

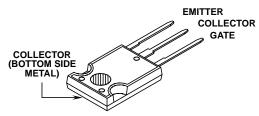
# *HGTG24N60D1D*

24A, 600V N-Channel IGBT with Anti-Parallel Ultrafast Diode

April 1995

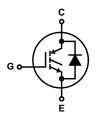
## Features

- 24A, 600V
- Latch Free Operation
- Typical Fall Time <500ns</li>
- Low Conduction Loss
- With Anti-Parallel Diode
- t<sub>RR</sub> < 60ns


## Description

The IGBT is a MOS gated high voltage switching device combining the best features of MOSFETs and bipolar transistors. The device has the high input impedance of a MOSFET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between +25°C and +150°C. The diode used in parallel with the IGBT is an ultrafast ( $t_{RR}$  < 60ns) with soft recovery characteristic.

The IGBTs are ideal for many high voltage switching applications operating at frequencies where low conduction losses are essential, such as: AC and DC motor controls, power supplies and drivers for solenoids, relays and contactors.


## Package

#### **JEDEC STYLE TO-247**



## Terminal Diagram

#### **N-CHANNEL ENHANCEMENT MODE**



#### **PACKAGING AVAILABILITY**

| PART NUMBER  | PACKAGE | BRAND     |
|--------------|---------|-----------|
| HGTG24N60D1D | TO-247  | G24N60D1D |

NOTE: When ordering, use the entire part number.

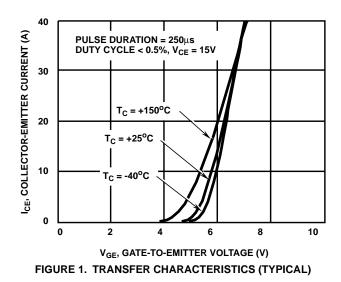
## **Absolute Maximum Ratings** T<sub>C</sub> = +25°C, Unless Otherwise Specific

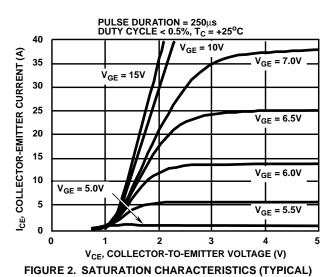
|                                                           | HGTG24N60D1D                 | UNITS |
|-----------------------------------------------------------|------------------------------|-------|
| Collector-Emitter Voltage                                 | 600                          | V     |
| Collector-Gate Voltage $R_{GE} = 1M\Omega \dots BV_{CGR}$ | 600                          | V     |
| Collector Current Continuous at $T_C = +25^{\circ}C$      | 40                           | Α     |
| at $T_C = +90^{\circ}C \dots I_{C90}$                     | 24                           | Α     |
| Collector Current Pulsed (Note 1)                         | 96                           | Α     |
| Gate-Emitter Voltage ContinuousV <sub>GES</sub>           | ±25                          | V     |
| Switching Safe Operating Area at T <sub>J</sub> = +150°C  | 60A at 0.8 BV <sub>CES</sub> | -     |
| Diode Forward Current at $T_C = +25^{\circ}C$ $I_{F25}$   | 40                           | Α     |
| at $T_C = +90^{\circ}C$ $I_{F90}$                         | 24                           | Α     |
| Power Dissipation Total at T <sub>C</sub> = +25°C         | 125                          | W     |
| Power Dissipation Derating T <sub>C</sub> > +25°C         | 1.0                          | W/°C  |
| Operating and Storage Junction Temperature Range          | -55 to +150                  | °C    |
| Maximum Lead Temperature for SolderingT <sub>L</sub>      | 260                          | °C    |
| (0.125 inch from case for 5s)                             |                              |       |

NOTE: 1. Repetitive Rating: Pulse width limited by maximum junction temperature.

#### INTERSIL CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS:

| 4,364,073 | 4,417,385 | 4,430,792 | 4,443,931 | 4,466,176 | 4,516,143 | 4,532,534 | 4,567,641 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 4,587,713 | 4,598,461 | 4,605,948 | 4,618,872 | 4,620,211 | 4,631,564 | 4,639,754 | 4,639,762 |
| 4,641,162 | 4,644,637 | 4,682,195 | 4,684,413 | 4,694,313 | 4,717,679 | 4,743,952 | 4,783,690 |
| 4,794,432 | 4,801,986 | 4,803,533 | 4,809,045 | 4,809,047 | 4,810,665 | 4,823,176 | 4,837,606 |
| 4,860,080 | 4,883,767 | 4,888,627 | 4,890,143 | 4,901,127 | 4,904,609 | 4,933,740 | 4,963,951 |
| 4 969 027 |           |           |           |           |           |           |           |


# Specifications HGTG24N60D1D


## **Electrical Specifications** $T_C = +25$ °C, Unless Otherwise Specified

|                                      |                      |                                                                                                              |                                  | LIMITS |     |      |       |
|--------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------|--------|-----|------|-------|
| PARAMETERS                           | SYMBOL               | TEST CONDITIONS                                                                                              |                                  | MIN    | TYP | MAX  | UNITS |
| Collector-Emitter Breakdown Voltage  | BV <sub>CES</sub>    | $I_C = 280 \mu A, V_{GE} =$                                                                                  | 0V                               | 600    | -   | -    | ٧     |
| Collector-Emitter Leakage Voltage    | I <sub>CES</sub>     | V <sub>CE</sub> = BV <sub>CES</sub>                                                                          | $T_{\rm C} = +25^{\rm o}{\rm C}$ | -      | -   | 280  | μА    |
|                                      |                      | V <sub>CE</sub> = 0.8 BV <sub>CES</sub>                                                                      | $T_C = +125^{\circ}C$            | -      | -   | 5.0  | mA    |
| Collector-Emitter Saturation Voltage | V <sub>CE(SAT)</sub> | I <sub>C</sub> = I <sub>C90</sub> ,                                                                          | T <sub>C</sub> = +25°C           | -      | 1.7 | 2.3  | ٧     |
|                                      |                      | $V_{GE} = 15V$ $T_{C} = +125^{\circ}C$                                                                       | -                                | 1.9    | 2.5 | ٧    |       |
| Gate-Emitter Threshold Voltage       | V <sub>GE(TH)</sub>  | $I_C = 250\mu A,$ $V_{CE} = V_{GE}$                                                                          | T <sub>C</sub> = +25°C           | 3.0    | 4.5 | 6.0  | V     |
| Gate-Emitter Leakage Current         | I <sub>GES</sub>     | V <sub>GE</sub> = ±20V                                                                                       |                                  | -      | -   | ±500 | nA    |
| Gate-Emitter Plateau Voltage         | V <sub>GEP</sub>     | $I_{C} = I_{C90}, V_{CE} = 0.5 \text{ BV}_{CES}$                                                             |                                  | -      | 6.3 | -    | ٧     |
| On-State Gate Charge                 | Q <sub>G(ON)</sub>   | $I_{C} = I_{C90},$ $V_{GE} = 15V$                                                                            | -                                | 120    | 155 | nC   |       |
|                                      |                      | $V_{CE} = 0.5 \text{ BV}_{CES}$                                                                              | V <sub>GE</sub> = 20V            | -      | 155 | 200  | nC    |
| Current Turn-On Delay Time           | t <sub>D(ON)I</sub>  | L = 500μH, $I_C = I_{C90}$ , $R_G = 25Ω$ , $V_{GE} = 15V$ , $T_J = +150°C$ , $V_{CE} = 0.8 \text{ BV}_{CES}$ |                                  | -      | 100 | -    | ns    |
| Current Rise Time                    | t <sub>RI</sub>      |                                                                                                              |                                  | -      | 150 | -    | ns    |
| Current Turn-Off Delay Time          | t <sub>D(OFF)I</sub> | 1                                                                                                            | TOE THE ENGLIS                   |        | 700 | 900  | ns    |
| Current Fall Time                    | t <sub>FI</sub>      | 1                                                                                                            |                                  |        | 450 | 600  | ns    |
| Turn-Off Energy (Note 1)             | W <sub>OFF</sub>     | 1                                                                                                            |                                  | -      | 4.3 | -    | mJ    |
| Thermal Resistance (IGBT)            | $R_{	heta JC}$       |                                                                                                              |                                  | -      | -   | 1.00 | °C/W  |
| Thermal Resistance Diode             | $R_{	heta JC}$       |                                                                                                              |                                  | -      | -   | 1.50 | °C/W  |
| Diode Forward Voltage                | V <sub>EC</sub>      | I <sub>EC</sub> = 24A                                                                                        |                                  | -      | -   | 1.50 | ٧     |
| Diode Reverse Recovery Time          | t <sub>RR</sub>      | I <sub>EC</sub> = 24A, di/dt = 100A/μs                                                                       |                                  | -      | -   | 60   | ns    |

NOTE: 1. Turn-Off Energy Loss (W<sub>OFF</sub>) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (I<sub>CE</sub> = 0A) The HGTG24N60D1D was tested per JEDEC standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.

## **Typical Performance Curves**





## Typical Performance Curves (Continued)

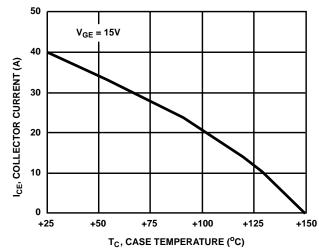



FIGURE 3. DC COLLECTOR CURRENT vs CASE TEMPERATURE

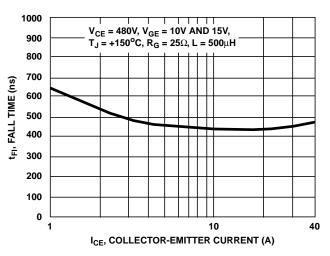



FIGURE 4. FALL TIME vs COLLECTOR-EMITTER CURRENT

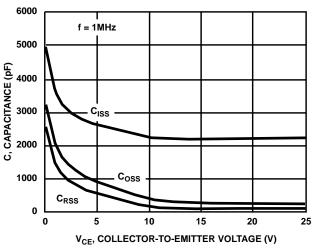



FIGURE 5. CAPACITANCE vs COLLECTOR-EMITTER VOLTAGE

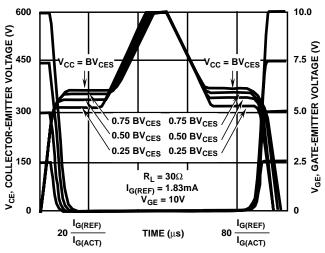



FIGURE 6. NORMALIZED SWITCHING WAVEFORMS AT CON-STANT GATE CURRENT (REFER TO APPLICATION NOTES AN7254 AND AN7260)

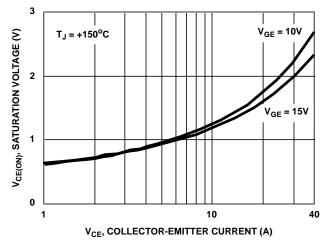



FIGURE 7. SATURATION VOLTAGE vs COLLECTOR-EMITTER CURRENT

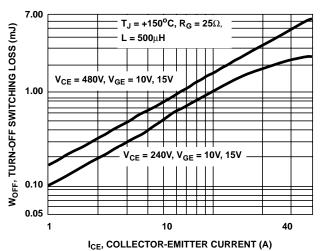



FIGURE 8. TURN-OFF SWITCHING LOSS vs COLLECTOR-EMITTER CURRENT

## Typical Performance Curves (Continued)




FIGURE 9. TURN-OFF DELAY vs COLLECTOR-EMITTER CURRENT

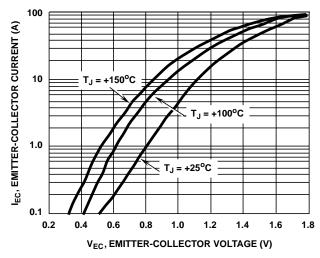
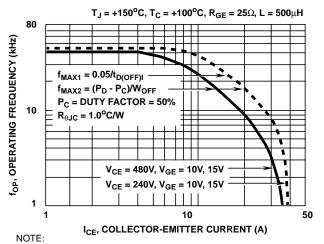




FIGURE 11. FORWARD VOLTAGE vs FORWARD CURRENT CHARACTERISTIC



 $P_D$  = ALLOWABLE DISSIPATION  $P_C$  = CONDUCTION DISSIPATION FIGURE 10. OPERATING FREQUENCY vs COLLECTOR-EMITTER CURRENT AND VOLTAGE

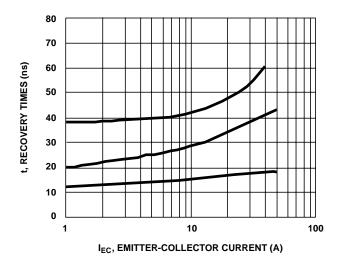



FIGURE 12. TYPICAL t<sub>RR</sub>, t<sub>A</sub>, t<sub>B</sub> vs FORWARD CURRENT

# Operating Frequency Information

Operating frequency information for a typical device (Figure 10) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current ( $I_{CE}$ ) plots are possible using the information shown for a typical unit in Figures 7, 8 and 9. The operating frequency plot (Figure 10) of a typical device shows  $f_{MAX1}$  or  $f_{MAX2}$  whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.

 $f_{MAX1}$  is defined by  $f_{MAX1}=0.05/t_{D(OFF)I}.\ t_{D(OFF)I}$  deadtime (the denominator) has been arbitrarily held to 10% of the on-state time for a 50% duty factor. Other definitions are possible.  $t_{D(OFF)I}$  is defined as the time between the 90% point of the trailing edge of the input pulse and the point where the collector current falls to 90% of its maximum value. Device

turn-off delay can establish an additional frequency limiting condition for an application other than  $T_{JMAX}$ .  $t_{D(OFF)I}$  is important when controlling output ripple under a lightly loaded condition.

 $f_{MAX2}$  is defined by  $f_{MAX2}=(P_D-P_C)/W_{OFF}.$  The allowable dissipation  $(P_D)$  is defined by  $P_D=(T_{JMAX}-T_C)/R_{\theta JC}.$  The sum of device switching and conduction losses must not exceed  $P_D.$  A 50% duty factor was used (Figure 10) and the conduction losses  $(P_C)$  are approximated by  $P_C=(V_{CE}\bullet I_{CE})/2.$   $W_{OFF}$  is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero  $(I_{CE}=0A).$ 

The switching power loss (Figure 10) is defined as  $f_{MAX2} \bullet W_{OFF}$ . Turn-on switching losses are not included because they can be greatly influenced by external circuit conditions and components.

## HGTG24N60D1D

| All Intersil semiconductor products                                                             | s are manufactured, assembled                                                                                                              | and tested under <b>ISO9000</b> quality systems cert                                                                                                                                                 | ification.                  |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Intersil products are sold by description only. notice. Accordingly, the reader is cautioned to | Intersil Corporation reserves the right to<br>verify that data sheets are current before<br>umed by Intersil or its subsidiaries for its u | make changes in circuit design and/or specifications at any<br>placing orders. Information furnished by Intersil is believed to<br>se; nor for any infringements of patents or other rights of third | time without<br>be accurate |
| For information                                                                                 | regarding Intersil Corporation and its prod                                                                                                | ucts, see web site http://www.intersil.com                                                                                                                                                           |                             |
| Sales Office Headquarte                                                                         |                                                                                                                                            | ACIA                                                                                                                                                                                                 |                             |
| NORTH AMERICA Intersil Corporation                                                              | EUROPE<br>Intersil SA                                                                                                                      | <b>ASIA</b><br>Intersil (Taiwan) Ltd.                                                                                                                                                                |                             |

100, Rue de la Fusee

TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

1130 Brussels, Belgium

Melbourne, FL 32902

TEL: (407) 724-7000

FAX: (407) 724-7240

7F-6, No. 101 Fu Hsing North Road

Taipei, Taiwan

Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029