Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M62303FP

High Precision Double Integration Type A/D Converter

REJ03D0862-0201 Rev.2.01 Dec 27, 2007

Description

M62303FP is a double integration type A/D converter support system, and is a semiconductor integrated circuit which can work as A/D converter of 14 bits or more by being used with MCU and by inputting SI, SCK1, CS, and CONTIN.

High precision A/D translation system can be realized without using high precision external parts by proofreading A/D acquired values with two or more known conversion values such as reference voltage, grounding (zero) voltage and so forth.

Features

- High precision (14 bits or more) double integration type A/D converter
- Positive/negative constant voltage source built-in (+6.3 V, -6.0 V Typ)
- Positive/negative constant current source built-in (Isource = 2 mA, Isink = 0.2 mA Max)
- Independent 2ch operational amplifier built-in
- System reset built-in (4.5 V Typ)

Application

High precision control systems, such as temperature control and speed control

Block Diagram

RENESAS

Pin Arrangement

Pin Description

Pin No.	Pin Name	Function			
56	SI	Serial data input terminal. Serial data of 15 bits data length is input.			
55	SCK1	Shift clock input terminal. Signal from SI terminal is input into 15-bit shift register at the rise of a clock.			
54	CS	"L" level of this terminal enables shift clock, and "H" level makes shift register contents stored into multiplexer control register (analog switches) and unenables			
52	CONT IN	A pulse is input. Double integration type A/D converter is started synchronizing with this pulse. Moreover, the optimal full scale can be set up by setting up with C and R so that it may be set to TCONT \leq 2.14 CR.			
57	VDD	Digital part power supply terminal			
51	GD	Digital part GND terminal. This terminal is externally connected to analog ground terminal when IC is operative.			
50	RESET OUT	Output terminal of reset circuit supervising the fall of a digital part power supply.			
49	DERAY	Reset output rise is delayed by adding capacitor.			
60, 61, 62, 63, 64, 1, 2, 3	MUX1 to 8	Input side terminal of multiplexer (analog switch group) MUX.			
4	MUXCOM	Output side COMMON terminal of multiplexer MUX.			
5, 6, 7, 8, 9	AS1-1 to 5	Input side terminal of multiplexer (analog switch group) AS1.			
10	AS1COM	Output side COMMON terminal of multiplexer AS1.			
11, 12, 13, 14, 15	AS2-1 to 5	Input side terminal of multiplexer (analog switch group) AS2			
16	AS2COM	Output side COMMON terminal of multiplexer AS2			
17, 18	AS3-1 to 2	Source type constant current source output terminal			
19, 20	AS4-1 to 2	Sink type constant current source output terminal			
21	AS5	Analog switch AS5 input side terminal			
22	AS5COM	Analog switch AS5 output side terminal			
23, 59	VC+	Positive power supply output terminal for analog switch drive			
24, 58	VC-	Negative power supply output terminal for analog switch drive			
25	GA	Analog part GND terminal			
26, 27, 28, 29	R5, R3, R2L, R2H	Reference current setting terminal for constant current source			
30	R1	Source type output current setting terminal for constant current source			
31	R4	Sink type output current setting terminal for constant current source			
32	VA+	Analog part positive power supply terminal			
33	VA–	Analog part negative power supply terminal			
34	OP1+	Operational amplifier 1 non-inverting input terminal			
35	OP1-	Operational amplifier 1 inverting input terminal			
36	OUT1	Operational amplifier 1 output terminal			
37	OUT2	Operational amplifier 2 output terminal			
38	OP2–	Operational amplifier 2 inverting input terminal			
39	OP2+	Operational amplifier 2 non-inverting input terminal			
40	VREF	Standard voltage input for standard integration, and constant standard voltage input terminal for source current source setup			
41	ADIN	A/D conversion input terminal. Analog signal into ADIN terminal is converted into pulse width proportional to the input voltage.			
42	BUFFER	Output terminal of buffer amplifier which receives VREF, ADIN, and GA input. Internal analog switch for A/D conversion is switched by the CONTIN signal, and the voltage of three types of VREF, ADIN, and GA is output to BUFFER terminal through buffer amplifier.			
43, 45	GA	Analog part GND terminal			
44	INTIN	Input terminal of integration amplifier			
46	INTOUT	Output terminal of integration amplifier			
47	COMPIN	Input terminal of the comparator part of a double integration type A/D converter			
48	VADR	Power supply output terminal used for reference terminal of comparator			
53	PULSEOUT	A/D translation output terminal. Input analog signal is changed into pulse to be output.			

RENESAS

Absolute Maximum Ratings

				$(Ta = 25^{\circ}C, unless otherwise noted)$
Item	Symbol	Ratings	Unit	Conditions
Analog power supply voltage	VA+ VA–	22	V	
Switch part power supply voltage	Vc+ Vc-	13.2	V	
Digital section supply voltage	V _{DD}	-0.3 to +7	V	
A/D converter analog input voltage	V _{AIN}	-4 to +4	V	
PULSE OUT output current	lsink (PO)	10	mA	
Reset output current	lsink (RE)	10	mA	
Switch input voltage	V _{SWIN}	Vc- to Vc+	V	
		VA- to VA+ *1		At the line of fault voltage impression
Switch input current	I _{SWIN}	±20* ¹	mA	(Per one pin)
		±100* ¹		(All the switch sum totals)
Digital input voltage	V _{DIN}	-0.3 to V _{DD} + 0.3	V	
Power dissipation	Pd	740	mW	
Operating temperature	Topr	-20 to +75	°C	
Storage temperature	Tstg	-40 to +125	°C	

Note: 1. Represents the protection level at the time of abnormalities.

Operating Conditions

							(Ta = 25°C)
Block	Item	Symbol	Min	Тур	Max	Unit	Test Conditions
	Power supply voltage (positive side)	VA+	+8.1	+12	+13	V	
	Power supply voltage (negative side)	VA-	-9	-8	-7.2	V	
	Power supply current (positive side)	IA+		13	17	mA	
Analog	Power supply current (negative side)	IA–		12	17	mA	
4	A/D converter analog standard voltage	V_{REF}	1.0	2.5	3.0	V	
	A/D converter analog input voltage	V _{AIN}	$-V_{REF}$	_	V_{REF}	V	
	Switch input voltage	V _{SWIN}	-6	_	+6	V	
	Input integration time	T _{CONT}	2	—	20	ms	
	Power supply voltage	V _{DD}	4.80* ²	5.0	5.5	V	
	Power supply current	I _{DD}	_	1.8	3	mA	
	High-level input voltage	V _{IN}	2.4	_		V	
	Low-level input voltage	VIL	_	_	0.8	V	
ital	Serial clock waiting time	t _{SCSK}	250	_		ns	CS↓→SCKI↓
Dig	Serial input setup time	t _{SIK}	100	—	_	ns	SI→SCKI↑
	Serial input hold time	t _{HKI}	50	—	_	ns	SCKI∱→SI
	Serial clock low level time	t _{WLK}	200	—	_	ns	
	Serial clock high level time	t _{wнк}	200	—	_	ns	
	Chip selection hold time	t _{HKCS}	50	—	_	ns	SCKI↑→CS↑
rnal ts	Integration capacitance	C _{INT} * ³	—	0.015		μF	
Exter par	Voltage current conversion resistor	R _{INT}	56	230	500	kΩ	

Notes: 2. Represents the reset release voltage.

3. Set up as in 2.14 $R_{\text{INT}}-C_{\text{INT}}\ T_{\text{CONT}}.$

Electrical Characteristics

$(Ta = 25^{\circ}C, unless otherwise note)$	d)
$VA+ = 12 V, VA- = -SV, V_{REF} = 2.5 V, V_{DD} = 5.0 V, T_{CONT} = 7.3 r$	ns

Block	Item	Symbol	Min	Тур	Max	Unit	Test Cond	itions
ę	Analog input current	I _I	—	20	80	nA		
ine	Resolution	ER	14	_		Bit		
lact	Linearity error ^{*1}	N, L		0.012		%FS		
rsion M	Conversion range of fluctuation ^{*2}	—	—	0.006	_	%FS		_
nve	Conversion time	Тс		8.28	_	ms	$C_{INT} = 0.015 \ \mu F$	$V_{AIN} = 2.5 V$
c			—	15.58	—		R _{INT} = 230 kΩ	$V_{AIN} = 0 V$
D₽			—	22.88	_			$V_{AIN} = -2.5 V$
·	Saturation voltage	Vpo (sat)	—	—	0.4	V	Isink (PO) = 6 mA	
	Conversion standard voltage	V _{ADR}	-6.3	-6.0	-5.7	V		
Supply	Output voltage for switch part power supplies	Vc+	+6.0	+6.3	+6.6	V		
Power	Output voltage for switch part power supplies	Vc–	-6.6	-6.3	-6.6	V		
	Input voltage fluctuation	ΔVc	—	—	100	mV	VA+: 8.1 to 13 V, VA-	: −9 to −7.2 V
	ON resistance	R _{ON}	_	100	200	Ω	–6 V Vds 6 V	Ta = 25°C
				—	200		ld = 1 mA	Ta = -40°C
				—	300			Ta = 85°C
	RON match		_	10	30	%		
	RON drift	$\Delta R_{ON} / \Delta T$	_	0.5		%/°C		
	Input off-leak	I _{Soff}	_	±0.1	±100	nA	Vd = -6 V, Vs = 6 V	Ta = 25°C
art	current			—	±100		and	Ta = 0°C
ä			_	_	±100		Vs = -6 V, Vd = 6 V	Ta = 50°C
vitc	Output off-leak	I _{Doff}		±0.1	±100	nA	Vd = -6 V, Vs = 6 V	Ta = 25°C
Š	current			—	±100		and	Ta = 0°C
			_	_	±100		Vs = -6 V, Vd = 6 V	Ta = 50°C
	On-channel leak	I _{Don}	_	±0.1	±100	nA	Vs = Vd = 6 V	Ta = 25°C
	current		—	—	±100		and	Ta = 0°C
			_	—	±100		Vs = Vd = -6 V	Ta = 50°C
	Off isolation	OIRR	70	80	_	dB	Vs = 2 Vp-p, f = 1 kHz	, $R_{L} = 100 \Omega$
	Cross talk	CCRR	70	90	—	dB	Vs = 2 Vp-p, f = 1 kHz	, R _L = 100 Ω

Notes: 1. $-V_{REF}$ to 0 and 0 to V_{REF} is made into full scale. 2. Tolerance width at the time of repeated conversion.

Electrical Characteristics (cont.)

Block	Item	Symbol	Min	Тур	Max	Unit	Test Conditions
	Output source current	I _{CS1}	0.1		2	mA	RL1 = 0 to 3000 Ω
	Output source current accuracy	ΔI_{CS1}	_	—	±0.2	%	RL1 = 0 to 3000 Ω
urrent	Output source current drift		_	±10	—	ppM/°C	
ce of C	Permissible load resistance	RL1		_	3000	Ω	With the sauce current maximum
onre	Output sink current	I _{CS2}		—	-0.2	mA	RL2 = 0 to 1000 Ω
The S	Output sink current accuracy	ΔI_{CS2}		_	±0.2	%	RL2 = 0 to 1000 Ω
	Output sink current drift		_	±10	—	ppM/°C	
	Permissible load resistance	RL2		_	1000	Ω	With the sink current maximum
	Reset detection voltage	Vs	4.3	4.5	4.7	V	
Reset	Hysteresis (upper side)	Vhys	40	70	100	mV	
	Delay time	t _D	0.6	1	1.5	ms	$C_{\text{DELAY}} = 0.01 \ \mu\text{F}$
	Saturation voltage	VR (sat)		—	0.4	V	lsink = 6 mA
	Input offset voltage	VIo		1.0	6.0	mV	Rs = 10 kΩ
	Input offset voltage drift	$\Delta Vm/\Delta T$	_	3	—	μV/°C	Rs = 10 kΩ
	Input offset current	llo	_	20	200	nA	
	Input offset current drift	∆lm/∆T	—	1	—	nA/°C	
5	Input bias current	I _B	—	80	500	nA	
mplifie	Input bias current drift	$\Delta I_{B}/\Delta T$		2	—	nA/°C	
al A	Open loop gain	AV	20000	100000	_	Ω	$R_L = 2 \text{ k}\Omega, \text{ V}_O = +8 \text{ V}, -4 \text{ V}$
eration	Open loop gain rejection ratio	CMR	70	90	_	dB	Rs = 10 kΩ
Oper	Power supply change rejection ratio	SVR		30	150	μV/V	Rs = 10 kΩ
	Maximum output voltage	Vom	+9, –5	+11, -7	_	V	R _L = 10 kΩ
	Slew rate	S. R.	0.4	0.8	_	V/µs	AV = 1
	Maximum output current	Іор	5	10	_	mA	

Digital Format

F	irst														Last
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	LSB
,			· · · · · · · · · · · · · · · · · · ·	·	~	· · · · · · · · · · · · · · · · · · ·	, 	<u> </u>				ز	<u> </u>	·	,
		MU	JX			AS1			AS2		AS	S3	A	S4	AS5

1. Multiplexer (MUX)

	5th	4th	3rd	2nd
ALL OFF	0	0	0	0
CH1 ON	1	0	0	0
CH2 ON	0	1	0	0
CH3 ON	1	1	0	0
CH4 ON	0	0	1	0
CH5 ON	1	0	1	0
CH6 ON	0	1	1	0
CH7 ON	1	1	1	0
CH8 ON	0	0	0	1
ALL OFF	1	0	0	1
ALL OFF	0	1	0	1
ALL OFF	1	1	0	1
ALL OFF	0	0	1	1
ALL OFF	1	0	1	1
ALL OFF	0	1	1	1
ALL OFF	1	1	1	1

2. Analog switch 1 (AS1)

	8th	7th	6th
ALL OFF	0	0	0
AS1-10N	1	0	0
1-20N	0	1	0
1-30N	1	1	0
1-40N	0	0	1
1-50N	1	0	1
ALL OFF	0	1	1
ALL OFF	1	1	1

3. Analog switch 2 (AS2)

	11th	10th	9th
ALL OFF	0	0	0
AS2-10N	1	0	0
2-20N	0	1	0
2-30N	1	1	0
2-40N	0	0	1
2-50N	1	0	1
ALL OFF	0	1	1
ALL OFF	1	1	1

5. Analog switch 4 (AS4)

	15th	14th
ALL OFF	0	0
AS4-1ON	1	0
4-20N	0	1
ALL OFF	1	1

4. Analog switch 3 (AS3)

	13th	12th
ALL OFF	0	0
AS3-10N	1	0
3-20N	0	1
ALL OFF	1	1

6. Analog switch 5 (AS5)

	LSB
OFF	0
AS5ON	1

Sequence Timing Chart

(1) A/D conversion

(2) DATA Input

About the Input Voltage VX

Given the applied voltage into 41 pin is VX in the diagram above,

 $VX = \frac{TGND - TX}{TGND - TR} \bullet VR T = Pulse width$

TGND, TR, and TX can be respectively expressed with nGND/f, nR/f, and nX/f, (f is clock frequency; nGND, nR, nX is count values for clock frequency f.)

If these are substituted for an upper formula,

$$VX = \frac{nGND - nX}{nGND - nR} \bullet VR$$

VX can be expressed in this way for the number of counters.

Package Dimensions

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for the intersect on the information in this document.
 The document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for the tendology described in this document.
 The order data. diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date their document with a pay with use. When exporting the products or the tendology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 All information included in this document, but has product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date their document, when the set of the date their document in the date their document.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a set descondure sequired by Renesas and the date disclosed through explicitable applications. Renesas products are not designed paylications, and processes are designed by Renesas as subtrate and the applicability of the set assist of the total system before deciding about the applicability of the respect to the indiced on this document. To us should evaluate the information control and the date during the information in this document. Dut should evaluate the information in the

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com