
DISCRETE SEMICONDUCTORS

Product specification Supersedes data of 2004 Jun 11 2004 Nov 04

40 V, 5 A NPN low V_{CEsat} (BISS) transistor

FEATURES

- High h_{FE} and low V_{CEsat} at high current operation
- High collector current capability: I_C maximum 4 A
- · High efficiency leading to less heat generation.

APPLICATIONS

- Medium power peripheral drivers (e.g. fan and motor)
- · Strobe flash units for DSC and mobile phones
- Inverter applications (e.g. TFT displays)
- · Power switch for LAN and ADSL systems
- Medium power DC-to-DC conversion
- · Battery chargers.

DESCRIPTION

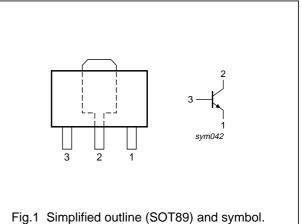
NPN low V_{CEsat} transistor in a medium power SOT89 (SC-62) package. PNP complement: PBSS5540X.

MARKING

TYPE NUMBER	MARKING CODE ⁽¹⁾	
PBSS4540X	*1B	

Note

- 1. * = p: made in Hong Kong.
 - * = t: made in Malaysia.
 - * = W: made in China.


ORDERING INFORMATION

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MAX.	UNIT
V _{CEO}	collector-emitter voltage	40	V
I _C	collector current (DC)	4	А
I _{CM}	peak collector current	10	А
R _{CEsat}	equivalent on-resistance	71	mΩ

PINNING

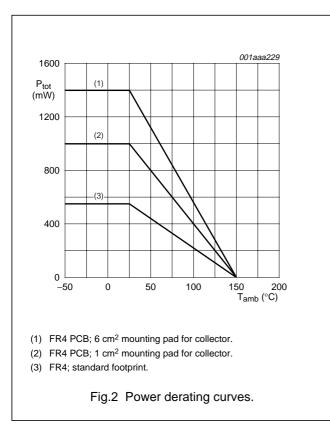
PIN	DESCRIPTION	
1	emitter	
2	collector	
3	base	

PACKAGE **TYPE NUMBER** DESCRIPTION NAME VERSION PBSS4540X SC-62 plastic surface mounted package; collector pad for good heat SOT89

transfer; 3 leads

PBSS4540X

LIMITING VALUES

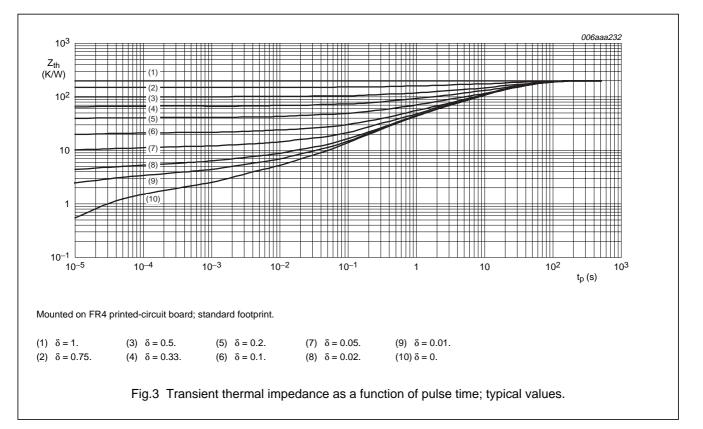

In accordance with the Absolute Maximum Rating System (IEC 60134).

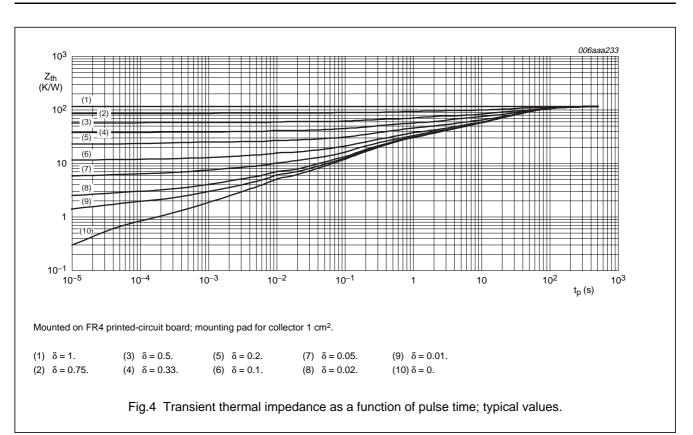
SYMBOL	PARAMETER	PARAMETER CONDITIONS		MAX.	UNIT
V _{CBO}	collector-base voltage open emitter		-	40	V
V _{CEO}	collector-emitter voltage	open base	-	40	V
V _{EBO}	emitter-base voltage	open collector	-	6	V
I _C	collector current (DC)		_	4	A
I _{CRM}	maximum repetitive collector current	notes 1 and 2	-	5	A
I _{CM}	peak collector current	t _p ≤ 1 ms	_	10	A
I _B	base current (DC)		_	1	А
I _{BM}	peak base current	t _p ≤ 1 ms	-	2	A
P _{tot}	total power dissipation	$T_{amb} \le 25 \ ^{\circ}C$			
		notes 1 and 2	_	2.5	W
		note 2	_	0.55	W
		note 3	_	1	W
		note 4	_	1.4	W
		note 5	_	1.6	W
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		_	150	°C
T _{amb}	operating ambient temperature		-65	+150	°C

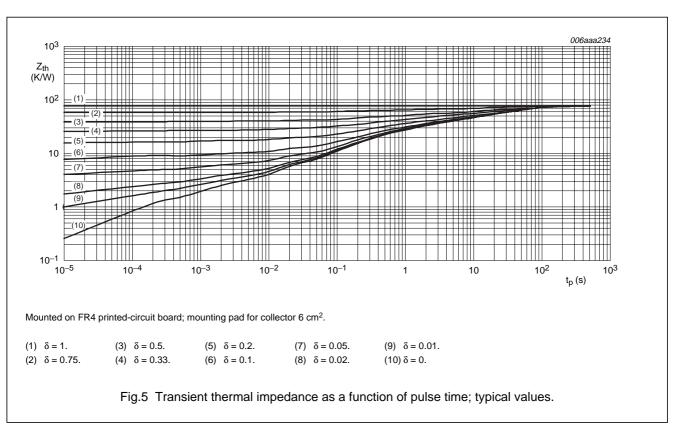
Notes

1. Operated under pulsed conditions; pulse width $t_p \le 10$ ms; duty cycle $\delta \le 0.2$.

- 2. Device mounted on a printed-circuit board, single-sided copper, tin-plated and standard footprint.
- 3. Device mounted on a printed-circuit board, single-sided copper, tin-plated and mounting pad for collector 1 cm².
- 4. Device mounted on a printed-circuit board, single-sided copper, tin-plated and mounting pad for collector 6 cm².
- 5. Device mounted on a 7 cm² ceramic printed-circuit board, 1 cm² single-sided copper and tin-plated. For other mounting conditions, see *"Thermal considerations for SOT89 in the General Part of associated Handbook"*.


PBSS4540X

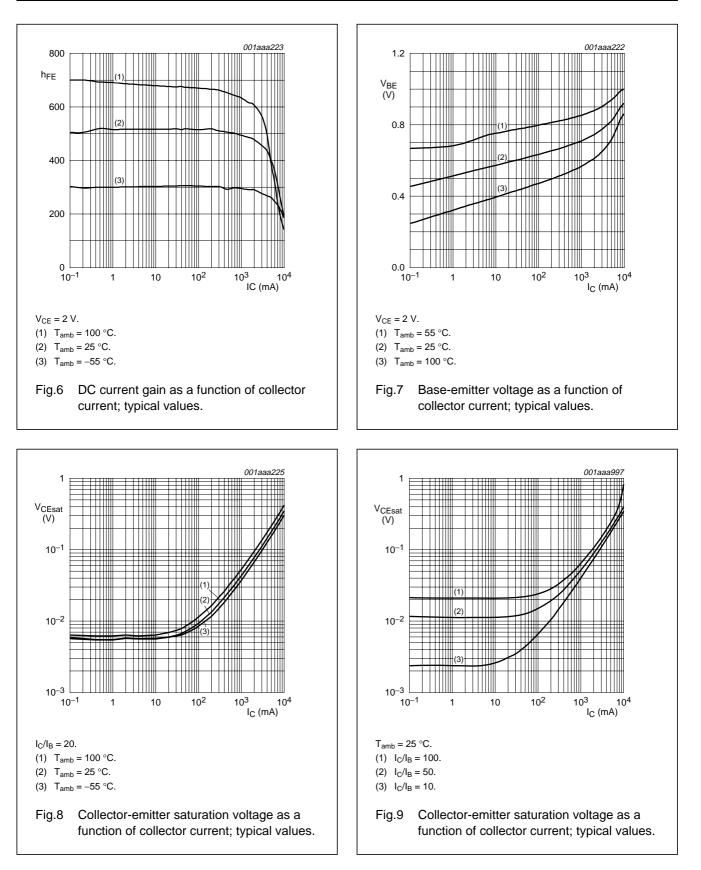

THERMAL CHARACTERISTICS

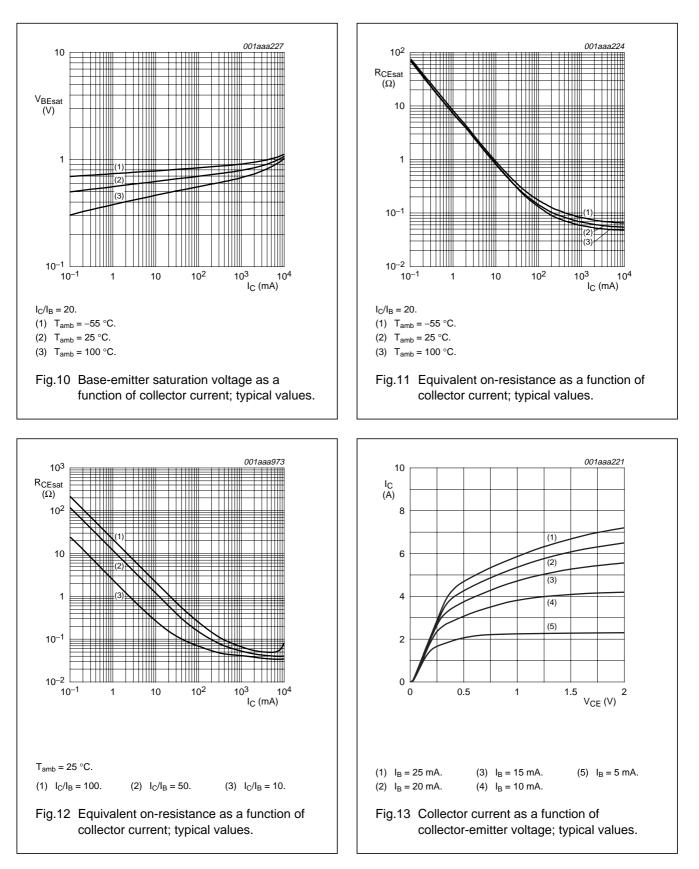

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-a)}	from junction to ambient	in free air		
		notes 1 and 2	50	K/W
		note 2	225	K/W
		note 3	125	K/W
		note 4	90	K/W
		note 5	80	K/W
R _{th(j-s)}	from junction to soldering point		16	K/W

Notes

- 1. Operated under pulsed conditions; pulse width $t_p \leq$ 10 ms; duty cycle $\delta \leq$ 0.2.
- 2. Device mounted on a printed-circuit board, single-sided copper, tin-plated and standard footprint.
- 3. Device mounted on a printed-circuit board, single-sided copper, tin-plated and mounting pad for collector 1 cm².
- 4. Device mounted on a printed-circuit board, single-sided copper, tin-plated and mounting pad for collector 6 cm².
- 5. Device mounted on a 7 cm² ceramic printed-circuit board, 1 cm² single-sided copper and tin-plated. For other mounting conditions, see *"Thermal considerations for SOT89 in the General Part of associated Handbook"*.

PBSS4540X

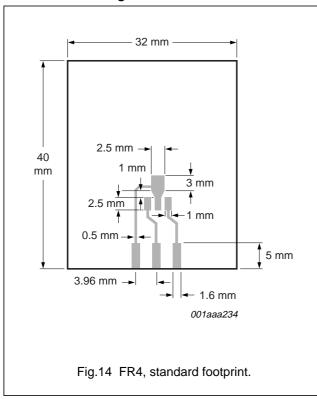

CHARACTERISTICS

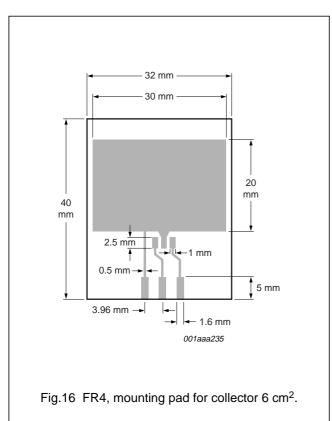

 T_{amb} = 25 °C unless otherwise specified.

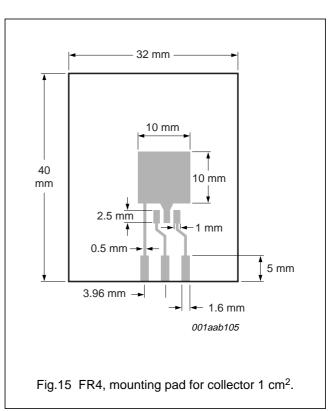
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{CBO}	collector-base cut-off	$V_{CB} = 30 \text{ V}; \text{ I}_{E} = 0 \text{ A}$	-	-	100	nA
	current	$V_{CB} = 30 \text{ V}; \text{ I}_{E} = 0 \text{ A}; \text{ T}_{j} = 150 ^{\circ}\text{C}$	-	-	50	μA
I _{CES}	collector-emitter cut-off current	$V_{CE} = 30 \text{ V}; V_{BE} = 0 \text{ V}$	-	-	0.1	μA
I _{EBO}	emitter-base cut-off current	$V_{EB} = 5 \text{ V}; \text{ I}_{C} = 0 \text{ A}$	-	-	100	nA
h _{FE}	DC current gain	$V_{CE} = 2 \text{ V}; \text{ I}_{C} = 0.5 \text{ A}$	300	-	-	
		$V_{CE} = 2 V; I_C = 1 A; note 1$	300	-	-	
		$V_{CE} = 2 V; I_C = 2 A;$ note 1	250	-	-	
		$V_{CE} = 2 \text{ V}; \text{ I}_{C} = 5 \text{ A}; \text{ note } 1$	100	-	-	
V _{CEsat}	collector-emitter saturation voltage	$I_{\rm C} = 0.5 \text{ A}; I_{\rm B} = 5 \text{ mA}$	-	-	90	mV
		I _C = 1 A; I _B = 10 mA	-	-	120	mV
		$I_{\rm C} = 2 \text{ A}; I_{\rm B} = 200 \text{ mA}; \text{ note } 1$	-	-	150	mV
		$I_{C} = 4 \text{ A}; I_{B} = 200 \text{ mA}; \text{ note } 1$	-	-	290	mV
		I _C = 5 A; I _B = 500 mA; note 1	-	-	355	mV
R _{CEsat}	equivalent on-resistance	I _C = 5 A; I _B = 500 mA; note 1	-	40	71	mΩ
V _{BEsat}	base-emitter saturation voltage	$I_{C} = 4 \text{ A}; I_{B} = 200 \text{ mA}; \text{ note } 1$	-	_	1.1	V
		I _C = 5 A; I _B = 500 mA; note 1	-	_	1.2	V
V _{BEon}	base-emitter turn-on voltage	$V_{CE} = 2 \text{ V}; \text{ I}_{C} = 2 \text{ A}$	-	-	1.1	V
f _T	transition frequency	V _{CE} = 10 V; I _C = 0.1 A; f = 100 MHz	70	-	-	MHz
C _c	collector capacitance	$V_{CB} = 10 \text{ V}; \text{ I}_{E} = \text{i}_{e} = 0 \text{ A};$ f = 1 MHz	-	-	75	pF

Note

1. Pulse test: $t_p \leq 300 \ \mu s; \ \delta \leq 0.02.$

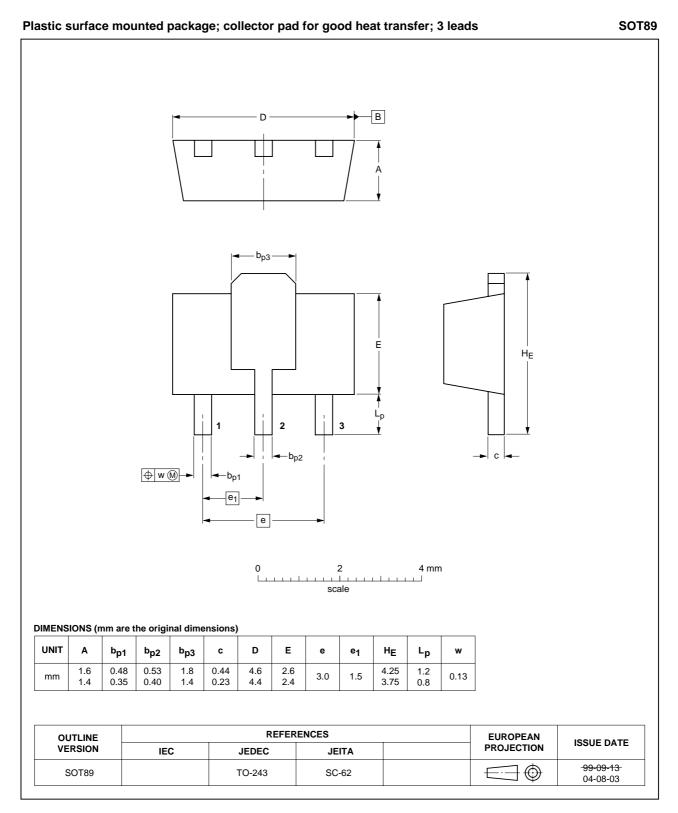





PBSS4540X

40 V, 5 A NPN low V_{CEsat} (BISS) transistor

Reference mounting conditions



10

PBSS4540X

PACKAGE OUTLINE

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾⁽³⁾	DEFINITION
1	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
11	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2004

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

R75/03/pp13

Date of release: 2004 Nov 04

Document order number: 9397 750 13885

SCA76

Let's make things better.

Philips Semiconductors