

μ PD44165092B μ PD44165182B μ PD44165362B

18M-BIT QDR[™] II SRAM 2-WORD BURST OPERATION

R10DS0017EJ0200 Rev.2.00 October 6, 2011

Description

The μ PD44165092B is a 2,097,152-word by 9-bit, the μ PD44165182B is a 1,048,576-word by 18-bit and the μ PD44165362B is a 524,288-word by 36-bit synchronous quad data rate static RAM fabricated with advanced CMOS technology using full CMOS six-transistor memory cell.

The μ PD44165092B, μ PD44165182B and μ PD44165362B integrate unique synchronous peripheral circuitry and a burst counter. All input registers controlled by an input clock pair (K and K#) are latched on the positive edge of K and K#. These products are suitable for application which require synchronous operation, high speed, low voltage, high density and wide bit configuration. These products are packaged in 165-pin PLASTIC BGA.

Features

- 1.8 ± 0.1 V power supply
- 165-pin PLASTIC BGA (13 x 15)
- HSTL interface
- PLL circuitry for wide output data valid window and future frequency scaling
- Separate independent read and write data ports with concurrent transactions
- 100% bus utilization DDR READ and WRITE operation
- Two-tick burst for low DDR transaction size
- Two input clocks (K and K#) for precise DDR timing at clock rising edges only
- Two output clocks (C and C#) for precise flight time and clock skew matching-clock and data delivered together to receiving device
- Internally self-timed write control
- Clock-stop capability. Normal operation is restored in 20 μ s after clock is resumed.
- User programmable impedance output (35 to 70 Ω)
- Fast clock cycle time: 3.3 ns (300 MHz), 3.5 ns (287 MHz), 4.0 ns (250 MHz), 5.0 ns (200 MHz)
- Simple control logic for easy depth expansion
- JTAG 1149.1 compatible test access port

Ordering Information (1/2)

Part No.	Organization (word x bit)	Cycle time	Clock frequency	Operating Ambient Temperature	Package
μPD44165092BF5-E33-EQ3-A	2M x 9	3.3ns	300MHz	Ta = 0 to 70°C	165-pin
μPD44165092BF5-E35-EQ3-A		3.5ns	287MHz		PLASTIC BGA
μPD44165092BF5-E40-EQ3-A		4.0ns	250MHz		(13 x 15)
μPD44165092BF5-E50-EQ3-A	1	5.0ns	200MHz		Lead free
μPD44165182BF5-E33-EQ3-A	1M x 18	3.3ns	300MHz		
μPD44165182BF5-E35-EQ3-A		3.5ns	287MHz		
μPD44165182BF5-E40-EQ3-A	1	4.0ns	250MHz		
μPD44165182BF5-E50-EQ3-A		5.0ns	200MHz		
μPD44165362BF5-E33-EQ3-A	512K x 36	3.3ns	300MHz		
μPD44165362BF5-E35-EQ3-A	1	3.5ns	287MHz		
μPD44165362BF5-E40-EQ3-A		4.0ns	250MHz		
μPD44165362BF5-E50-EQ3-A		5.0ns	200MHz		
μPD44165092BF5-E33-EQ3	2M x 9	3.3ns	300MHz	Ta = 0 to 70°C	165-pin
μPD44165092BF5-E35-EQ3	1	3.5ns	287MHz		PLASTIC BGA
μPD44165092BF5-E40-EQ3		4.0ns	250MHz		(13 x 15)
μPD44165092BF5-E50-EQ3		5.0ns	200MHz		Lead
μPD44165182BF5-E33-EQ3	1M x 18	3.3ns	300MHz		
μPD44165182BF5-E35-EQ3		3.5ns	287MHz		
μPD44165182BF5-E40-EQ3	1	4.0ns	250MHz		
μPD44165182BF5-E50-EQ3	1	5.0ns	200MHz		
μPD44165362BF5-E33-EQ3	512K x 36	3.3ns	300MHz		
μPD44165362BF5-E35-EQ3	1	3.5ns	287MHz		
μPD44165362BF5-E40-EQ3	1	4.0ns	250MHz		
μPD44165362BF5-E50-EQ3]	5.0ns	200MHz		

Ordering Information (2/2)

Part No.	Organization (word x bit)	Cycle time	Clock frequency	Operating Ambient Temperature	Package
μPD44165092BF5-E33Y-EQ3-A	2M x 9	3.3ns	300MHz	Ta = –40 to 85°C	165-pin
μPD44165092BF5-E35Y-EQ3-A		3.5ns	287MHz		PLASTIC BGA
μPD44165092BF5-E40Y-EQ3-A		4.0ns	250MHz		(13 x 15)
μPD44165092BF5-E50Y-EQ3-A		5.0ns	200MHz		Lead free
μPD44165182BF5-E33Y-EQ3-A	1M x 18	3.3ns	300MHz		
μPD44165182BF5-E35Y-EQ3-A		3.5ns	287MHz		
μPD44165182BF5-E40Y-EQ3-A		4.0ns	250MHz		
μPD44165182BF5-E50Y-EQ3-A		5.0ns	200MHz		
μPD44165362BF5-E33Y-EQ3-A	512K x 36	3.3ns	300MHz		
μPD44165362BF5-E35Y-EQ3-A		3.5ns	287MHz		
μPD44165362BF5-E40Y-EQ3-A		4.0ns	250MHz		
μPD44165362BF5-E50Y-EQ3-A		5.0ns	200MHz		
μPD44165092BF5-E33Y-EQ3	2M x 9	3.3ns	300MHz	Ta = -40 to 85°C	165-pin
μPD44165092BF5-E35Y-EQ3		3.5ns	287MHz		PLASTIC BGA
μPD44165092BF5-E40Y-EQ3		4.0ns	250MHz		(13 x 15)
μPD44165092BF5-E50Y-EQ3		5.0ns	200MHz		Lead
μPD44165182BF5-E33Y-EQ3	1M x 18	3.3ns	300MHz		
μPD44165182BF5-E35Y-EQ3		3.5ns	287MHz		
μPD44165182BF5-E40Y-EQ3		4.0ns	250MHz		
μPD44165182BF5-E50Y-EQ3		5.0ns	200MHz		
μPD44165362BF5-E33Y-EQ3	512K x 36	3.3ns	300MHz		
μPD44165362BF5-E35Y-EQ3		3.5ns	287MHz		
μPD44165362BF5-E40Y-EQ3		4.0ns	250MHz		
μPD44165362BF5-E50Y-EQ3		5.0ns	200MHz		

Pin Arrangement

165-pin PLASTIC BGA (13 x 15)

(Top View)

[µPD44165092B]

2M x 9

_	1	2	3	4	5	6	7	8	9	10	11
Α	CQ#	Vss/72M	Α	W#	NC	K#	NC/144M	R#	Α	Vss/36M	CQ
В	NC	NC	NC	Α	NC/288M	K	BW0#	Α	NC	NC	Q4
С	NC	NC	NC	Vss	Α	Α	Α	Vss	NC	NC	D4
D	NC	D5	NC	Vss	Vss	Vss	Vss	Vss	NC	NC	NC
Е	NC	NC	Q5	V _{DD} Q	Vss	Vss	Vss	V _{DD} Q	NC	D3	Q3
F	NC	NC	NC	V _{DD} Q	V _{DD}	Vss	V DD	V _{DD} Q	NC	NC	NC
G	NC	D6	Q6	V _{DD} Q	V _{DD}	Vss	V DD	V _{DD} Q	NC	NC	NC
н	DLL#	VREF	$V_{DD}Q$	V _{DD} Q	V _{DD}	Vss	V DD	V _{DD} Q	V _{DD} Q	VREF	ZQ
J	NC	NC	NC	V _{DD} Q	V _{DD}	Vss	V DD	V _{DD} Q	NC	Q2	D2
κ	NC	NC	NC	V _{DD} Q	V _{DD}	Vss	V DD	V _{DD} Q	NC	NC	NC
L	NC	Q7	D7	V _{DD} Q	Vss	Vss	Vss	V _{DD} Q	NC	NC	Q1
М	NC	NC	NC	Vss	Vss	Vss	Vss	Vss	NC	NC	D1
N	NC	D8	NC	Vss	Α	Α	Α	Vss	NC	NC	NC
Р	NC	NC	Q8	Α	Α	С	Α	Α	NC	D0	Q0
R	TDO	тск	Α	Α	Α	C#	Α	Α	Α	TMS	TDI

: Address inputs TMS : IEEE 1149.1 Test input D0 to D8 : Data inputs TDI : IEEE 1149.1 Test input Q0 to Q8 : Data outputs TCK : IEEE 1149.1 Clock input R# TDO : Read input : IEEE 1149.1 Test output W# : Write input : HSTL input reference input V_{REF}

BW0# : Byte Write data select : Power Supply V_{DD} K, K# : Power Supply : Input clock $V_{DD}Q$ C, C# : Output clock : Ground V_{SS} CQ, CQ# : No connection : Echo clock NC

ZQ : Output impedance matching NC/xxM : Expansion address for xxMb

DLL# : PLL disable

Remarks 1. ×××# indicates active LOW.

2. Refer to Package Dimensions for the index mark.

3. 2A, 7A, 10A and 5B are expansion addresses : 10A for 36Mb

: 10A and 2A for 72Mb

: 10A, 2A and 7A for 144Mb

: 10A, 2A, 7A and 5B for 288Mb

2A and 10A of this product can also be used as NC.

Pin Arrangement

165-pin PLASTIC BGA (13 x 15)

(Top View)

[µPD44165182B]

1M x 18

_	1	2	3	4	5	6	7	8	9	10	11
Α	CQ#	Vss/144M	NC/36M	W#	BW1#	K#	NC/288M	R#	Α	Vss/72M	CQ
В	NC	Q9	D9	Α	NC	K	BW0#	Α	NC	NC	Q8
С	NC	NC	D10	Vss	Α	Α	Α	Vss	NC	Q7	D8
D	NC	D11	Q10	Vss	Vss	Vss	Vss	Vss	NC	NC	D7
Е	NC	NC	Q11	V _{DD} Q	Vss	Vss	Vss	V _{DD} Q	NC	D6	Q6
F	NC	Q12	D12	V _{DD} Q	V DD	Vss	V _{DD}	V _{DD} Q	NC	NC	Q5
G	NC	D13	Q13	V DD Q	V DD	Vss	V DD	V _{DD} Q	NC	NC	D5
н	DLL#	VREF	V _{DD} Q	V DD Q	V DD	Vss	V DD	V _{DD} Q	V _{DD} Q	VREF	ZQ
J	NC	NC	D14	V DD Q	V DD	Vss	V DD	V _{DD} Q	NC	Q4	D4
K	NC	NC	Q14	V _{DD} Q	V DD	Vss	V DD	V _{DD} Q	NC	D3	Q3
L	NC	Q15	D15	V _{DD} Q	Vss	Vss	Vss	V _{DD} Q	NC	NC	Q2
М	NC	NC	D16	Vss	Vss	Vss	Vss	Vss	NC	Q1	D2
N	NC	D17	Q16	Vss	Α	Α	Α	Vss	NC	NC	D1
Р	NC	NC	Q17	Α	Α	С	Α	Α	NC	D0	Q0
R	TDO	тск	Α	Α	Α	C#	Α	Α	Α	TMS	TDI

Α : Address inputs **TMS** : IEEE 1149.1 Test input D0 to D17 : Data inputs TDI : IEEE 1149.1 Test input Q0 to Q17 : Data outputs TCK : IEEE 1149.1 Clock input R# : Read input TDO : IEEE 1149.1 Test output W# : Write input V_{REF} : HSTL input reference input

BW0#, BW1# : Byte Write data select V_{DD} : Power Supply K, K# : Input clock $V_{DD}Q$: Power Supply C, C# : Output clock V_{SS} : Ground CQ, CQ# : Echo clock NC : No connection

ZQ : Output impedance matching NC/xxM : Expansion address for xxMb

DLL# : PLL disable

Remarks 1. ×××# indicates active LOW.

2. Refer to **Package Dimensions** for the index mark.

3. 2A, 3A, 7A and 10A are expansion addresses : 3A for 36Mb

: 3A and 10A for 72Mb

: 3A, 10A and 2A for 144Mb

: 3A, 10A, 2A and 7A for 288Mb

2A and 10A of this product can also be used as NC.

Pin Arrangement

165-pin PLASTIC BGA (13 x 15)

(Top View)

[µPD44165362B]

512K x 36

_	1	2	3	4	5	6	7	8	9	10	11
Α	CQ#	Vss/288M	NC/72M	W#	BW2#	K#	BW1#	R#	NC/36M	Vss/144M	CQ
В	Q27	Q18	D18	Α	BW3#	K	BW0#	Α	D17	Q17	Q8
С	D27	Q28	D19	Vss	Α	Α	Α	Vss	D16	Q7	D8
D	D28	D20	Q19	Vss	Vss	Vss	Vss	Vss	Q16	D15	D7
Е	Q29	D29	Q20	$V_{DD}Q$	Vss	Vss	Vss	VDDQ	Q15	D6	Q6
F	Q30	Q21	D21	$V_{DD}Q$	V DD	Vss	V DD	V _{DD} Q	D14	Q14	Q5
G	D30	D22	Q22	$V_{DD}Q$	V DD	Vss	V DD	V _{DD} Q	Q13	D13	D5
н	DLL#	VREF	$V_{DD}Q$	$V_{DD}Q$	V DD	Vss	V DD	V _{DD} Q	VDDQ	VREF	ZQ
J	D31	Q31	D23	$V_{DD}Q$	V _{DD}	Vss	V DD	V _{DD} Q	D12	Q4	D4
ĸ	Q32	D32	Q23	$V_{DD}Q$	V DD	Vss	V DD	V _{DD} Q	Q12	D3	Q3
L	Q33	Q24	D24	$V_{DD}Q$	Vss	Vss	Vss	V _{DD} Q	D11	Q11	Q2
М	D33	Q34	D25	Vss	Vss	Vss	Vss	Vss	D10	Q1	D2
N	D34	D26	Q25	Vss	Α	Α	Α	Vss	Q10	D9	D1
Р	Q35	D35	Q26	Α	Α	С	Α	Α	Q9	D0	Q0
R	TDO	тск	Α	Α	Α	C#	Α	Α	Α	TMS	TDI

: Address inputs **TMS** : IEEE 1149.1 Test input D0 to D35 : Data inputs TDI : IEEE 1149.1 Test input Q0 to Q35 : Data outputs TCK : IEEE 1149.1 Clock input R# : Read input TDO : IEEE 1149.1 Test output W# : Write input V_{REF} : HSTL input reference input

BW0# to BW3# : Byte Write data select V_{DD} : Power Supply K, K# : Input clock $V_{DD}Q$: Power Supply C, C# : Output clock V_{SS} : Ground CQ, CQ# : Echo clock NC : No connection

ZQ : Output impedance matching NC/xxM : Expansion address for xxMb

DLL# : PLL disable

Remarks 1. ×××# indicates active LOW.

2. Refer to **Package Dimensions** for the index mark.

3. 2A, 3A, 9A and 10A are expansion addresses : 9A for 36Mb

: 9A and 3A for 72Mb

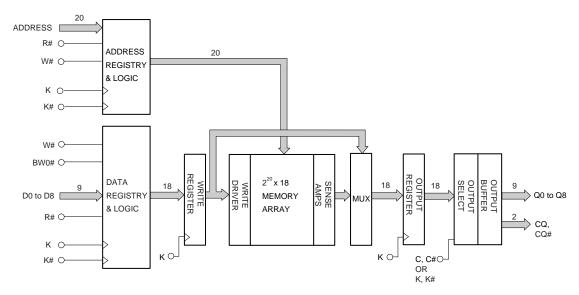
: 9A, 3A and 10A for 144Mb

: 9A, 3A, 10A and 2A for 288Mb

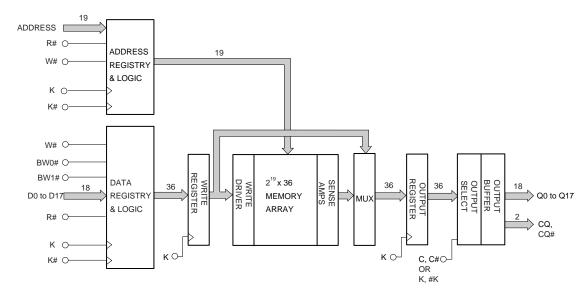
2A and 10A of this product can also be used as NC.

Pin Description

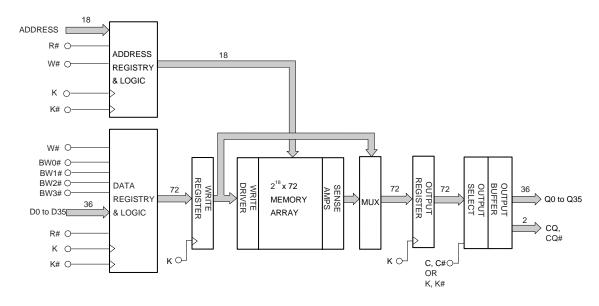
(1/2)


Symbol	Туре	Description
A	Input	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of K for READ cycles and must meet the setup and hold times around the rising edge of K# for WRITE cycles. All transactions operate on a burst of two words (one clock period of bus activity). These inputs are ignored when device is deselected, i.e., NOP (R# = W# = HIGH).
D0 to Dxx	Input	Synchronous Data Inputs: Input data must meet setup and hold times around the rising edges of K and K# during WRITE operations. See Pin Arrangement for ball site location of individual signals. x9 device uses D0 to D8. x18 device uses D0 to D17. x36 device uses D0 to D35.
Q0 to Qxx	Output	Synchronous Data Outputs: Output data is synchronized to the respective C and C# or to K and K# rising edges if C and C# are tied HIGH. Data is output in synchronization with C and C# (or K and K#), depending on the R# command. See Pin Arrangement for ball site location of individual signals. x9 device uses Q0 to Q8. x18 device uses Q0 to Q17. x36 device uses Q0 to Q35.
R#	Input	Synchronous Read: When LOW this input causes the address inputs to be registered and a READ cycle to be initiated. This input must meet setup and hold times around the rising edge of K.
W#	Input	Synchronous Write: When LOW this input causes the address inputs to be registered and a WRITE cycle to be initiated. This input must meet setup and hold times around the rising edge of K.
BWx#	Input	Synchronous Byte Writes: When LOW these inputs cause their respective byte to be registered and written during WRITE cycles. These signals must meet setup and hold times around the rising edges of K and K# for each of the two rising edges comprising the WRITE cycle. See Pin Arrangement for signal to data relationships. x9 device uses BW0#. x18 device uses BW0#, BW1#. x36 device uses BW0# to BW3#. See Byte Write Operation for relation between BWx# and Dxx.
K, K#	Input	Input Clock: A READ address and control input signal are input in synchronization with the rising edge of K and a WRITE address is input in synchronization with the rising edge of K#. Input data is input in synchronization with the rising edge of K and K#. K# is ideally 180 degrees out of phase with K. All synchronous inputs must meet setup and hold times around the clock rising edges.
C, C#	Input	Output Clock: This clock pair provides a user controlled means of tuning device output data. The rising edge of C# is used as the output timing reference for first output data. The rising edge of C is used as the output reference for second output data. Ideally, C# is 180 degrees out of phase with C. When use of K and K# as the reference instead of C and C#, then fixed C and C# to HIGH. Operation cannot be guaranteed unless C and C# are fixed to HIGH (i.e. toggle of C and C#).

(2/2)


Symbol	Туре	Description
CQ, CQ#	Output	Synchronous Echo Clock Outputs. The rising edges of these outputs are tightly matched to the synchronous data outputs and can be used as a data valid indication. These signals run freely and do not stop when Q tristates. If C and C# are stopped (if K and K# are stopped in the single clock mode), CQ and CQ# will also stop.
ZQ	Input	Output Impedance Matching Input: This input is used to tune the device outputs to the system data bus impedance. Q, CQ and CQ# output impedance are set to $0.2 \times RQ$, where RQ is a resistor from this bump to ground. The output impedance can be minimized by directly connect ZQ to $V_{DD}Q$. This pin cannot be connected directly to GND or left unconnected. The output impedance is adjusted every $20~\mu s$ upon power-up to account for drifts in supply voltage and temperature. After replacement for a resistor, the new output impedance is reset by implementing power-on sequence.
DLL#	Input	PLL Disable: When debugging the system or board, the operation can be performed at a clock frequency slower than TKHKH (MAX.) without the PLL circuit being used, if DLL# = LOW. The AC/DC characteristics cannot be guaranteed. For normal operation, DLL# must be HIGH and it can be connected to $V_{DD}Q$ through a 10 k Ω or less resistor.
TMS TDI	Input	IEEE 1149.1 Test Inputs: 1.8 V I/O level. These balls may be left Not Connected if the JTAG function is not used in the circuit.
TCK	Input	IEEE 1149.1 Clock Input: 1.8 V I/O level. This pin must be tied to V_{SS} if the JTAG function is not used in the circuit.
TDO	Output	IEEE 1149.1 Test Output: 1.8 V I/O level. When providing any external voltage to TDO signal, it is recommended to pull up to V _{DD} .
V _{REF}		HSTL Input Reference Voltage: Nominally $V_{DD}Q/2$. Provides a reference voltage for the input buffers.
V _{DD}	Supply	Power Supply: 1.8 V nominal. See Recommended DC Operating Conditions and DC Characteristics for range.
$V_{DD}Q$	Supply	Power Supply: Isolated Output Buffer Supply. Nominally 1.5 V. 1.8 V is also permissible. See Recommended DC Operating Conditions and DC Characteristics for range.
V _{SS}	Supply	Power Supply: Ground
NC		No Connect: These signals are not connected internally.

Block Diagram


[*µ*PD44165092B]

[µPD44165182B]

[µPD44165362B]

Power-On Sequence in QDR II SRAM

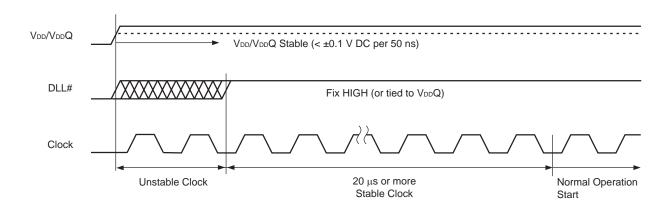
QDR II SRAMs must be powered up and initialized in a predefined manner to prevent undefined operations.

The following timing charts show the recommended power-on sequence.

The following power-up supply voltage application is recommended: V_{SS} , V_{DD} , $V_{DD}Q$, V_{REF} , then V_{IN} . V_{DD} and $V_{DD}Q$ can be applied simultaneously, as long as $V_{DD}Q$ does not exceed V_{DD} by more than 0.5 V during power-up. The following power-down supply voltage removal sequence is recommended: V_{IN} , V_{REF} , $V_{DD}Q$, V_{DD} , V_{SS} . V_{DD} and $V_{DD}Q$ can be removed simultaneously, as long as $V_{DD}Q$ does not exceed V_{DD} by more than 0.5 V during power-down.

Power-On Sequence

Apply power and tie DLL# to HIGH.


- Apply V_{DD} before $V_{DD}Q$.
- Apply $V_{DD}Q$ before V_{REF} or at the same time as V_{REF} .

Provide stable clock for more than 20 μ s to lock the PLL.

PLL Constraints

The PLL uses K clock as its synchronizing input and the input should have low phase jitter which is specified as TKC var. The PLL can cover 120 MHz as the lowest frequency. If the input clock is unstable and the PLL is enabled, then the PLL may lock onto an undesired clock frequency.

Power-On Waveforms

Truth Table

Operation	CLK	R#	W#	D or Q
WRITE cycle	$L\toH$	×	L	Data in
Load address, input write data on				Input data DA (A+0) DA (A+1)
consecutive K and K# rising edge				Input clock K(t)↑ K#(t)↑
READ cycle	$L \rightarrow H$	L	×	Data out
Load address, output data on				Output data QA (A+0) QA (A+1)
consecutive C and C# rising edge				Output clock C#(t+1) ↑ C(t+2) ↑
NOP (No operation)	$L \rightarrow H$	Н	Н	D = x, $Q = High-Z$
Clock stop	Stopped	×	×	Previous state

Remarks 1. H: HIGH, L: LOW, ×: don't care, ↑: rising edge.

- **2.** Data inputs are registered at K and K# rising edges. Data outputs are delivered at C and C# rising edges except if C and C# are HIGH then Data outputs are delivered at K and K# rising edges.
- **3.** All control inputs in the truth table must meet setup/hold times around the rising edge (LOW to HIGH) of K. All control inputs are registered during the rising edge of K.
- 4. This device contains circuitry that ensure the outputs to be in high impedance during power-up.
- **5.** Refer to state diagram and timing diagrams for clarification.
- **6.** It is recommended that K = K# = C = C# when clock is stopped. This is not essential but permits most rapid restart by overcoming transmission line charging symmetrically.

Byte Write Operation

[µPD44165092B]

Operation	K	K#	BW0#
Write D0 to D8	$L \rightarrow H$	_	0
	_	$L \rightarrow H$	0
Write nothing	$L \rightarrow H$	_	1
	_	$L \rightarrow H$	1

Remarks 1. H: HIGH, L: LOW, \rightarrow : rising edge.

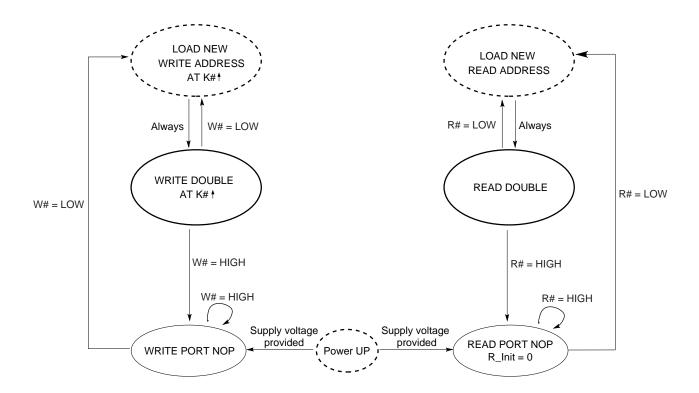
2. Assumes a WRITE cycle was initiated. BW0# can be altered for any portion of the BURST WRITE operation provided that the setup and hold requirements are satisfied.

[*µ*PD44165182B]

Operation	K	K#	BW0#	BW1#
Write D0 to D17	$L \rightarrow H$	_	0	0
	_	$L \rightarrow H$	0	0
Write D0 to D8	$L \rightarrow H$	_	0	1
	_	$L \rightarrow H$	0	1
Write D9 to D17	$L \rightarrow H$	_	1	0
	_	$L \rightarrow H$	1	0
Write nothing	$L \rightarrow H$	_	1	1
	_	$L \rightarrow H$	1	1

Remarks 1. H: HIGH, L: LOW, \rightarrow : rising edge.

2. Assumes a WRITE cycle was initiated. BW0# and BW1# can be altered for any portion of the BURST WRITE operation provided that the setup and hold requirements are satisfied.


[*µ*PD44165362B]

Operation	K	K#	BW0#	BW1#	BW2#	BW3#
Write D0 to D35	$L \rightarrow H$	_	0	0	0	0
	_	$L \rightarrow H$	0	0	0	0
Write D0 to D8	$L \rightarrow H$	_	0	1	1	1
	_	$L \rightarrow H$	0	1	1	1
Write D9 to D17	$L \rightarrow H$	_	1	0	1	1
	_	$L \rightarrow H$	1	0	1	1
Write D18 to D26	$L \rightarrow H$	-	1	1	0	1
	_	$L \rightarrow H$	1	1	0	1
Write D27 to D35	$L \rightarrow H$	_	1	1	1	0
	_	$L \rightarrow H$	1	1	1	0
Write nothing	$L \rightarrow H$	_	1	1	1	1
	_	$L \rightarrow H$	1	1	1	1

Remarks 1. H: HIGH, L: LOW, \rightarrow : rising edge.

2. Assumes a WRITE cycle was initiated. BW0# to BW3# can be altered for any portion of the BURST WRITE operation provided that the setup and hold requirements are satisfied.

Bus Cycle State Diagram

Remarks

- 1. The address is concatenated with 1 additional internal LSB to facilitate burst operation.
 - The address order is always fixed as: xxx...xxx+0, xxx...xxx+1.

Bus cycle is terminated at the end of this sequence (burst count = 2).

- 2. Read and write state machines can be active simultaneously.
- 3. State machine control timing sequence is controlled by K.

Electrical Characteristics

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	V_{DD}		-0.5 to +2.5	V
Output supply voltage	$V_{DD}Q$		−0.5 to V _{DD}	V
Input voltage	V _{IN}		-0.5 to V _{DD} +0.5 (2.5 V MAX.)	V
Input / Output voltage	V _{I/O}		-0.5 to V _{DD} Q+0.5 (2.5 V MAX.)	٧
Operating ambient temperature	TA	(E** series)	0 to 70	°C
		(E**Y series)	-40 to 85	
Storage temperature	Tstg		-55 to +125	°C

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended DC Operating Conditions ($T_A = 0$ to 70° C, $T_A = -40$ to 85° C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Supply voltage	V_{DD}		1.7	1.8	1.9	V	
Output supply voltage	$V_{DD}Q$		1.4		V_{DD}	V	1
Input HIGH voltage	V _{IH (DC)}		V _{REF} +0.1		V _{DD} Q+0.3	V	1, 2
Input LOW voltage	V _{IL (DC)}		-0.3		V _{REF} -0.1	V	1, 2
Clock input voltage	V _{IN}		-0.3		V _{DD} Q+0.3	V	1, 2
Reference voltage	V_{REF}		0.68		0.95	٧	

Notes 1. During normal operation, $V_{DD}Q$ must not exceed V_{DD} .

2. Power-up: VIH \leq V_{DD}Q +0.3 V and V_{DD} \leq 1.7 V and V_{DD}Q \leq 1.4 V for t \leq 200 ms

Recommended AC Operating Conditions ($T_A = 0$ to 70° C, $T_A = -40$ to 85°)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit	Note
Input HIGH voltage	V _{IH (AC)}		V _{REF} +0.2		V	1
Input LOW voltage	V _{IL (AC)}			V _{REF} -0.2	V	1

Note 1. Overshoot: $V_{IH (AC)} \le V_{DD} + 0.7 \text{ V } (2.5 \text{ V MAX.}) \text{ for } t \le TKHKH/2$

Undershoot: $V_{\text{IL (AC)}} \ge -0.5 \text{ V for } t \le TKHKH/2$

Control input signals may not have pulse widths less than TKHKL (MIN.) or operate at cycle rates less than

TKHKH (MIN.).

DC Characteristics 1 (T_A = 0 to 70°C, V_{DD} = 1.8 \pm 0.1 V)

Parameter	Symbol	Test condition		MIN.		MAX.		Unit	Note
					Х9	x18	x36		
Input leakage current	ILI			-2		+2		μΑ	
I/O leakage current	I _{LO}			-2		+2		μΑ	
Operating supply current	I _{DD}	$V_{IN} \leq V_{IL} \ or \ V_{IN} \geq V_{IH},$	-E33		570	690	770	mA	
(Read cycle / Write cycle)		$I_{I/O} = 0 \text{ mA},$	-E35		550	660	750		
		Cycle = MAX.	-E40		510	610	690		
			-E50		440	530	590		
Standby supply current	I _{SB1}	$V_{IN} \leq V_{IL} \ or \ V_{IN} \geq V_{IH},$	-E33		310	320	340	mA	
(NOP)		$I_{I/O} = 0 \text{ mA},$	-E35		310	320	340		
		Cycle = MAX.	-E40		300	310	330		
		Inputs static	-E50		290	300	320		
Output HIGH voltage	V _{OH(Low)}	$ I_{OH} \le 0.1 \text{ mA}$		V _{DD} Q-0.2		$V_{DD}Q$		V	3, 4
	V _{OH}	Note1		V _{DD} Q/2-0.12	V _{DE}	Q/2+0	.12	V	3, 4
Output LOW voltage	V _{OL(Low)}	I _{OL} ≤ 0.1 mA		V _{SS}		0.2		V	3, 4
	V _{OL}	Note2		V _{DD} Q/2-0.12	V _{DE}	Q/2+0).12	V	3, 4

Notes 1. Outputs are impedance-controlled. $|I_{OH}| = (V_{DD}Q/2)/(RQ/5) \pm 15\%$ for values of 175 $\Omega \le RQ \le 350 \ \Omega$.

- 2. Outputs are impedance-controlled. $I_{OL} = (V_{DD}Q/2)/(RQ/5) \pm 15\%$ for values of 175 $\Omega \le RQ \le 350~\Omega$.
- **3.** AC load current is higher than the shown DC values.
- **4.** HSTL outputs meet JEDEC HSTL Class I standards.

DC Characteristics 2 (T_A = -40 to 85° C, V_{DD} = 1.8 ± 0.1 V)

Parameter	Symbol	Test condition		MIN.		MAX.		Unit	Note
					Х9	x18	x36		
Input leakage current	ILI			-2		+2		μΑ	
I/O leakage current	I _{LO}			-2		+2		μΑ	
Operating supply current	I _{DD}	$V_{IN} \leq V_{IL} \ or \ V_{IN} \geq V_{IH},$	-E33Y		700	820	910	mA	
(Read cycle / Write cycle)		$I_{I/O} = 0 \text{ mA},$	-E35Y		680	790	890		
		Cycle = MAX.	-E40Y		640	740	830		
			-E50Y		570	670	730		
Standby supply current	I _{SB1}	$V_{IN} \leq V_{IL} \ or \ V_{IN} \geq V_{IH},$	-E33Y		430	440	470	mA	
(NOP)		$I_{I/O} = 0 \text{ mA},$	-E35Y		430	440	470		
		Cycle = MAX.	-E40Y		420	430	460		
		Inputs static	-E50Y		410	420	450		
Output HIGH voltage	$V_{\text{OH(Low)}}$	$ I_{OH} \le 0.1 \text{ mA}$		V _{DD} Q-0.2		$V_{DD}Q$		V	3, 4
	V_{OH}	Note1		V _{DD} Q/2-0.12	V _{DI}	Q/2+0).12	V	3, 4
Output LOW voltage	V _{OL(Low)}	$I_{OL} \le 0.1 \text{ mA}$		V _{SS}		0.2		V	3, 4
	V _{OL}	Note2		V _{DD} Q/2-0.12	V _{DI}	Q/2+0).12	V	3, 4

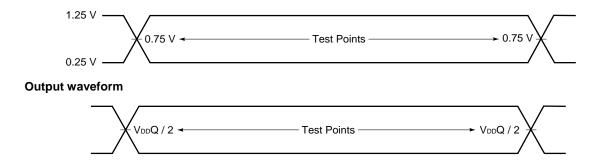
Notes 1. Outputs are impedance-controlled. $|I_{OH}| = (V_{DD}Q/2)/(RQ/5) \pm 15\%$ for values of 175 $\Omega \le RQ \le 350 \ \Omega$.

- 2. Outputs are impedance-controlled. $I_{OL} = (V_{DD}Q/2)/(RQ/5) \pm 15\%$ for values of 175 $\Omega \le RQ \le 350~\Omega$.
- **3.** AC load current is higher than the shown DC values.
- **4.** HSTL outputs meet JEDEC HSTL Class I standards.

Capacitance (T_A = 25°C, f = 1 MHz)

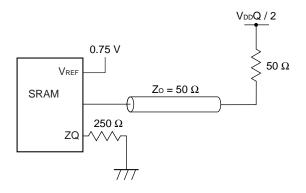
Parameter	Symbol	Test conditions	MIN.	MAX.	Unit
Input capacitance	C _{IN}	V _{IN} = 0 V		5	pF
(Address, Control)					
Input / Output capacitance	C _{I/O}	V _{I/O} = 0 V		7	pF
(D, Q, CQ, CQ#)					
Clock Input capacitance	C _{clk}	V _{clk} = 0 V		6	pF

Remark These parameters are periodically sampled and not 100% tested.


Thermal Characteristics

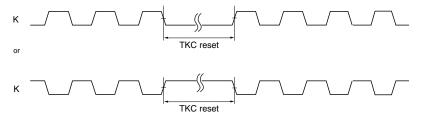
Parameter	Symbol	Substrate	Airflow	TYP.	Unit
Thermal resistance	$ heta_{ja}$	4-layer	0 m/s	21.4	°C/W
from junction to ambient air			1 m/s	13.6	°C/W
		8-layer	0 m/s	20.3	°C/W
			1 m/s	13.1	°C/W
Thermal characterization parameter	$\boldsymbol{\psi}_{jt}$	4-layer	0 m/s	0.02	°C/W
from junction to the top center			1 m/s	0.06	°C/W
of the package surface		8-layer	0 m/s	0.02	°C/W
			1 m/s	0.06	°C/W
Thermal resistance	$ heta_{ extsf{jc}}$			2.65	°C/W
from junction to case					

AC Characteristics (T_A = 0 to 70°C or T_A = -40 to 85°C, V_{DD} = 1.8 ± 0.1 V)


AC Test Conditions (VDD = 1.8 \pm 0.1 V, VDDQ = 1.4 V to VDD)

Input waveform (Rise / Fall time ≤ 0.3 ns)

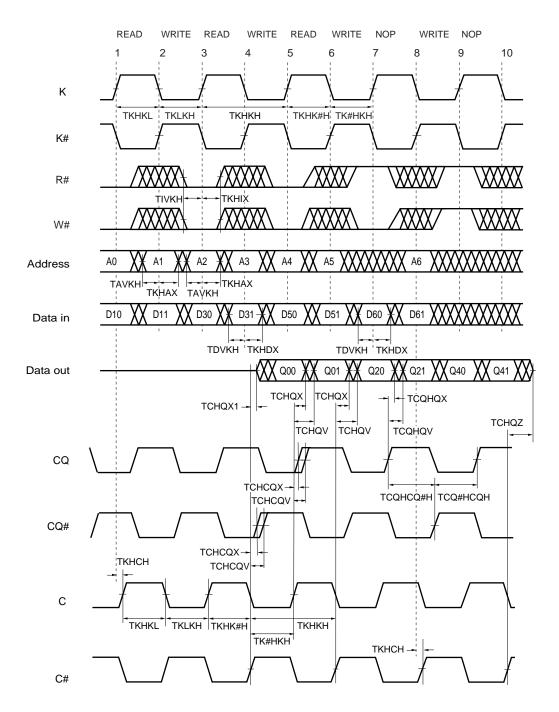
Output load condition


Figure 1. External load at test

Read and Write Cycle

Parameter	Symbol	-E33,	E33Y	-E35,	E35Y	-E40,	-E40, E40Y		-E50, E50Y		Note
		(300)		(287		(250 N		(200		Unit	
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Clock											
Average Clock cycle time	TKHKH	3.3	8.4	3.5	8.4	4.0	8.4	5.0	8.4	ns	1
(K, K#, C, C#)											
Clock phase jitter (K, K#, C, C#)	TKC var		0.2		0.2		0.2		0.2	ns	2
Clock HIGH time (K, K#, C, C#)	TKHKL	1.32		1.5		1.6		2.0		ns	
Clock LOW time (K, K#, C, C#)	TKLKH	1.32		1.5		1.6		2.0		ns	
Clock HIGH to Clock# HIGH	TKHK#H	1.49		1.7		1.8		2.2		ns	
$(K \rightarrow K\#, C \rightarrow C\#)$											
Clock# HIGH to Clock HIGH	TK#HKH	1.49		1.7		1.8		2.2		ns	
$(K\# \to K, C\# \to C)$											
Clock to data clock	TKHCH	0	1.45	0	1.65	0	1.8	0	2.3	ns	
$(K \rightarrow C, K\# \rightarrow C\#)$	TKC look	20		20		20		20			2
PLL lock time (K, C)	TKC lock TKC reset	20		20		20		20		μS	3
K static to PLL reset	INC reset	30		30		30		30	<u> </u>	ns	4
Output Times											
CQ HIGH to CQ# HIGH	TCQHCQ#H	1.24		1.35		1.55		1.95		ns	5
$(CQ \rightarrow CQ\#)$	1001100#11	1.27		1.55		1.55		1.55		113	
CQ# HIGH to CQ HIGH	TCQ#HCQH	1.24		1.35		1.55		1.95		ns	5
$(CQ# \rightarrow CQ)$											
C, C# HIGH to output valid	TCHQV		0.45		0.45		0.45		0.45	ns	
C, C# HIGH to output hold	TCHQX	-0.45		-0.45		-0.45		-0.45		ns	
C, C# HIGH to echo clock valid	TCHCQV		0.45		0.45		0.45		0.45	ns	
C, C# HIGH to echo clock hold	TCHCQX	-0.45		-0.45		-0.45		-0.45		ns	
CQ, CQ# HIGH to output valid	TCQHQV		0.27		0.3		0.3		0.35	ns	6
CQ, CQ# HIGH to output hold	TCQHQX	-0.27		-0.3		-0.3		-0.35		ns	6
C HIGH to output High-Z	TCHQZ		0.45		0.45		0.45		0.45	ns	
C HIGH to output Low-Z	TCHQX1	-0.45		-0.45		-0.45		-0.45		ns	
Setup Times		1	î		î .		ī	1	,	r	•
Address valid to K rising edge	TAVKH	0.3		0.35		0.35		0.4		ns	7
Control inputs (R#, W#) valid to	TIVKH	0.3		0.35		0.35		0.4		ns	7
K rising edge											
Data inputs and write data	TDVKH	0.3		0.35		0.35		0.4		ns	7
select inputs (BWx#) valid to											
K, K# rising edge									<u> </u>		<u> </u>
Hold Times											
K rising edge to address hold	TKHAX	0.3		0.35		0.35		0.4		ns	7
K rising edge to control inputs	TKHIX	0.3		0.35		0.35		0.4		ns	7
(R#, W#) hold									<u> </u>		<u> </u>
K, K# rising edge to data inputs	TKHDX	0.3		0.35		0.35		0.4		ns	7
and write data select inputs											
(BWx#) hold											

- **Notes 1.** When debugging the system or board, these products can operate at a clock frequency slower than TKHKH (MAX.) without the PLL circuit being used, if DLL# = LOW. Read latency (RL) is changed to 1.0 clock cycle in this operation. The AC/DC characteristics cannot be guaranteed, however.
 - 2. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge. TKC var (MAX.) indicates a peak-to-peak value.
 - 3. V_{DD} slew rate must be less than 0.1 V DC per 50 ns for PLL lock retention. PLL lock time begins once V_{DD} and input clock are stable. It is recommended that the device is kept NOP (LD# = HIGH) during these cycles.
 - **4.** K input is monitored for this operation. See below for the timing.

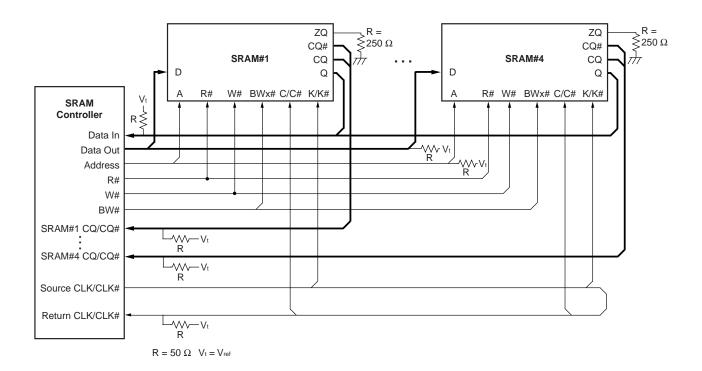


- 5. Guaranteed by design.
- **6.** Echo clock is very tightly controlled to data valid / data hold. By design, there is a \pm 0.1 ns variation from echo clock to data. The data sheet parameters reflect tester guardbands and test setup variations.
- 7. This is a synchronous device. All addresses, data and control lines must meet the specified setup and hold times for all latching clock edges.

Remarks 1. This parameter is sampled.

- 2. Test conditions as specified with the output loading as shown in AC Test Conditions unless otherwise noted.
- 3. Control input signals may not be operated with pulse widths less than TKHKL (MIN.).
- **4.** If C, C# are tied HIGH, K, K# become the references for C, C# timing parameters.
- **5.** $V_{DD}Q$ is 1.5 V DC.

Read and Write Timing


Remarks 1. Q00 refers to output from address A0+0.

Q01 refers to output from the next internal burst address following A0,i.e.,A0+1.

- 2. Outputs are disabled (high impedance) 2.5 clock cycles after the last READ (R# = LOW) is input in the sequences of [READ/WRITE]-[NOP/WRITE], [READ/WRITE]-[NOP/NOP], [READ/NOP]-[NOP/WRITE] and [READ/NOP] -[NOP/NOP].
- 3. In this example, if address A0 = A1, data Q00 = D10, Q01 = D11.

Write data is forwarded immediately as read results.

Application Example

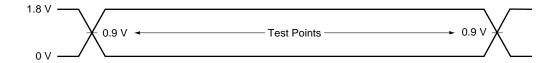
Remark AC Characteristics are defined at the condition of SRAM outputs, CQ, CQ# and Q with termination.

JTAG Specification

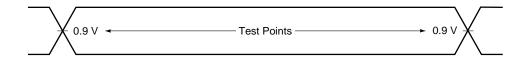
These products support a limited set of JTAG functions as in IEEE standard 1149.1.

Test Access Port (TAP) Pins

Pin name	Pin assignments	Description
TCK	2R	Test Clock Input. All input are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.
TMS	10R	Test Mode Select. This is the command input for the TAP controller state machine.
TDI	11R	Test Data Input. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP controller state machine and the instruction that is currently loaded in the TAP instruction.
TDO	1R	Test Data Output. This is the output side of the serial registers placed between TDI and TDO. Output changes in response to the falling edge of TCK.

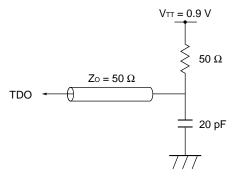

Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held HIGH for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.

JTAG DC Characteristics (TA = 0 to 70° C, V_{DD} = 1.8 ± 0.1 V, unless otherwise noted)


Parameter	Symbol	Conditions	MIN.	MAX.	Unit
JTAG Input leakage current	ILI	$0 \text{ V} \leq V_{IN} \leq V_{DD}$	-5.0	+5.0	μΑ
JTAG I/O leakage current	I _{LO}	$0\ V \leq V_{IN} \leq V_{DD}Q,$	-5.0	+5.0	μΑ
		Outputs disabled			
JTAG input HIGH voltage	V_{IH}		1.3	V _{DD} +0.3	V
JTAG input LOW voltage	V_{IL}		-0.3	+0.5	V
JTAG output HIGH voltage	V_{OH1}	I _{OHC} = 100 μA	1.6		V
	V_{OH2}	I _{OHT} = 2 mA	1.4		V
JTAG output LOW voltage	V _{OL1}	I _{OLC} = 100 μA		0.2	V
	V_{OL2}	I _{OLT} = 2 mA		0.4	V

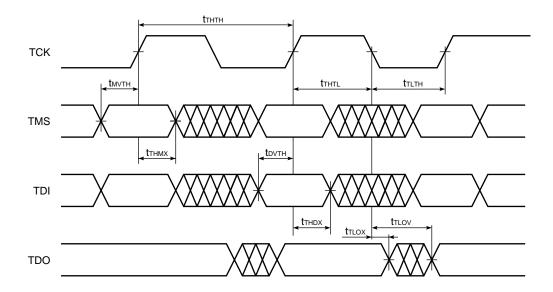
JTAG AC Test Conditions

Input waveform (Rise / Fall time ≤ 1 ns)



Output waveform

Output load


Figure 2. External load at test

JTAG AC Characteristics (T_A = 0 to 70°C)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Clock	•				•
Clock cycle time	t _{тнтн}		50		ns
Clock frequency	f _{TF}			20	MHz
Clock HIGH time	t _{THTL}		20		ns
Clock LOW time	t _{TLTH}		20		ns
Output time					
TCK LOW to TDO unknown	t _{TLOX}		0		ns
TCK LOW to TDO valid	t _{TLOV}			10	ns
Setup time					
TMS setup time	t _{MVTH}		5		ns
TDI valid to TCK HIGH	t _{DVTH}		5		ns
Capture setup time	t _{CS}		5		ns
Hold time					
TMS hold time	t _{THMX}		5		ns
TCK HIGH to TDI invalid	t _{THDX}		5		ns
Capture hold time	t _{CH}		5		ns

JTAG Timing Diagram

Scan Register Definition (1)

Register name	Description
Instruction register	The instruction register holds the instructions that are executed by the TAP controller when it is moved into the run-test/idle or the various data register state. The register can be loaded when it is placed between the TDI and TDO pins. The instruction register is automatically preloaded with the IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.
Bypass register	The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAMs TAP to another device in the scan chain with as little delay as possible.
ID register	The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when the controller is put in capture-DR state with the IDCODE command loaded in the instruction register. The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR state.
Boundary register	The boundary register, under the control of the TAP controller, is loaded with the contents of the RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to activate the boundary register. The Scan Exit Order tables describe which device bump connects to each boundary register location. The first column defines the bit's position in the boundary register. The second column is the name of the input or I/O at the bump and the third column is the bump number.

Scan Register Definition (2)

Register name	Bit size	Unit
Instruction register	3	bit
Bypass register	1	bit
ID register	32	bit
Boundary register	107	bit

ID Register Definition

Part number	Organization	ID [31:28] vendor revision no.	ID [27:12] part no.	ID [11:1] vendor ID no.	ID [0] fix bit
μPD44165092B	2M x 9	XXXX	0000 0000 0101 0001	00000010000	1
μPD44165182B	1M x 18	XXXX	0000 0000 0000 1101	00000010000	1
μPD44165362B	512K x 36	XXXX	0000 0000 0000 1110	0000010000	1

SCAN Exit Order

Bit	Signal name			Bump
no.	x9 x18 x36		ID	
1		C#		6R
2		С		6P
3		Α		6N
4	А			7P
5		Α		7N
6		Α		7R
7		Α		8R
8		Α		8P
9		Α		9R
10		Q0		11P
11		D0		10P
12	NC	NC	D9	10N
13	NC	NC	Q9	9P
14	NC	Q1	Q1	10M
15	NC	D1	D1	11N
16	NC	NC	D10	9M
17	NC	NC	Q10	9N
18	Q1	Q2	Q2	11L
19	D1	D2	D2	11M
20	NC	NC	D11	9L
21	NC	NC	Q11	10L
22	NC	Q3	Q3	11K
23	NC	D3	D3	10K
24	NC	NC	D12	9J
25	NC	NC	Q12	9K
26	Q2	Q4	Q4	10J
27	D2	D4	D4	11J
28		ZQ	1	11H
29	NC	NC	D13	10G
30	NC	NC	Q13	9G
31	NC	Q5	Q5	11F
32	NC	D5	D5	11G
33	NC	NC	D14	9F
34	NC	NC	Q14	10F
35	Q3	Q6	Q6	11E
36	D3	D6	D6	10E

Bit	Signal name			Bump
no.	x9 x18 x36		ID	
37	NC	NC	D15	10D
38	NC	NC	Q15	9E
39	NC	Q7	Q7	10C
40	NC	D7	D7	11D
41	NC	NC	D16	9C
42	NC	NC	Q16	9D
43	Q4	Q8	Q8	11B
44	D4	D8	D8	11C
45	NC	NC	D17	9B
46	NC	NC	Q17	10B
47		CQ		11A
48				Intern
49	Α	Α	NC	9A
50		Α		8B
51		Α		7C
52		Α		6C
53		R#		8A
54	NC NC BW1#		7A	
55	BW0#		7B	
56	K			6B
57	K#		6A	
58	NC	NC	BW3#	5B
59	NC	BW1#	BW2#	5A
60		W#		4A
61		Α		5C
62		Α		4B
63	Α	NC	NC	3A
64	DLL#			1H
65	CQ#		1A	
66	NC	Q9	Q18	2B
67	NC	D9	D18	3B
68	NC	NC	D27	1C
69	NC	NC	Q27	1B
70	NC	Q10	Q19	3D
71	NC	D10	D19	3C
72	NC	NC	D28	1D

Bit	Signal name			Bump
no.	x9 x18 x36		ID	
73	NC	NC	Q28	2C
74	Q5	Q11	Q20	3E
75	D5	D11	D20	2D
76	NC	NC	D29	2E
77	NC	NC	Q29	1E
78	NC	Q12	Q21	2F
79	NC	D12	D21	3F
80	NC	NC	D30	1G
81	NC	NC	Q30	1F
82	Q6	Q13	Q22	3G
83	D6	D13	D22	2G
84	NC	NC	D31	1J
85	NC	NC	Q31	2J
86	NC	Q14	Q23	3K
87	NC	D14	D23	3J
88	NC	NC	D32	2K
89	NC	NC	Q32	1K
90	Q7	Q15	Q24	2L
91	D7	D15	D24	3L
92	NC	NC	D33	1M
93	NC	NC	Q33	1L
94	NC	Q16	Q25	3N
95	NC	D16	D25	3M
96	NC	NC	D34	1N
97	NC	NC	Q34	2M
98	Q8	Q17	Q26	3P
99	D8	D17	D26	2N
100	NC	NC	D35	2P
101	NC	NC	Q35	1P
102	А			3R
103	A			4R
104	А			4P
105	А			5P
106	А			5N
107	А			5R

JTAG Instructions

Instructions	Description
EXTEST	The EXTEST instruction allows circuitry external to the component package to be tested. Boundary-scan register cells at output pins are used to apply test vectors, while those at input pins capture test results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the boundary scan register using the PRELOAD instruction. Thus, during the update-IR state of EXTEST, the output drive is turned on and the PRELOAD data is driven onto the output pins.
IDCODE	The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed in the test-logic-reset state.
BYPASS	When the BYPASS instruction is loaded in the instruction register, the bypass register is placed between TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.
SAMPLE / PRELOAD	SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the instruction register, moving the TAP controller into the capture-DR state loads the data in the RAMs input and Q pins into the boundary scan register. Because the RAM clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e., in a metastable state). Although allowing the TAP to sample metastable input will not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data capture setup plus hold time (tCS plus tCH). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring contents into the boundary scan register. Moving the controller to shift-DR state then places the boundary scan register between the TDI and TDO pins.
SAMPLE-Z	If the SAMPLE-Z instruction is loaded in the instruction register, all RAM Q pins are forced to an inactive drive state (high impedance) and the boundary register is connected between TDI and TDO when the TAP controller is moved to the shift-DR state.

JTAG Instruction Coding

IR2	IR1	IR0	Instruction	Note
0	0	0	EXTEST	
0	0	1	IDCODE	
0	1	0	SAMPLE-Z	1
0	1	1	RESERVED	2
1	0	0	SAMPLE / PRELOAD	
1	0	1	RESERVED	2
1	1	0	RESERVED	2
1	1	1	BYPASS	

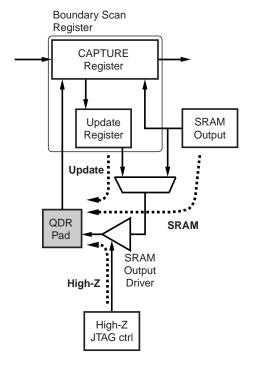
Notes 1. TRISTATE all Q pins and CAPTURE the pad values into a SERIAL SCAN LATCH.

2. Do not use this instruction code because the vendor uses it to evaluate this product.

Output Pin States of CQ, CQ# and Q

Instructions	Control-Register Status	Output Pin Status	
		CQ,CQ#	Q
EXTEST	0	Update	High-Z
	1	Update	Update
IDCODE	0	SRAM	SRAM
	1	SRAM	SRAM
SAMPLE-Z	0	High-Z	High-Z
	1	High-Z	High-Z
SAMPLE	0	SRAM	SRAM
	1	SRAM	SRAM
BYPASS	0	SRAM	SRAM
	1	SRAM	SRAM

Remark The output pin statuses during each instruction vary according to the Control-Register status (value of Boundary Scan Register, bit no. 107).


There are three statuses:

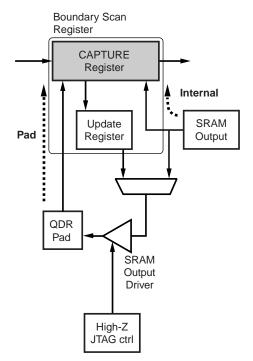
Update: Contents of the "Update Register" are output to the output pin (QDR Pad).

SRAM : Contents of the SRAM internal output "SRAM Output" are output to the output pin (QDR Pad).

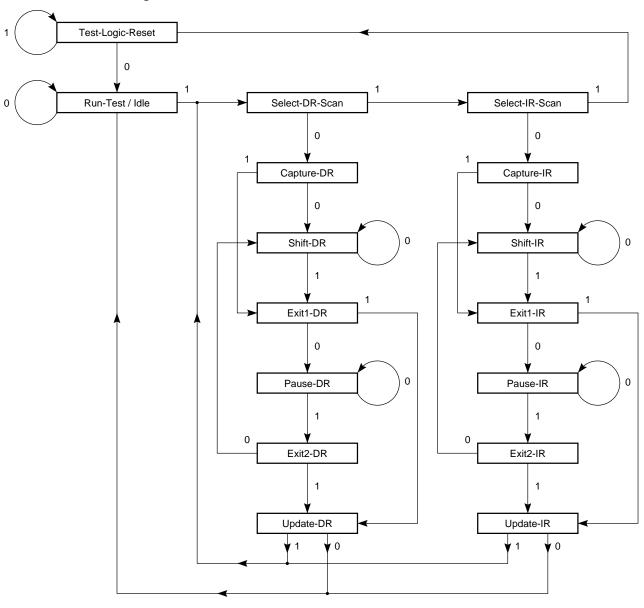
High-Z :The output pin (QDR Pad) becomes high impedance by controlling of the "High-Z JTAG ctrl".

The Control-Register status is set during Update-DR at the EXTEST or SAMPLE instruction.

Boundary Scan Register Status of Output Pins CQ, CQ# and Q

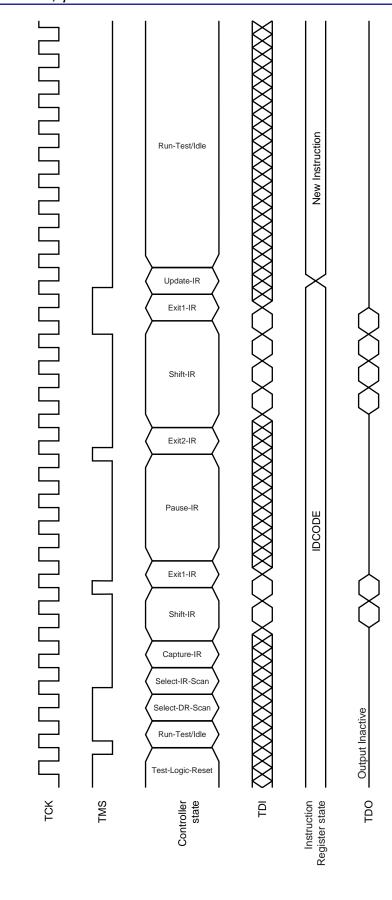

Instructions	SRAM Status	Boundary Scan	Register Status	Note
		CQ,CQ#	Q	
EXTEST	READ (Low-Z)	Pad	Pad	
	NOP (High-Z)	Pad	Pad	
IDCODE	READ (Low-Z)	_	_	No definition
	NOP (High-Z)	_	_	
SAMPLE-Z	READ (Low-Z)	Pad	Pad	
	NOP (High-Z)	Pad	Pad	
SAMPLE	READ (Low-Z)	Internal	Internal	
	NOP (High-Z)	Internal	Pad	
BYPASS	READ (Low-Z)	_	_	No definition
	NOP (High-Z)	_	_	

Remark The Boundary Scan Register statuses during execution each instruction vary according to the instruction code and SRAM operation mode.

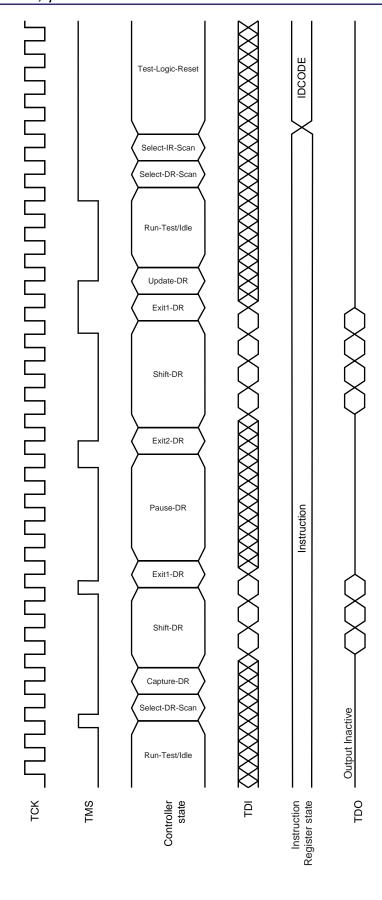

There are two statuses:

Pad : Contents of the output pin (QDR Pad) are captured in the "CAPTURE Register" in the Boundary Scan Register.

Internal: Contents of the SRAM internal output "SRAM Output" are captured in the "CAPTURE Register" in the Boundary Scan Register.

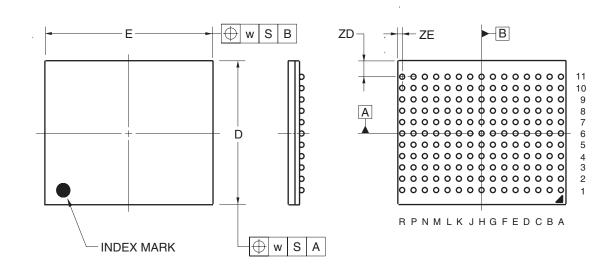


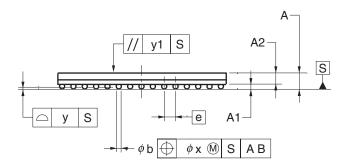
TAP Controller State Diagram



Disabling the Test Access Port

It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with normal operation of the device, TCK must be tied to V_{SS} to preclude mid level inputs. TDI and TMS may be left open but fix them to V_{DD} via a resistor of about 1 k Ω when the TAP controller is not used. TDO should be left unconnected also when the TAP controller is not used.


Test Logic Operation (Instruction Scan)



Test Logic (Data Scan)

Package Dimensions

165-PIN PLASTIC BGA(13x15)

	(UNIT:mm)
ITEM	DIMENSIONS
D	13.00±0.10
Е	15.00±0.10
W	0.30
A	1.35±0.11
A1	0.37±0.05
A2	0.98
е	1.00
b	$0.50^{+0.10}_{-0.05}$
х	0.10
У	0.15
y1	0.25
ZD	1.50
ZE	0.50

P165F5-100-EQ3

Recommended Soldering Condition

Please consult with our sales offices for soldering conditions of these products.

Types of Surface Mount Devices

 μ PD44165092BF5-EQ3 : 165-pin PLASTIC BGA (13 x 15) μ PD44165182BF5-EQ3 : 165-pin PLASTIC BGA (13 x 15) μ PD44165362BF5-EQ3 : 165-pin PLASTIC BGA (13 x 15)

Quality Grade

- A quality grade of the products is "Standard".
- Anti-radioactive design is not implemented in the products.
- Semiconductor devices have the possibility of unexpected defects by affection of cosmic ray that reach to the ground and so forth.

Revision History

$\mu \text{PD44165092B},~\mu \text{PD44165182B}$, $~\mu \text{PD44165362B}$

Rev. Date Page		Description		
		Page	Summary	
1st edition	'10.02.01	-	New Preliminary Data Sheet	
Rev.0.02	'10.08.18	P14	DC Characteristics (Modification, Spec of I _{DD} and I _{SB1})	
		P15	Thermal Characteristics (Modification, Spec)	
Rev.1.00	'10.12.13	P31	Package Dimensions (Modification, Dimensions)	
		Throughout	Preliminary Data Sheet → Data Sheet	
Rev.2.00	'11.10.06	Throughout	Add Lead and the extended temperature operation product	

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc
 - Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical "Specific": implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

enesas Electronics America Inc. 80 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. dl: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Boume End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-2035-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No. 1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-5887-7589

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2868-9318, Fax: +852-2886-9022/9044

Renesas Electronics Taiwan Co., Ltd. 7F, No. 363 Fu Shing North Road Taipei, Taiwa Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bidg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: 482-2-558-3737, Fax: 482-2-558-5141

© 2011 Renesas Electronics Corporation. All rights reserved.