SMMS508C - MARCH 1992 - REVISED JUNE 1995

- Organization ... 4194304 \times 8
- Single 5-V Power Supply (±10% Tolerance)
- 30-Pin Single In-Line Memory Module (SIMM) for Use With Sockets
- Utilizes Eight 4-Megabit DRAMs in Plastic Small-Outline J-Lead Packages (SOJs)
- Long Refresh Period 16 ms (1024 Cycles)
- All Inputs, Outputs, Clocks Fully TTL Compatible
- 3-State Output
- Performance Ranges:

	ACCESS ACCESS ACCE		ACCESS	READ		
	TIME	IE TIME TIM		AE TIME TIN		OR
	^t RAC			WRITE		
				CYCLE		
	(MAX)	(MAX)	(MAX)	(MIN)		
'4100GAD8-60	60 ns	30 ns	15 ns	110 ns		
'4100GAD8-70	70 ns	35 ns	18 ns	130 ns		
'4100GAD8-80	80 ns	40 ns	20 ns	150 ns		

- Common CAS Control for Eight Common Data-In and Data-Out Lines
- Low Power Dissipation
- Operating Free-Air Temperature Range 0°C to 70°C

description

description

The TM4100GAD8 is a dynamic random-access memory (DRAM) module organized as 4194304 \times 8 bits in a 30-pin leadless single in-line memory module (SIMM).

The SIMM is composed of eight TMS44100DJ 4194304 \times 1-bit DRAMs in 20/26-lead plastic small-outline J-lead packages (SOJ) mounted on a substrate with decoupling capacitors.

The TM4100GAD8 is available in the AD single-sided, leadless module for use with sockets.

The TM4100GAD8 is characterized for operation from 0° C to 70° C.

operation

The TM4100GAD8 operates as eight TMS44100DJs connected as shown in the functional block diagram. Refer to the TMS44100 data sheet for details of its operation. The common I/O feature of the TM4100GAD8 dictates the use of early-write cycles to prevent contention on D and Q.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

PIN NOMENCLATURE						
A0-A10	Address Inputs					
CAS	Column-Address Strobe					
DQ1-DQ8	Data In/Data Out					
NC	No Internal Connection					
RAS	Row-Address Strobe					
VCC	5-V Supply					
VSS	Ground					
W	Write Enable					

SMMS508C - MARCH 1992 - REVISED JUNE 1995

single in-line memory module and components

PC substrate: 1,27 mm (0.05 inch) nominal thickness; 0.005 inch/inch maximum warpage Bypass capacitors: Multilayer ceramic Contact area for socketable devices: Nickel plate and solder plate over copper

functional block diagram

SMMS508C - MARCH 1992 - REVISED JUNE 1995

absolute maximum	ratings over	operating free-air	temperature range	(unless otherwise noted) [†]
	U			· /

Supply voltage range on any pin (see Note 1)		– 1 V to 7 V
Supply voltage range on V _{CC}		– 1 V to 7 V
Short-circuit output current		50 mA
Power dissipation		8 W
Operating free-air temperature range, T _A	(0°C to 70°C
Storage temperature range		°C to 125°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values are with respect to VSS.

recommended operating conditions

		MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	V
VIH	High-level input voltage	2.4		6.5	V
VIL	Low-level input voltage (see Note 2)	- 1		0.8	V
ТА	Operating free-air temperature	0		70	°C

NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used for logic voltage levels only.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	'4100GA	AD8-60	'4100GA	D8-70	'4100GA	'4100GAD8-80	
	PARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Vон	High-level output voltage	I _{OH} = - 5 mA	2.4		2.4		2.4		V
VOL	Low-level output voltage	I _{OL} = 4.2 mA		0.4		0.4		0.4	V
Ц	Input current (leakage)	$\label{eq:VCC} \begin{array}{ll} V_{CC} = 5.5 \mbox{ V}, & V_I = 0 \mbox{ V to } 6.5 \mbox{ V}, \\ \mbox{All other pins} = 0 \mbox{ V to } V_{CC} \end{array}$		±10		±10		±10	μΑ
IO	Output current (leakage)	$V_{O} = 0 V \text{ to } V_{CC},$ $V_{CC} = 5.5 V, CAS \text{ high}$		±10		±10		±10	μΑ
ICC1	Read- or write-cycle current (see Note 3)	V _{CC} = 5.5 V, Minimum cycle		840		720		640	mA
1000	Standby current	V _{IH} = 2.4 V (TTL), After 1 memory cycle, RAS and CAS high,		16		16		16	mA
ICC2		$V_{IH} = V_{CC} - 0.2 V (CMOS),$ After 1 memory cycle, RAS and CAS high		8		8		8	mA
ICC3	Average refresh current (RAS only or CBR [‡]) (see Note 3)	$\frac{V_{CC}}{RAS} = 5.5 \text{ V}, \qquad \text{Minimum cycle,} \\ \frac{RAS}{CAS} \text{ cycling,} \\ \frac{CAS}{RAS} \text{ high (RAS only);} \\ \frac{RAS}{RAS} \text{ low after CAS low (CBR‡)} \\ \end{array}$		840		720		640	mA
ICC4	Average page current (see Note 4)	$\frac{V_{CC}}{RAS} = 5.5 \text{ V}, \qquad \frac{t_{PC}}{CAS} = \text{minimum}, \\ \overline{CAS} \text{ cycling}$		720		640		560	mA

‡ CAS-before-RAS (CBR) refresh

NOTES: 3. Measured with a maximum of one address change while $\overline{RAS} = V_{IL}$

4. Measured with a maximum of one address change while $\overline{CAS} = V_{IH}$

SMMS508C - MARCH 1992 - REVISED JUNE 1995

capacitance over recommended ranges of supply voltage and operating free-air temperature, f = 1 MHz

	PARAMETER	MIN	MAX	UNIT
C _{i(A)}	Input capacitance, A0-A10		40	pF
C _{i(RC)}	Input capacitance, CAS and RAS		56	pF
C _{i(W)}	Input capacitance, W		56	pF
CO	Output capacitance (pins DQ1-DQ8)		12	pF

NOTE 5: V_{CC} = 5 V ± 0.5 V and the bias on the pin under test is 0 V.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER		'4100GAD8-60		'4100GAD8-70		'4100GAD8-80	
	FARAIVIETER	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
t _{AA}	Access time from column address		30		35		40	ns
^t CAC	Access time from CAS low		15		18		20	ns
^t CPA	Access time from column precharge		35		40		45	ns
^t RAC	Access time from RAS low		60		70		80	ns
^t CLZ	CAS to output in low impedance	0		0		0		ns
^t OFF	Output disable time after CAS high (see Note 6)	0	15	0	18	0	20	ns

NOTE 6: tOFF is specified when the output is no longer driven.

timing requirements over recommended ranges of supply voltage and operating free-air temperature

		'4100GA	D8-60	'4100GA	D8-70	'4100GAD8-80		LINUT
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
^t RC	Cycle time, random read or write (see Note 7)	110		130		150		ns
t _{PC}	Cycle time, page-mode read or write (see Note 8)	40		45		50		ns
^t CHR	Delay time, RAS low to CAS high (CBR refresh only)	15		15		20		ns
^t CRP	Delay time, CAS high to RAS low	0		0		0		ns
^t CSH	Delay time, RAS low to CAS high	60		70		80		ns
^t CSR	Delay time, CAS low to RAS low (CBR refresh only)	10		10		10		ns
^t RAD	Delay time, RAS low to column address (see Note 10)	15	30	15	35	15	40	ns
t _{RAL}	Delay time, column address to RAS high	30		35		40		ns
^t CAL	Delay time, column address to CAS high	30		35		40		ns
^t RCD	Delay time, RAS low to CAS low (see Note 10)	20	45	20	52	20	60	ns
^t RPC	Delay time, RAS high to CAS low	0		0		0		ns
^t RSH	Delay time, CAS low to RAS high	15		18		20		ns
^t CAH	Hold time, column address after CAS low	10		15		15		ns
^t DHR	Hold time, data after RAS low (see Note 9)	50		55		60		ns
^t DH	Hold time, data	10		15		15		ns
^t AR	Hold time, column address after RAS low (see Note 9)	50		55		60		ns

NOTES: 7. All cycle times assume $t_T = 5$ ns.

8. To assure tp_C min, t_{ASC} should be \geq t_{CP}. 9. The minimum value is measured when t_{RCD} is set to t_{RCD} min as a reference.

10. The maximum value is specified only to assure access time.

SMMS508C - MARCH 1992 - REVISED JUNE 1995

timing requirements over recommended ranges of supply voltage and operating free-air temperature (continued)

		'41000	GAD8-60	'4100GAD8-70		'4100GAD8-80		LUNT
		MIN	MAX	MIN	MAX	MIN	MAX	UINT
^t RAH	Hold time, row address after RAS low	10		10		10		ns
^t RCH	Hold time, \overline{W} high after \overline{CAS} high (see Note 11)	0		0		0		ns
^t RRH	Hold time, \overline{W} high after \overline{RAS} high (see Note 11)	0		0		0		ns
tWCH	Hold time, write after CAS low	15		15		15		ns
tWCR	Hold time, \overline{W} low after \overline{RAS} low (see Note 9)	50		55		60		ns
tWRH	Hold time, \overline{W} high after \overline{RAS} low (CBR refresh only)	10		10		10		ns
tWTH	Hold time, \overline{W} low (test mode only)	10		10		10		ns
t _{RASP}	Pulse duration, page mode, RAS low	60	100 000	70	100 000	80	100 000	ns
t _{RAS}	Pulse duration, nonpage mode, RAS low	60	10 000	70	10 000	80	10 000	ns
tCAS	Pulse duration, CAS low	15	10 000	18	10 000	20	10 000	ns
tCP	Pulse duration, CAS high	10		10		10		ns
t _{RP}	Pulse duration, RAS high (precharge)	40		50		60		ns
t _{WP}	Pulse duration, write	15		15		15		ns
^t ASC	Setup time, column address before \overline{CAS} low	0		0		0		ns
t _{ASR}	Setup time, row address before RAS low	0		0		0		ns
t _{DS}	Setup time, data before CAS low	0		0		0		ns
^t RCS	Setup time, \overline{W} high before \overline{CAS} low	0		0		0		ns
^t CWL	Setup time, \overline{W} low before \overline{CAS} high	15		18		20		ns
^t RWL	Setup time, \overline{W} low before \overline{RAS} high	15		18		20		ns
tWCS	Setup time, \overline{W} low before \overline{CAS} low	0		0		0		ns
tWRP	Setup time, \overline{W} high before \overline{RAS} low (CBR refresh only)	10		10		10		ns
tWTS	Setup time, \overline{W} low (test mode only)	10		10		10		ns
t _{TAA}	Access time from address (test mode)	35		40		45		ns
^t TCPA	Access time from column precharge (test mode)	40		45		50		ns
^t TRAC	Access time from RAS (test mode)	65		75		85		ns
t _{REF}	Refresh time interval		16		16		16	ms
tT	Transition time	2	50	2	50	2	50	ns

NOTES: 9. The minimum value is measured when t_{RCD} is set to t_{RCD} min as a reference.

11. Either t_{RRH} or t_{RCH} must be satisfied for a read cycle.

device symbolization

NOTE A: The location of symbolization may vary.

SMMS508C - MARCH 1992 - REVISED JUNE 1995

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated