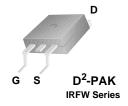
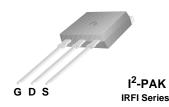
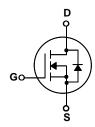


IRFW730B / IRFI730B

400V N-Channel MOSFET


General Description


These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar, DMOS technology.


This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supplies and electronic lamp ballasts based on half bridge.

Features

- 5.5A, 400V, $R_{DS(on)} = 1.0\Omega$ @V_{GS} = 10 V Low gate charge (typical 25 nC)
- · Low Crss (typical 20 pF)
- Fast switching
- 100% avalanche tested
- · Improved dv/dt capability

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		IRFW730B / IRFI730B	Units
V _{DSS}	Drain-Source Voltage		400	V
I _D	Drain Current - Continuous (T _C = 25°C)	5.5	Α
	- Continuous (T _C = 100°C	C)	3.5	Α
I _{DM}	Drain Current - Pulsed	(Note 1)	22	Α
V_{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	330	mJ
I _{AR}	Avalanche Current	(Note 1)	5.5	Α
E _{AR}	Repetitive Avalanche Energy	(Note 1)	7.3	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	5.5	V/ns
P _D	Power Dissipation (T _A = 25°C) *		3.13	W
	Power Dissipation (T _C = 25°C)		73	W
	- Derate above 25°C	Ī	0.58	W/°C
T _J , T _{stg}	Operating and Storage Temperature Rang	е	-55 to +150	°C
T _L	Maximum lead temperature for soldering p 1/8" from case for 5 seconds	ourposes,	300	°C

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		1.71	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

^{*} When mounted on the minimum pad size recommended (PCB Mount)

	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	400			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$, Referenced to 25°	°C	0.4		V/°C
I _{DSS}	Zana Oata Vallana Basis Oamast	V _{DS} = 400 V, V _{GS} = 0 V			10	μΑ
	Zero Gate Voltage Drain Current	V _{DS} = 320 V, T _C = 125°C			100	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Cha	aracteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	2.0		4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 2.75 A		0.83	1.0	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 40 \text{ V}, I_{D} = 2.75 \text{ A}$ (Note	4)	4.5		S
	Input Capacitance Output Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz		790 80	1000 100	pF pF
C _{oss}	Output Capacitance			80	100	pF
C _{rss}	Reverse Transfer Capacitance			20	26	pF
Switchi	ing Characteristics					
	ing Characteristics Turn-On Delay Time	V 200 V I 5 5 A		15	40	ns
t _{d(on)}	i -	$V_{DD} = 200 \text{ V}, I_D = 5.5 \text{ A},$		15 55	40 120	ns ns
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 200 \text{ V}, I_{D} = 5.5 \text{ A},$ $R_{G} = 25 \Omega$		_	_	
t _{d(on)} t _r t _{d(off)}	Turn-On Delay Time Turn-On Rise Time			55	120	ns
$t_{d(on)}$ t_r $t_{d(off)}$	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	R_G = 25 Ω (Note 4		55 85	120 180	ns ns
t _{d(on)} t _r t _{d(off)} t _f Q _g	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	$R_G = 25~\Omega$ (Note 4 $V_{DS} = 320~V, I_D = 5.5~A,$, 5)	55 85 50	120 180 110	ns ns ns
t _d (on) t _r t _d (off) t _f Q _g Q _{gs}	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	R_G = 25 Ω (Note 4	, 5)	55 85 50 25	120 180 110 33	ns ns ns
$t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd}	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$R_{G} = 25~\Omega \label{eq:controller}$ (Note 4) $V_{DS} = 320~\text{V},~\text{I}_{D} = 5.5~\text{A},$ $V_{GS} = 10~\text{V} \label{eq:controller}$ (Note 4)	, 5)	55 85 50 25 4.3	120 180 110 33	ns ns ns nC
$egin{array}{l} t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_{gs} \\ Q_{gd} \\ egin{array}{c} Q_{gd} \\ egin{array}{c} Drain-S \\ \end{array}$	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$R_{G} = 25~\Omega \label{eq:RG}$ (Note 4) $V_{DS} = 320~V, I_{D} = 5.5~A, \label{eq:VGS}$ (Note 4) $V_{GS} = 10~V \label{eq:Note 4}$ and Maximum Ratings		55 85 50 25 4.3 11	120 180 110 33 	ns ns ns nC nC
$egin{array}{l} t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_{gs} \\ Q_{gd} \\ \hline egin{array}{l} Drain-S \\ I_S \\ \hline \end{array}$	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode	$R_G = 25 \Omega$ (Note 4) $V_{DS} = 320 \text{ V}, I_D = 5.5 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4) $V_{DS} = 10 \text{ V}$ (Note 4)		55 85 50 25 4.3	120 180 110 33 	ns ns nc nC nC
$egin{array}{l} t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_{gs} \\ Q_{gd} \\ \hline egin{array}{c} Drain-S \\ I_{SM} \\ \hline \end{array}$	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics at Maximum Continuous Drain-Source Diode Maximum Pulsed Drain-Source Diode F	$R_G = 25 \Omega$ (Note 4) $V_{DS} = 320 \text{ V}, I_D = 5.5 \text{ A}, V_{GS} = 10 \text{ V}$ (Note 4) $V_{DS} = 10 \text$, 5)	55 85 50 25 4.3 11	120 180 110 33 5.5 22	ns ns ns nc nC nC A
$egin{array}{l} t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_{gs} \\ Q_{gd} \\ \hline egin{array}{l} Drain-S \\ I_S \\ \hline \end{array}$	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode	$R_G = 25 \Omega$ (Note 4) $V_{DS} = 320 \text{ V}, I_D = 5.5 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4) $V_{DS} = 10 \text{ V}$ (Note 4)		55 85 50 25 4.3 11	120 180 110 33 	ns ns nc nC nC

- **Notes:**1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 19mH, I_{AS} = 5.5A, V_{DD} = 50V, R_G = 25 Ω, Starting T_J = 25°C 3. I_{SD} \leq 5.5A, di/dt \leq 300A/μs, V_{DD} \leq BV_{DSS}, Starting T_J = 25°C 4. Pulse Test : Pulse width \leq 300μs, Duty cycle \leq 2% 5. Essentially independent of operating temperature

Typical Characteristics

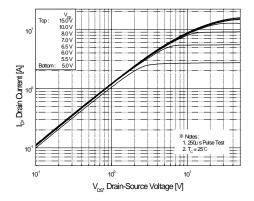


Figure 1. On-Region Characteristics

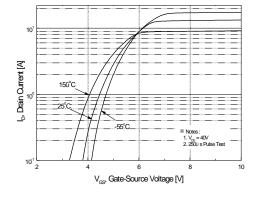


Figure 2. Transfer Characteristics

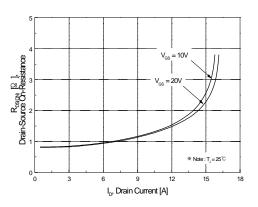


Figure 3. On-Resistance Variation vs Drain Current and Gate Voltage

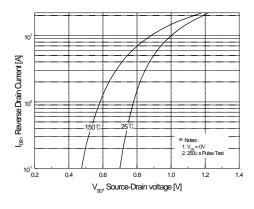


Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature

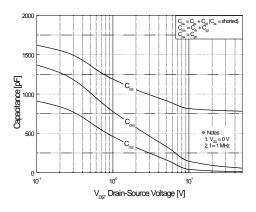


Figure 5. Capacitance Characteristics

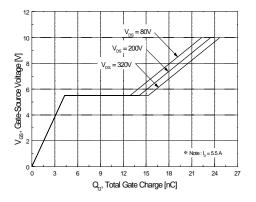


Figure 6. Gate Charge Characteristics

©2001 Fairchild Semiconductor Corporation Rev. B, November 2001

Typical Characteristics (Continued)

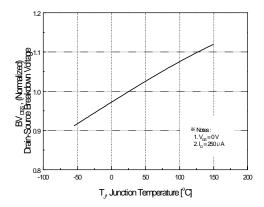


Figure 7. Breakdown Voltage Variation vs Temperature

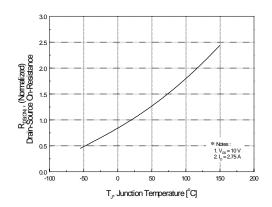


Figure 8. On-Resistance Variation vs Temperature

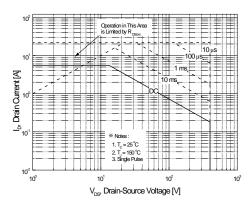


Figure 9. Maximum Safe Operating Area

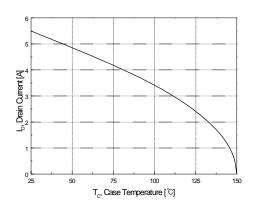
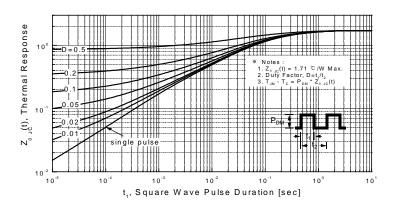
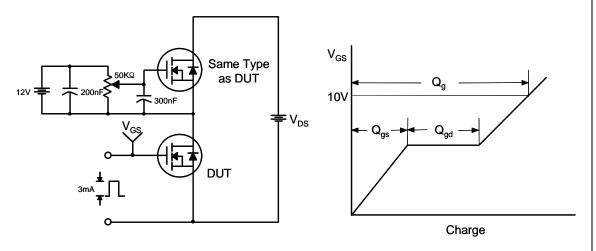
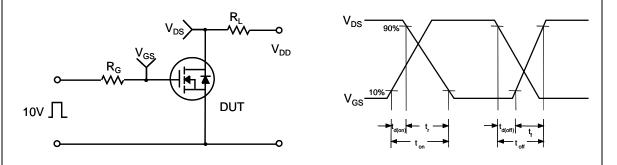
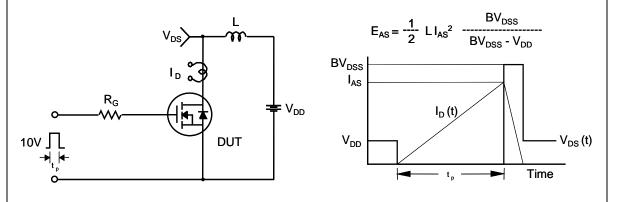


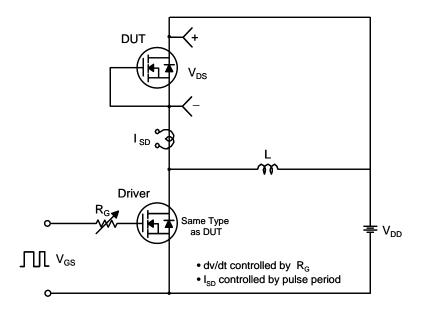
Figure 10. Maximum Drain Current vs Case Temperature

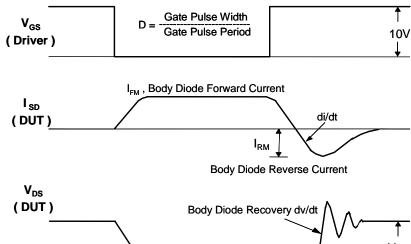




Figure 11. Transient Thermal Response Curve

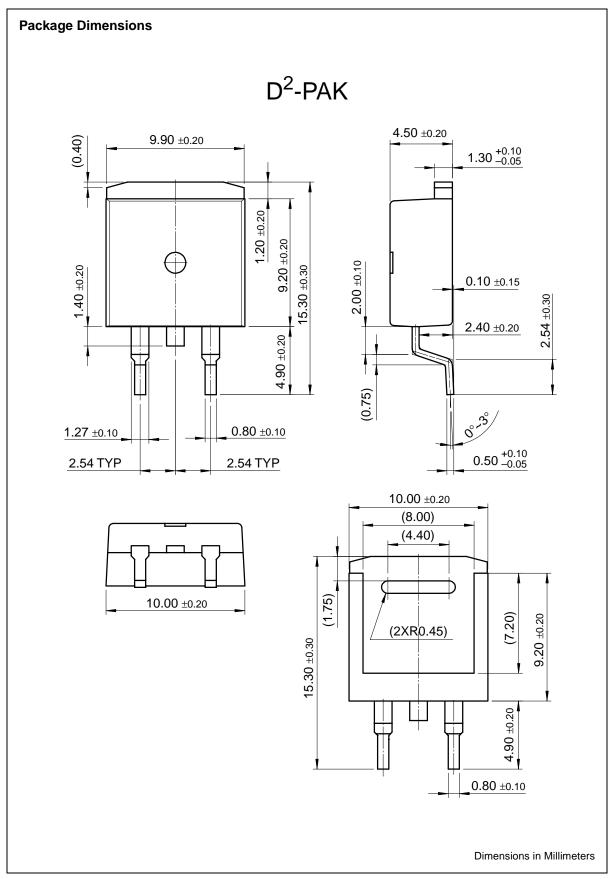
©2001 Fairchild Semiconductor Corporation Rev. B, November 2001

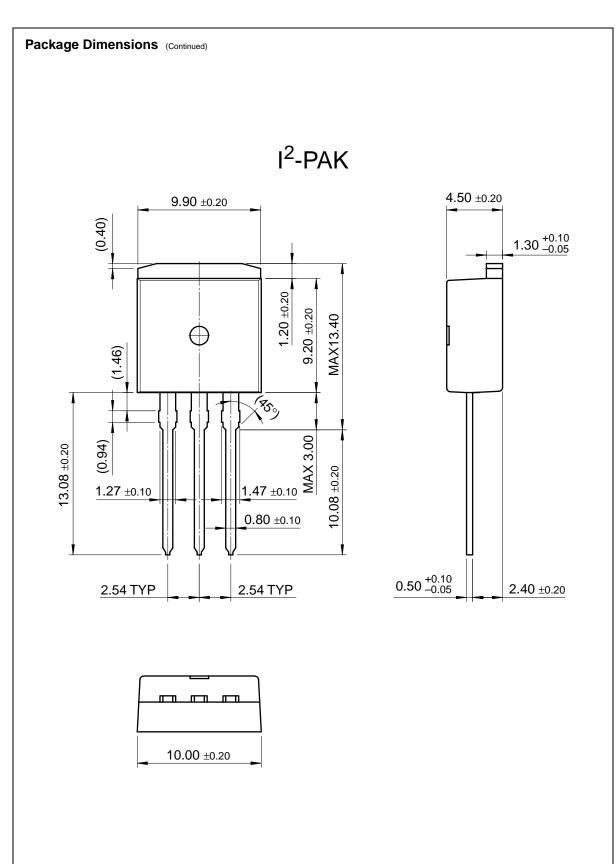

Gate Charge Test Circuit & Waveform


Resistive Switching Test Circuit & Waveforms



Unclamped Inductive Switching Test Circuit & Waveforms




Peak Diode Recovery dv/dt Test Circuit & Waveforms

©2001 Fairchild Semiconductor Corporation Rev. B, November 2001

Dimensions in Millimeters

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	OPTOLOGIC™	SMART START™	VCX^{TM}
Bottomless™	FASTr™	OPTOPLANAR™	STAR*POWER™	
CoolFET™	FRFET™	PACMAN™	Stealth™	
CROSSVOLT TM	GlobalOptoisolator™	POP™	SuperSOT™-3	
DenseTrench™	GTO™	Power247™	SuperSOT™-6	
DOME™	HiSeC™	PowerTrench [®]	SuperSOT™-8	
EcoSPARK™	ISOPLANAR™	QFET™	SyncFET™	
E ² CMOS™	LittleFET™	QS™	TruTranslation™	
EnSigna™	MicroFET™	QT Optoelectronics™	TinyLogic™	
FACT™	MicroPak™	Quiet Series™	UHC™	
FACT Quiet Series™	MICROWIRE™	SLIENT SWITCHER®	UltraFET [®]	

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:


- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2001 Fairchild Semiconductor Corporation Rev. H4

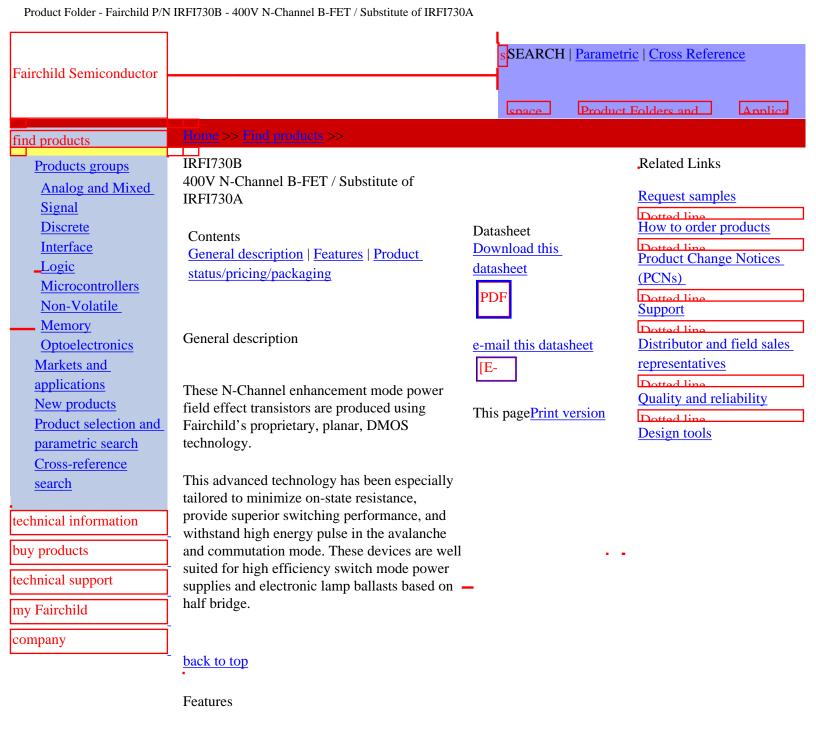
- 10V
- Low gate charge (typical 25 nC)
- Low Crss (typical 20 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method

Product Folder - Fairchild P/N IRFW730B - 400V N-Channel B-FET / Substitute of IRFW730A


IRFW730BTM	Full Production	\$0.75	TO-263(D2PAK)	2	TAPE REEL

^{* 1,000} piece Budgetary Pricing

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor

- 5.5A, 400V, $R_{DS(on)} = 1.0\Omega$ @ $V_{GS} = 10V$
- Low gate charge (typical 25 nC)
- Low Crss (typical 20 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method

Product Folder - Fairchild P/N IRFI730B - 400V N-Channel B-FET / Substitute of IRFI730A

IRFI730BTU	Full Production	\$0.75	TO-262(I2PAK)	3	RAIL

^{* 1,000} piece Budgetary Pricing

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor