

SLUSCI6A - DECEMBER 2016 - REVISED FEBRUARY 2019

Support &

Community

2.0

UC1843A-SP QML class V, radiation hardened current-mode PWM controller

Technical

Documents

Order

Now

1 Features

- QML Class V (QMLV) Qualified, SMD 5962-86704
- 5962**P**8670409Vxx:
 - Radiation Hardness Assurance (RHA) up to 30-krad(Si) Total Ionizing Dose (TID)
 - Passes Functional and Specified Post-Radiation Parametric Limits at 45 krad at LDR (10 mrad(Si)/s) per 1.5x Over Test as Defined in MIL-STD-883 Test Method 1019.9 Paragraph 3.13.3.b
 - Exhibits Low-Dose Rate Sensitivity but Remains Within the Pre-Radiation Electrical Limits at 30-krad Total Dose Level, as Allowed by MIL-STD-883, TM1019
- Optimized for Offline and DC-to-DC Converters
- Low Start-Up Current (< 0.5 mA)
- Trimmed Oscillator Discharge Current
- Automatic Feed Forward Compensation
- Pulse-by-Pulse Current Limiting
- Enhanced Load Response Characteristics
- Undervoltage Lockout (UVLO) With Hysteresis
- Double-Pulse Suppression
- High-Current Totem-Pole Output
- Internally-Trimmed Bandgap Reference
- 500-kHz Operation
- Low R_o Error Amplifier

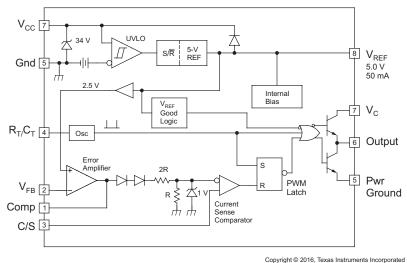
2 Applications

Tools &

Software

- DC-DC Converters
- Supports Various Topologies:
 - Flyback, Forward, Buck, Boost
 - Push-Pull, Half-Bridge, Full-Bridge With External Interface Circuit
- Available in Military Temperature Range (–55°C to 125°C)

3 Description


The UC1843A-SP control IC is a radiation hardened pin-for-pin compatible version of the UC184x family. Providing the necessary characteristics to control current-mode switched-mode power supplies, this device has improved features. Start-up current is specified to be less than 0.5 mA and oscillator discharge is trimmed to 8.3 mA. During UVLO, the output stage can sink at least 10 mA at less than 1.2 V for V_{CC} over 5 V.

The *Device Comparison Table* shows the difference between members of this family. Reference the individual product data sheets for ordering the radiation-improved version if available.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)				
	CDIP (8)	6.67 mm × 9.60 mm				
UC1843A-SP	LCCC (20)	8.89 mm × 8.89 mm				
	CFP (10)	6.48 mm × 7.02 mm				

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

2

Table of Contents

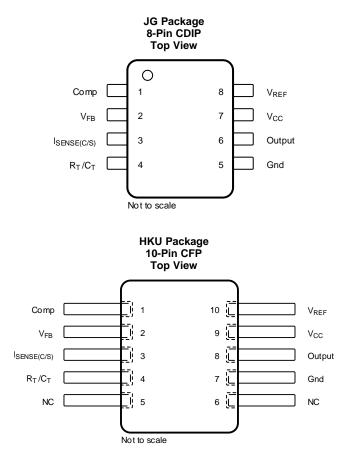
1	Feat	ures 1
2	Арр	lications 1
3	Des	cription 1
4	Rev	ision History 2
5	Dev	ice Comparison Table 3
6	Pin	Configuration and Functions 3
7	Spe	cifications 4
	7.1	Absolute Maximum Ratings 4
	7.2	ESD Ratings 4
	7.3	Recommended Operating Conditions 4
	7.4	Thermal Information 4
	7.5	Electrical Characteristics 5
	7.6	Typical Characteristics 6
8	Deta	ailed Description7
	8.1	Overview
	8.2	Functional Block Diagram 7

	8.3	Feature Description	7
	8.4	Device Functional Modes	12
9	App	lication and Implementation	13
	9.1	Application Information	13
	9.2	Typical Application	13
10	Pow	ver Supply Recommendations	21
11	Laye	out	21
	11.1	Layout Guidelines	21
	11.2	Layout Example	23
12	Dev	ice and Documentation Support	24
	12.1	Receiving Notification of Documentation Updates	24
	12.2	Community Resources	24
	12.3	Trademarks	24
	12.4	Electrostatic Discharge Caution	24
	12.5	Glossary	24
13		hanical, Packaging, and Orderable	
	Infor	mation	24

4 Revision History

CI	hanges from Original (December 2016) to Revision A	Page)
•	Changed the Pin Configuration images	3	5
•	Changed CT (pF) To: CT (µF) in Equation 1	15	j.

Texas NSTRUMENTS


www.ti.com



5 Device Comparison Table

PART NO.	UVLO ON	UVLO OFF	MAXIMUM DUTY CYCLE
UC1842A	16 V	10 V	<100%
UC1843A	8.5 V	7.9 V	<100%
UC1844A	16 V	10 V	<50%

6 Pin Configuration and Functions

Pin Functions

		PIN		1/0	DECODIDION
NAME	CDIP	LCCC	CFP	I/O	DESCRIPTION
Comp	1	2	1	I	Error amplifier output.
V _{FB}	2	5	2	I	Voltage feedback input to error amplifier.
I _{SENSE(C/S)}	3	7	3	I	Current sense comparator input pin.
R _T /C _T	4	10	4	I	RC time constant input to oscillator.
NC	_	1, 3, 4, 6, 8, 9, 11, 14, 16, 19	5, 6	_	No connect.
Pwr Gnd	_	12	_	_	Output section ground.
Gnd	5	13	7	_	Ground.
Output	6	15	8	0	Regulated output.
V _C	_	17	_	_	Output section supply voltage.
V _{CC}	7	18	9	_	Unregulated supply voltage.
V _{REF}	8	20	10	0	5-V internally generated reference.

Copyright © 2016–2019, Texas Instruments Incorporated

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾⁽²⁾

over operating free-air temperature (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC}	Supply voltage, low-impedance source		30	V
VI	Input voltage (V _{FB} , I _{SENSE})	-0.3	6.3	V
	Supply current	Self lin	miting	
I _O	Output current		±1	А
	Error amplifier output sink current		10	mA
	Output energy (capacitive load)		5	μJ
PD	Power dissipation ($T_A = 25^{\circ}C$)		1	W
T _{stg}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are with respect to ground. Currents are positive in, negative out of the specified terminal.

7.2 ESD Ratings

			VALUE	UNIT
V _(ESD) Ele	ectrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±4000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range ($T_A = T_J = -55^{\circ}C$ to $125^{\circ}C$), unless otherwise noted

		MIN	МАХ	UNIT
V _{CC}	Supply voltage	12	25	V
	Sink/source output current (continuous or time average)	0	200	mA
	Reference load current	0	20	mA

7.4 Thermal Information

			UC1843A-SP			
	THERMAL METRIC ⁽¹⁾	JG (CDIP)	FK (LCCC)	HKU (CFP)	UNIT	
		8 PINS	20 PINS	10 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	103	—	51.9	°C/W	
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	9.6	9.0	6.6	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	69.2	—	31.5	°C/W	
ΨJT	Junction-to-top characterization parameter	13.9	_	5.42	°C/W	
ΨЈВ	Junction-to-board characterization parameter	73		31	°C/W	

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Electrical Characteristics

 V_{CC} = 15 V⁽¹⁾, R_T = 10 k Ω , C_T = 3.3 nF, T_A = T_J = -55°C to 125°C (unless otherwise noted)

PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
REFERENCE						
Output voltage	$T_{\rm J} = 25^{\circ}C, I_{\rm O} = 1 \text{ mA}$		4.95	5	5.06	V
Line regulation	V _{IN} = 12 to 25 V	V _{IN} = 12 to 25 V		6	20	mV
Load regulation	I _O = 1 to 20 mA			6	25	mV
Temperature stability ⁽²⁾⁽³⁾				0.2	0.4	mV/°C
Total output variation ⁽²⁾	Over line, load, and te	emperature	4.9		5.1	V
Output noise voltage	10 Hz ≤ <i>f</i> ≤ 10 kHz, T	J = 25°C		50		μV
Long-term stability	1000 hours, T _A = 125°	°C ⁽²⁾		5	25	mV
Short-circuit output current			-30	-100	-180	mA
OSCILLATOR						
Initial accuracy	$T_{\rm J} = 25^{\circ} {\rm C}^{(4)}$		47	52	57	kHz
Voltage stability	V_{CC} = 12 to 25 V			0.2%	1%	
Temperature stability	$T_{\rm J} = -55^{\circ}C$ to $125^{\circ}C^{(2)}$	2)		5%		
Amplitude peak-to-peak	V pin 4 ⁽²⁾			1.7		V
	V pin 4 = 2 V ⁽⁵⁾	$T_J = 25^{\circ}C$	7.8	8.3	8.8	mA
Discharge current	v pin 4 = 2 v (*)	$T_J = Full range$	7.5		8.8	mA
ERROR AMPLIFIER			·			
Input voltage	$V_{Comp} = 2.5 V$		2.45	2.50	2.55	V
Input bias current				-0.3	-1	μA
Open-loop voltage gain	$V_0 = 2 \text{ to } 4 \text{ V}$		65	90		dB
Unity-gain bandwidth	$T_{\rm J} = 25^{\circ} C^{(2)}$		0.7	1		MHz
PSRR	V_{CC} = 12 to 25 V		60	70		dB
Output sink current	$V_{FB} = 2.7 \text{ V}, V_{Comp} = 2.7 \text{ V}$	1.1 V	2	6		mA
Output source current	$V_{FB} = 2.3 \text{ V}, V_{Comp} = 8$	5 V	-0.5	-0.8		mA
High-level output voltage	V _{FB} = 2.3 V, R _L = 15 k		5	6		V
Low-level output voltage	V _{FB} = 2.7 V, R _L = 15 k			0.7	1.1	V
CURRENT SENSE						
Gain ⁽⁶⁾⁽⁷⁾			2.85	3	3.15	V/V
Maximum input signal	$V_{\text{Comp}} = 5 V^{(6)}$		0.9	1	1.1	V
PSRR	$V_{CC} = 12 \text{ to } 25 \text{ V}^{(6)}$			70		dB
Input bias current				-2	-10	μA
Delay to output	$V_{ISENSE} = 0$ to 2 V ⁽²⁾			150	300	ns

(1) Adjust V_{CC} above the start threshold before setting at 15 V.

(2) Parameters ensured by design and/or characterization, if not production tested.

(3) Temperature stability, sometimes referred to as average temperature coefficient, is described by the equation: Temperature Stability = V_{REF} (max) – V_{REF} (min) / T_J (max) – T_J (min). V_{REF} (max) and V_{REF} (min) are the maximum and minimum reference voltage measured over the appropriate temperature range. Note that the extremes in voltage do not necessarily occur at the

extremes in temperature. (4) Output frequency equals oscillator frequency for the UC1842A-SP and UC1843A-SP.

(5) This parameter is measured with $R_T = 10 k\Omega$ to V_{REF} . This contributes approximately 300 μ A of current to the measurement. The total current flowing into the R_T or C_T pin will be approximately 300 μ A higher than the measured value.

(6) Parameter measured at trip point of latch with $V_{FB} = 0$ V.

(7) Gain defined as: $G = \Delta V_{Comp} / \Delta V_{ISENSE}$; $V_{ISENSE} = 0$ to 0.8 V.

STRUMENTS

XAS

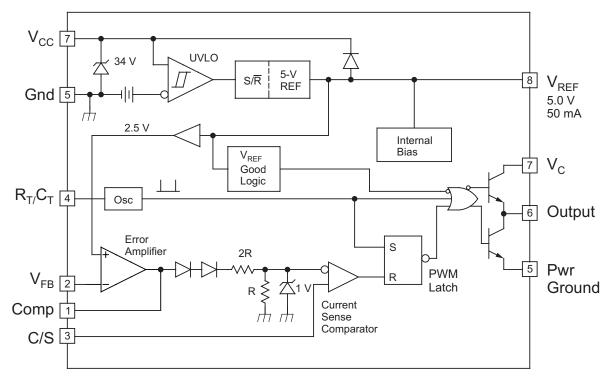
Electrical Characteristics (continued)

$V_{CC} = 15 V^{(1)}, R_T = 10 k\Omega, C_T = 3.3$	nF, $T_A = T_J = -55^{\circ}C$ to 1	125°C (unless otherwise noted)
--	-------------------------------------	--------------------------------

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OUTPUT					
	I _{SINK} = 20 mA		0.1	0.4	- V
Output low-level voltage	I _{SINK} = 200 mA		1.5	2.2	
Output high lovel veltage	$I_{SOURCE} = -20 \text{ mA}$	13	13.5		V
Output high-level voltage	I _{SOURCE} = -200 mA	12	13.5		v
Rise time	$C_{L} = 1 \text{ nF}, T_{J} = 25^{\circ}C^{(2)}$		50	150	ns
Fall time	$C_L = 1 \text{ nF}, T_J = 25^{\circ}C^{(2)}$		50	150	ns
UVLO saturation	$V_{CC} = 5 \text{ V}, \text{ I}_{SINK} = 10 \text{ mA}$		0.7	1.2	V
UNDERVOLTAGE LOCKOUT					
Start threshold		7.8	8.4	9	V
Minimum operation voltage after turnon		7	7.6	8.2	V
PWM					
Maximum duty cycle		94%	96%	100%	
Minimum duty cycle				0%	
TOTAL STANDBY CURRENT					
Start-up current			0.3	0.5	mA
Operating supply current	V _{FB} = V _{ISENSE} = 0 V		11	17	mA
V _{CC} Zener voltage	I _{CC} = 25 mA	30	34		V

7.6 Typical Characteristics

Figure 1. Output Saturation Characteristics



8 Detailed Description

8.1 Overview

The UC1843A-SP control IC is a pin-for-pin compatible improved version of the UC184x family. Providing the necessary characteristics to control current-mode switched-mode power supplies, this device has improved features. Start-up current is specified to be less than 0.5 mA and oscillator discharge is trimmed to 8.3 mA. During UVLO, the output stage can sink at least 10 mA at less than 1.2 V for V_{CC} over 5 V.

8.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

8.3 Feature Description

UC1843A-SP is a current mode controller, used to support various topologies such as forward, flyback, buck, boost and using an external interface circuit will also support half-bridge, full-bridge, and push-pull configurations.

Figure 2 shows the two-loop current-mode control system in a typical buck regulator application. A clock signal initiates power pulses at a fixed frequency. The termination of each pulse occurs when an analog of the inductor current reaches a threshold established by the error signal. In this way, the error signal actually controls peak inductor current. This contrasts with conventional schemes in which the error signal directly controls pulse width without regard to inductor current.

Several performance advantages result from the use of current-mode control. First, an input voltage feed-forward characteristic is achieved; that is, the control circuit instantaneously corrects for input voltage variations without using up any of the error amplifier's dynamic range. Therefore, line regulation is excellent and the error amplifier can be dedicated to correcting for load variations exclusively.

Feature Description (continued)

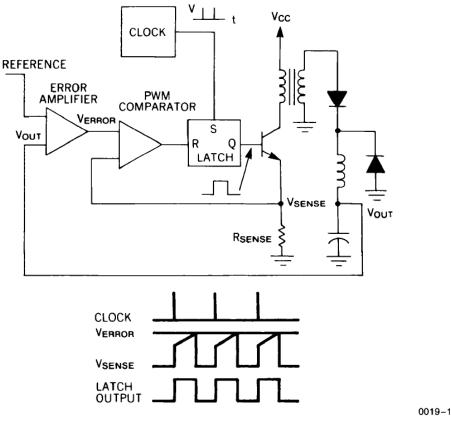


Figure 2. Two-Loop Current-Mode Control System

For converters in which inductor current is continuous, controlling peak current is nearly equivalent to controlling average current. Therefore, when such converters employ current-mode control, the inductor can be treated as an error-voltage-controlled-current-source for the purposes of small-signal analysis (see Figure 3). The two-pole control-to-output frequency response of these converters is reduced to a single-pole (filter capacitor in parallel with load) response. One result is that the error amplifier compensation can be designed to yield a stable closed-loop converter response with greater gain bandwidth than would be possible with pulse-width control, giving the supply improved small-signal dynamic response to changing loads. A second result is that the error amplifier compensation circuit becomes simpler, as shown in Figure 4.

Capacitor Ci and resistor Ri, in Figure 4(A), add a low-frequency zero, which cancels one of the two control-tooutput poles of non-current-mode converters. For large signal load changes, in which converter response is limited by inductor slew rate, the error amplifier saturates while the inductor is catching up with the load. During this time, Ci charges to an abnormal level. When the inductor current reaches its required level, the voltage on Ci causes a corresponding error in supply output voltage. The recovery time is $R_{iz}C_i$, which may be long. However, the compensation network of Figure 4(B) can be used where current-mode control has eliminated the inductor pole. Large-signal dynamic response is then greatly improved due to the absence of Ci.

Current limiting is greatly simplified with current-mode control. Pulse-by-pulse limiting is, of course, inherent in the control scheme. Furthermore, an upper limit on the peak current can be established by simply clamping the error voltage. Accurate current limiting allows optimization of magnetic and power semiconductor elements while ensuring reliable supply operation.

Finally, current-mode controlled power stages can be operated in parallel with equal current sharing. This opens the possibility of a modular approach to power supply design.

UC1843A-SP SLUSCI6A – DECEMBER 2016 – REVISED FEBRUARY 2019

Feature Description (continued)

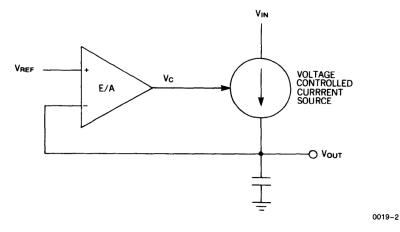


Figure 3. Inductor Looks Like a Current Source to Small Signals

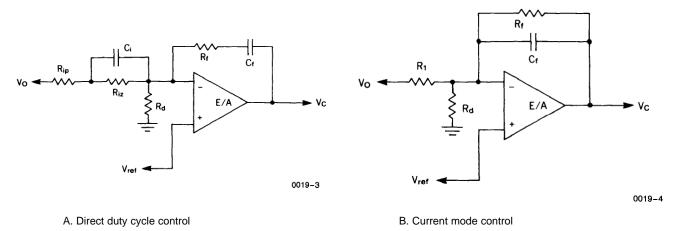
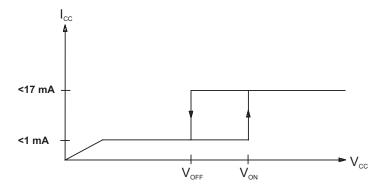


Figure 4. Required Error Amplifier Compensation for Continuous Inductor Current Designs

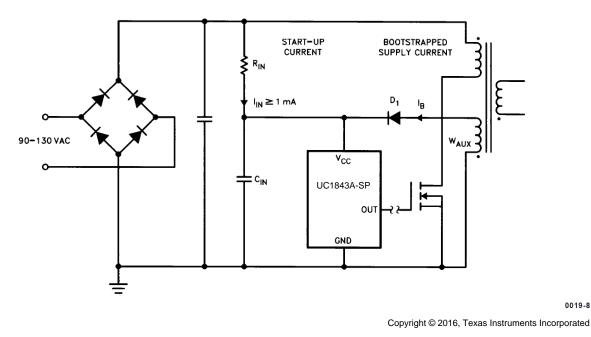

8.3.1 UVLO

The UVLO circuit ensures that V_{CC} is adequate to make the UC1843A-SP fully operational before enabling the output stage. Figure 5 shows that the UVLO turnon and turnoff thresholds are fixed internally at 16 V and 10 V, respectively. The 6-V hysteresis prevents V_{CC} oscillations during power sequencing.


Figure 6 shows supply current requirements. Start-up current is < 1 mA for efficient bootstrapping from the rectified input of an off-line converter, as shown in Figure 7. During normal circuit operation, V_{CC} is developed from auxiliary winding, WAux, with D_1 and C_{IN} . However, at start-up, C_{IN} must be charged to 16 V through R_{IN} . With a start-up current of 1 mA, R_{IN} can be as large as 100 k Ω and still charge C_{IN} when VAc = 90-V RMS (low line). Power dissipation in R_{IN} would then be less than 350 mW even under high line (VAc = 130-V RMS) conditions.

During UVLO, the output driver is in a low state. While it does not exhibit the same saturation characteristics as normal operation, it can easily sink 1 mA, enough to ensure the MOSFET is held off.

Feature Description (continued)



During UVLO, the output driver is biased to sink minor amounts of current.

Figure 7. Providing Power to the UC1843A-SP

0019-8

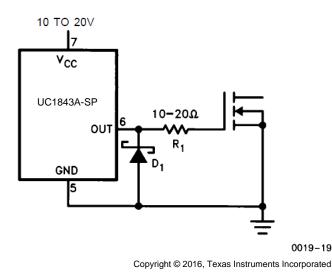
Feature Description (continued)

8.3.2 Reference

As highlighted in the *Functional Block Diagram*, UC1843A-SP incorporates a 5-V internal reference regulator with ±2% set point variation over temperature.

8.3.3 Totem-Pole Output

The UC1843A-SP PWM has a single totem-pole output which can be operated to \pm 1-A peak for driving MOSFET gates, and a \pm 200 mA average current for bipolar power U-100A transistors. Cross conduction between the output transistors is minimal, the average added power with V_{IN} = 30 V is only 80 mW at 200 kHz.


Limiting the peak current through the IC is accomplished by placing a resistor between the totem-pole output and the gate of the MOSFET. The value is determined by dividing the totem-pole collector voltage V_C by the peak current rating of the IC's totem-pole. Without this resistor, the peak current is limited only by the dV/dT rate of the totem-pole switching and the FET gate capacitance.

The use of a Schottky diode from the PWM output to ground prevents the output voltage from going excessively below ground, causing instabilities within the IC. To be effective, the diode selected should have a forward drop of less than 0.3 V at 200 mA. Most 1- to 3-A Schottky diodes exhibit these traits above room temperature. Placing the diode as physically close to the PWM as possible enhances circuit performance. Implementation of the complete drive scheme is shown in Figure 8 through Figure 10. Transformer-driven circuits also require the use of the Schottky diodes to prevent a similar set of circumstances from occurring on the PWM output. The ringing below ground is greatly enhanced by the transformer leakage inductance and parasitic capacitance, in addition to the magnetizing inductance and FET gate capacitance. Circuit implementation is similar to the previous example.

Figure 8 through Figure 10 show suggested circuits for driving MOSFETs and bipolar transistors with the UC1843A-SP output. The simple circuit of Figure 8 can be used when the control IC is not electrically isolated from the MOSFET turnon and turnoff to ± 1 A. It also provides damping for a parasitic tank circuit formed by the FET input capacitance and series wiring inductance. Schottky diode, D₁, prevents the output of the IC from going far below ground during turnoff.

Figure 9 shows an isolated MOSFET drive circuit which is appropriate when the drive signal must be level shifted or transmitted across an isolation boundary. Bipolar transistors can be driven efficiently with the circuit of Figure 10. Resistors R_1 and R_2 fix the on-state base current while capacitor C_1 provides a negative base current pulse to remove stored charge at turnoff.

Because the UC1843A-SP series has only a single output, an interface circuit is needed to control push-pull, half-bridge, or full-bridge topologies. The UC1706 dual output driver with internal toggle flip-flop performs this function. *Typical Application* shows a typical application for these two ICs. Increased drive capability for driving numerous FETs in parallel, or other loads can be accomplished using one of the UC1705/6/7 driver ICs.

UC1843A-SP

SLUSCI6A - DECEMBER 2016 - REVISED FEBRUARY 2019

Feature Description (continued)

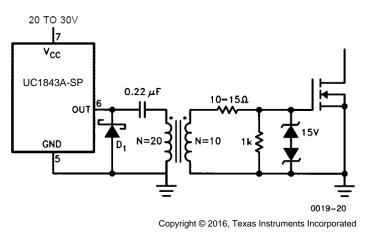


Figure 9. Isolated MOSFET Drive

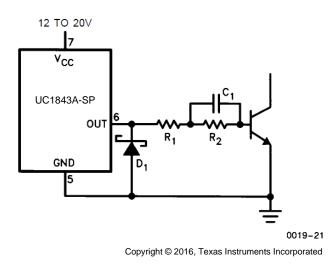
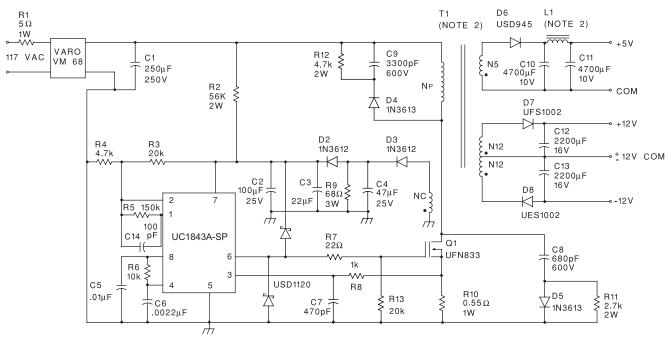


Figure 10. Bipolar Drive With Negative turnoff Bias

8.4 Device Functional Modes

The UC1843A-SP uses fixed frequency, peak current mode control. An internal oscillator initiates the turn on of the driver to high-side power switch. The external power switch current is sensed through an external resistor and is compared via internal comparator. The voltage generated at the COMP pin is stepped down via internal resistors (as shown in the functional block diagram). When the sensed current reaches the stepped down COMP voltage, the high-side power switch is turned off.

9 Application and Implementation


NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

UC1843A-SP can be used as a controller to design various topologies such as buck, boost, flyback, and forward. Using an external interphase circuit can also support push-pull, half-bridge and full-bridge topologies.

9.2 Typical Application

Copyright © 2016, Texas Instruments Incorporated

Figure 11. Typical Application Schematic

9.2.1 Design Requirements

See Table 1 for parameter values.

Table 1. Design Parameters⁽¹⁾

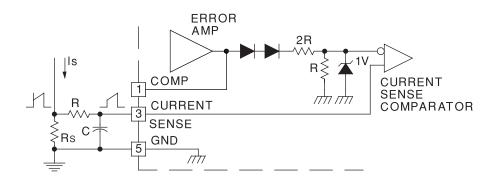
DESIGN PARAMETER	VALUE				
Input voltage	95 VAC to 130 VAC				
Line isolation	3750 V				
Switching frequency	40 kHz				
Efficiency (full load)	70%				
Output voltage (A)	+5 V, ±5%; 1-A to 4-A load; Ripple voltage: 50-mV P-P max				
Output voltage (B)	+12 V, ±3%; 0.1-A to 0.3-A load; Ripple voltage: 100-mV P-P max				
Output voltage (C)	-12 V, ±3%; 0.1-A to 0.3-A load; Ripple voltage: 100-mV P-P max				

(1) See Figure 11 for reference.

SLUSCI6A – DECEMBER 2016–REVISED FEBRUARY 2019

www.ti.com

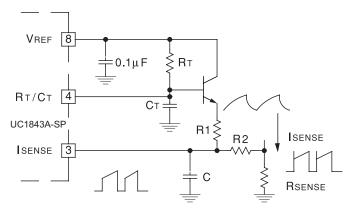
9.2.2 Detailed Design Procedure


See Table 2 for component values.

COMPONENT	VALUE
R1	5 Ω, 1 W
R2	56 kΩ, 2 W
R3	20 kΩ
R4	4.7 kΩ
R5	150 kΩ
R6	10 kΩ
R7	22 Ω
R8	1 kΩ
R9	68 Ω
R10	0.55 Ω, 1 W
R11	2.7 kΩ, 2 W
R12	4.7 kΩ, 2 W
R13	20 kΩ
C1	250 µF, 250 V
C2	100 μF, 25 V
C3	22 µF
C4	47 µF, 25 V
C5	0.1 µF
C6	0.0022 µF
C7	470 pF
C8	680 pF, 600 V
C9	3300 pF, 600 V
C10	4700 μF, 10 V
C11	4700 μF, 10 V
C12	2200 µF, 10 V
C13	2200 µF, 10 V
C14	100 pF
D2	1N3612
D3	1N3612
D4	1N3613
D5	1N3613
D6	USD945
D7	UFS1002
D8	UES1002
Q1	UFN833

Table 2. Components⁽¹⁾

(1) See Figure 11 for reference.



Peak Current (Is) is determined by the formula:

A small RC filter may be required to suppress switch transients.

Figure 12. Current-Sense Circuit

Copyright © 2016, Texas Instruments Incorporated

NOTE: A fraction of the oscillator ramp can be resistively summed with the current sense signal to provide slope compensation for converters requiring duty cycles over 50%.

Capacitor, C, forms a filter with R2 to suppress the leading edge switch spikes.

Figure 13. Slope Compensation

9.2.2.1 Oscillator

The UC1843A-SP oscillator is programmed as shown in Figure 15. Timing capacitor C_T is charged from VREF (5 V) through the timing resistor R_T , and discharged by an internal current source. The first step in selecting the oscillator components is to determine the required circuit dead time. Once obtained, Figure 16 is used to pinpoint the nearest standard value of C_T for a given dead time. Next, the appropriate R_T value is interpolated using the parameters for C_T and oscillator frequency. Figure 17 shows the R_T/C_T combinations versus oscillator frequency. The timing resistor can be calculated from the following formula.

$$f_{\rm osc} (\rm kHz) = {1.72 \over \rm RT (\rm k\Omega) \times CT (\mu F)}$$

(1)

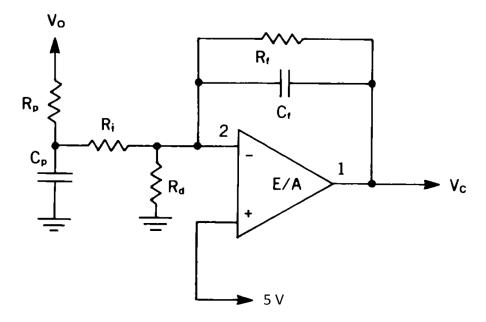


Figure 14. E/A Compensation Circuit for Continuous Boost and Flyback Topologies

The UC1843A-SP has an internal divide-by-two flip-flop driven by the oscillator for a 50% maximum duty cycle. Therefore, their oscillators must be set to run at twice the desired power supply switching frequency.

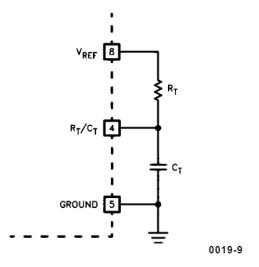
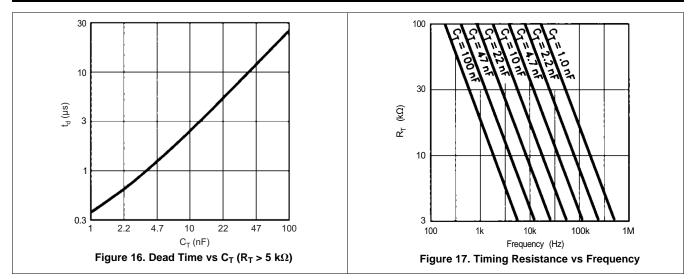



Figure 15. Oscillator Programming

9.2.2.2 Current Sensing and Limiting

The UC1843A-SP current sense input is configured as shown in Figure 18. Current-to-voltage conversion is done externally with ground-referenced resistor R_S. Under normal operation, the peak voltage across R_S is controlled by the E/A according to the following relation:

$$I_{P} = \frac{V_{C} - 1.4 V}{3 R_{S}}$$

where

 $V_{\rm C}$ = Control voltage = E/A output voltage

R_S can be connected to the power circuit directly or through a current transformer, as Figure 18 shows. While a direct connection is simpler, a transformer can reduce power dissipation in R_s, reduce errors caused by the base current, and provide level shifting to eliminate the restraint of ground-referenced sensing. The relation between V_C and peak current in the power stage is given by:

$$i_{(pk)} = N\left(\frac{V_{R_{S}}(pk)}{R_{S}}\right) = \frac{N}{3 R_{S}}(V_{C} - 1.4 V)$$

where

N = Current sense transformer turns ratio = 1 when transformer not used.

For purposes of small-signal analysis, the control-to-sensed-current gain is:

$$\frac{i_{(pk)}}{V_{C}} = \frac{N}{3 R_{S}}$$
(4)

When sensing current in series with the power transistor, as shown in Figure 18, the current waveform often has a large spike at its leading edge. This spike is due to rectifier recovery and/or inter-winding capacitance in the power transformer. If unattenuated, this transient can prematurely terminate the output pulse. As shown, a simple RC filter is usually adequate to suppress this spike. The RC time constant should be approximately equal to the current spike duration (usually a few hundred nanoseconds).

The inverting input to the UC1843A-SP current-sense comparator is internally clamped to 1 V (Figure 18). Current limiting occurs if the voltage at pin 3 reaches this threshold value, that is, the current limit is defined by:

$$i_{max} = \frac{N \times 1 V}{R_{s}}$$
(5)

(3)

Figure 18. Transformer-Coupled Current Sensing

9.2.2.3 Error Amplifier

The error amplifier (E/A) configuration is shown in Figure 19. The non-inverting input is not brought out to a pin, but is internally biased to 5 V \pm 2%. The E/A output is available at pin 1 for external compensation, allowing the user to control the converter's closed-loop frequency response.

Figure 20 shows an E/A compensation circuit suitable for stabilizing any current-mode controlled topology except for flyback and boost converters operating with inductor current. The feedback components add a pole to the loop transfer function at $f_p = \frac{1}{2} \pi R_F$. R_F and C_F are chosen so that this pole cancels the zero of the output filter capacitor ESR in the power circuit. R_I and R_F fix the low-frequency gain. They are chosen to provide as much gain as possible while still allowing the pole formed by the output filter capacitor and load to roll off the loop gain to unity (0 dB) at $f \approx f_{SWITCHING} / 4$. This technique ensures converter stability while providing good dynamic response.

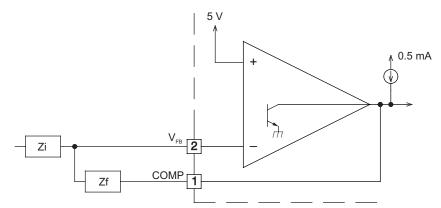


Figure 19. E/A Configuration

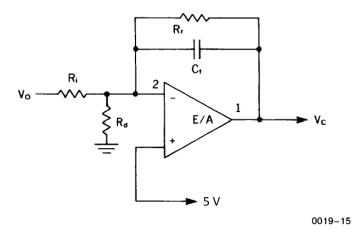


Figure 20. Compensation

The E/A output sources 0.5 mA and sinks 2 mA. A lower limit for RF is given by:

$$R_{F(MIN)} \approx \frac{V_{EAOUT(MAX)} - 2.5 V}{0.5 mA} = \frac{6 V - 2.5 V}{0.5 mA} = 7 k\Omega$$
(6)

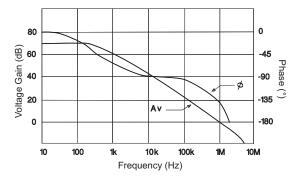
E/A input bias current (2- μ A max) flows through R_I, resulting in a DC error in output voltage (VO) given by: $\Delta V_{O(MAX)} = (2 \ \mu A) R_{I}$

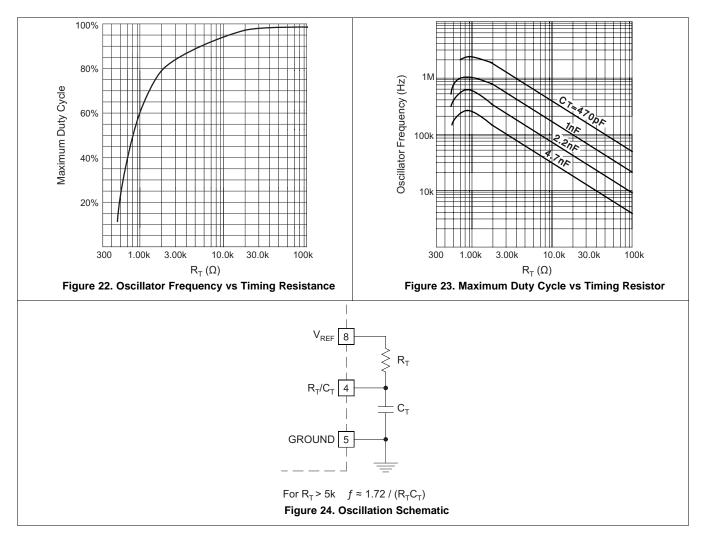
(7)

Therefore, the designer should keep the value of R_I, as low as possible.

Figure 21 shows the open-loop frequency response of the UC1843A-SP E/A. The gain represents an upper limit on the gain of the compensated E/A. Phase lag increases rapidly as frequency exceeds 1 MHz due to second-order poles at about 10 MHz and above.

Continuous-inductor-current boost and flyback converters each have a right-half-plane zero in their transfer function. An additional compensation pole is needed to roll off loop gain at a frequency less than that of the RHP zero. R_P and C_P in the circuit of Figure 14 provide this pole.

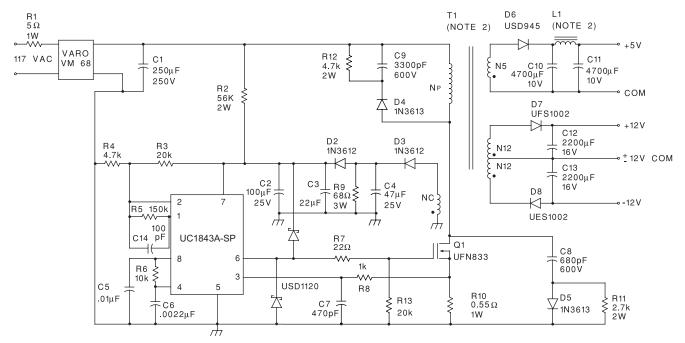



Figure 21. Error Amplifier Open-Loop Frequency Response

TEXAS INSTRUMENTS

UC1843A-SP

SLUSCI6A - DECEMBER 2016-REVISED FEBRUARY 2019


9.2.3 Application Curves

10 Power Supply Recommendations

The devices are designed to operate from an input voltage supply range between 8 V and 40 V. This input supply should be well regulated. If the input supply is located more than a few inches from the UC1843A-SP converter, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. A tantalum capacitor with a value of 47 μ F is a typical choice; however, this may vary depending upon the output power being delivered.

Copyright © 2016, Texas Instruments Incorporated

Power supply specifications:

- 1. Input voltage: 95 VAC to 130 VAC (50 Hz/60 Hz)
- 2. Line isolation: 3750 V
- 3. Switching frequency: 40 kHz
- 4. Efficiency full load: 70%
- 5. Output voltage:
 - a. +5 V, ±5%; 1- to 4-A load, ripple voltage: 50 mVP-P max
 - b. +12 V, ±3%; 0.1- to 0.3-A load, ripple voltage: 100 mVP-P max
 - c. -12 V, ±3%; 0.1- to 0.3-A load, ripple voltage: 100 mVP-P max

Figure 25. Offline Flyback Regulator

11 Layout

11.1 Layout Guidelines

Always try to use a low-EMI inductor with a ferrite-type closed core. Some examples would be toroid and encased E core inductors. Open core can be used if they have low-EMI characteristics and are located a farther away from the low-power traces and components. Make the poles perpendicular to the PCB as well if using an open core. Stick cores usually emit the most unwanted noise.

Layout Guidelines (continued)

11.1.1 Feedback Traces

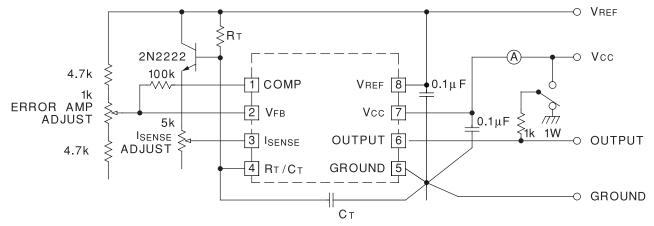
Try to run the feedback trace as far as possible from the inductor and noisy power traces. The designer should also make the feedback trace as direct as possible and somewhat thick. These two guidelines sometimes involve a trade-off, but keeping the trace away from inductor EMI and other noise sources is the more critical guideline. Run the feedback trace on the side of the PCB opposite of the inductor with a ground plane separating the two.

11.1.2 Input/Output Capacitors

When using a low-value ceramic input filter capacitor, locate it as close as possible to the VIN pin of the IC. This eliminates as much trace inductance effects as possible and gives the internal IC rail a cleaner voltage supply. Some designs require the use of a feed-forward capacitor connected from the output to the feedback pin as well, usually for stability reasons. In this case, it should also be positioned as close as possible to the IC. Using surface mount capacitors also reduces lead length and lessens the chance of noise coupling into the effective antenna created by through-hole components.

11.1.3 Compensation Components

External compensation components for stability should also be placed close to the IC. TI recommends to also use surface mount components for the same reasons discussed for the filter capacitors. These should not be located very close to the inductor either.


11.1.4 Traces and Ground Planes

Make all of the power (high-current) traces as short, direct, and thick as possible. It is good practice on a standard PCB to make the traces an absolute minimum of 15 mils (0.381 mm) per ampere. The inductor, output capacitors, and output diode should be as close as possible to each other. This helps reduce the EMI radiated by the power traces due to the high-switching currents through them. This also reduces lead inductance and resistance, which in turn reduces noise spikes, ringing, and resistive losses that produce voltage errors. The grounds of the IC, input capacitors, output capacitors, and output diode (if applicable) should be connected close together directly to a ground plane. It would also be a good idea to have a ground plane on both sides of the PCB. This reduces noise by reducing ground loop errors and absorbing more of the EMI radiated by the inductor.

For multi-layer boards with more than two layers, a ground plane can be used to separate the power plane (where the power traces and components are) and the signal plane (where the feedback and compensation and components are) for improved performance. On multi-layer boards, vias are required to connect traces and different planes. It is a good practice to use one standard via per 200 mA of current if the trace needs to conduct a significant amount of current from one plane to the other. Arrange the components so that the switching current loops curl in the same direction. Due to the way switching regulators operate, there are two power states: one state when the switch is on and one when the switch is off. During each state there is a current loop made by the power components that are currently conducting. Place the power components so that during each of the two states the current loop is conducting in the same direction. This prevents magnetic field reversal caused by the traces between the two half-cycles and reduces radiated EMI.

11.2 Layout Example

High peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to pin 5 in a single point ground. The transistor and 5k potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to pin 3.

Figure 26. Open-Loop Laboratory Test Fixture

TEXAS INSTRUMENTS

www.ti.com

12 Device and Documentation Support

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-8670406VPA	ACTIVE	CDIP	JG	8	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	8670406VPA UC1843A	Samples
5962-8670406VXA	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 8670406VXA UC1843AL QMLV	Samples
5962-8670409VPA	ACTIVE	CDIP	JG	8	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	8670409VPA UC1843A-SP	Samples
5962P8670409VPA	ACTIVE	CDIP	JG	8	1	TBD	Call TI	Call TI	-55 to 125	P8670409VPA UC1843A-SP	Samples
5962P8670409VYC	ACTIVE	CFP	HKU	10	1	TBD	Call TI	Call TI	-55 to 125	P8670409VYC UC1843A-SP	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

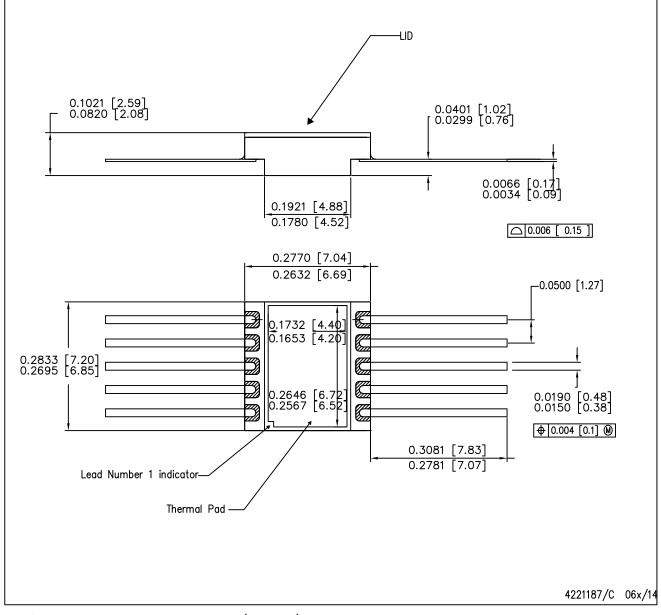
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

6-Feb-2020

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF UC1843A-SP :


- Catalog: UC1843A
- Enhanced Product: UC1843A-EP

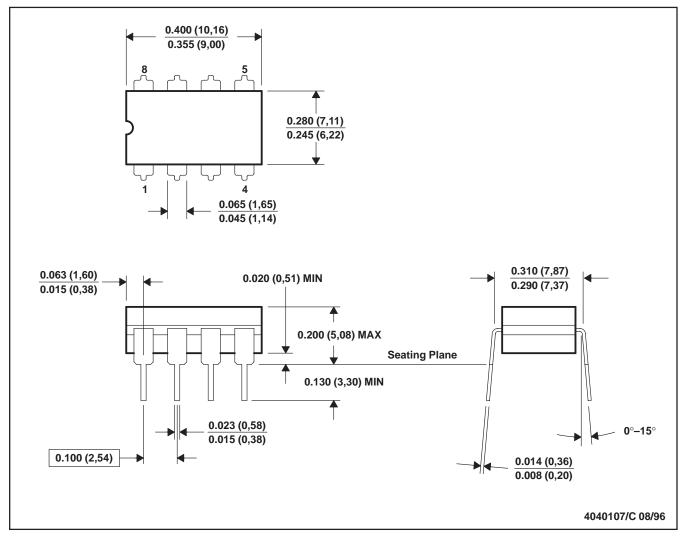
NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications

HKU (R-CDFP-F10)

CERAMIC DUAL FLATPACK

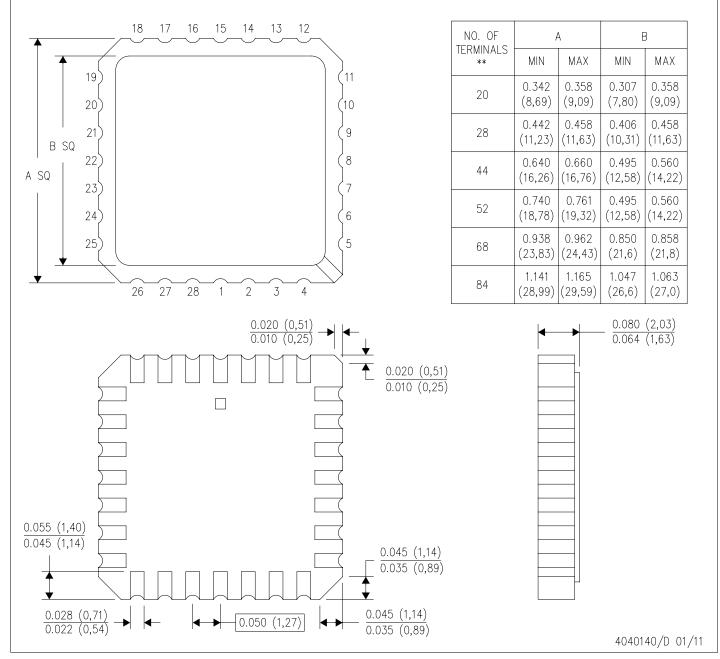
- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This drawing does not comply with Mil Std 1835. Do not use this package for compliant product.
 - D. The terminals will be gold plated.



MECHANICAL DATA

MCER001A - JANUARY 1995 - REVISED JANUARY 1997

CERAMIC DUAL-IN-LINE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. This package can be hermetically sealed with a metal lid.

D. Falls within JEDEC MS-004

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated