OFF state.

Features

- Automatic Feed Forward Compensation
- Programmable Pulse-by-Pulse Current Limiting
- Automatic Symmetry Correction in Push-pull Configuration
- Enhanced Load Response Characteristics
- Parallel Operation Capability for Modular Power Systems
- Differential Current Sense Amplifier with Wide Common Mode Range
- Double Pulse Suppression
- 500mA (Peak) Totem-pole Outputs
- ±1% Bandgap Reference
- Under-voltage Lockout
- Soft Start Capability
- Shutdown Terminal
- 500kHZ Operation

To view the following documents, <u>Acrobat Reader 3.x</u> is required.

To download a document to your hard drive, right-click on the link and choose 'Save'.

Datasheets

Full datasheet in Acrobat PDF: <u>slus352.pdf</u> (463 KB)

Pricing/Samples/Availability

<u>Orderable</u> <u>Device</u>	Package	<u>Pins</u>	<u>Temp</u> (°C)	<u>Status</u>	Price/unit USD (100- 999)	<u>Pack</u> Qty	<u>DSCC</u> <u>Number</u>	<u>Availability /</u> <u>Samples</u>
5962-86806012A	L	20	-55 TO 125	ACTIVE	54.61	1		<u>Check stock or</u> order
5962- 8680601EA	ī	16	-55 TO 125	ACTIVE	18.22	1		<u>Check stock or</u> order
5962- 8680601V2A	L	20	-55 TO 125	ACTIVE	223.46	1		<u>Check stock or</u> <u>order</u>
5962- 8680601VEA	ī	16	-55 TO 125	ACTIVE	74.63	1		<u>Check stock or</u> order
UC1846J	ī	16	-55 TO 125	ACTIVE	11.44	1		<u>Check stock or</u> order
UC1846J/80257	<u>1</u>	16	-55 TO 125	OBSOLETE				
	1		-55 TO					

UC1846J/80364	Ī	16	125	OBSOLETE				
UC1846J/80619	<u>1</u>	16	-55 TO 125	NRND	58.05	1		<u>Check stock or</u> order
UC1846J883B	<u>1</u>	16	-55 TO 125	ACTIVE	18.24	1		<u>Check stock or</u> order
UC1846JQMLV	<u>1</u>	16	-55 TO 125	ACTIVE	74.63	1	5962- 8680601VEA	<u>Check stock or</u> <u>order</u>
UC1846LQMLV	L	20	-55 TO 125	ACTIVE	223.46	1	5962- 86806012A	<u>Check stock or</u> <u>order</u>

Application Reports

- DN-45 UC3846, UC3856 AND UCC3806 PUSH PULL PWM CURRENT MODE CONTROL ICS (SLUA178 - Updated: 11/04/1999)
- <u>ELECTROSTATIC DISCHARGE APPLICATION NOTE</u> (SSYA008 Updated: 05/05/1999)
- MODELING, ANALYSIS AND COMPENSATION OF THE CURRENT-MODE <u>CONVERTER</u> (SLUA101 - Updated: 12/16/1999)
- THERMAL CHARACTERISTICS OF LINEAR AND LOGIC PACKAGES USING JEDEC PCB DESIGNS (SZZA017A - Updated: 09/10/1999)
- <u>U-93 A NEW INTEGRATED CIRCUIT FOR CURRENT MODE CONTROL</u> (SLUA075 Updated: 11/04/1999)

Table Data Updated on: 8/16/2000

© Copyright 2000 Texas Instruments Incorporated. All rights reserved. Trademarks | Privacy Policy