■ Max r _{DS(on)}	= 5.7 m Ω at $~V_{GS}$ = 4.5 V, I_D = 17 A	improve the overall efficiency and to minimize switch node ringing of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low r _{DS(on)} , fast switching speed and body diode reverse recovery performance.				
■ State-of-the	-art switching performance					
Lower output boost efficie	ut capacitance, gate resistance, and gate charge ency					
Shielded aa	ate technology reduces switch node ringing and	Applications				
•	nmunity to EMI and cross conduction	High side switching for high end computing				
RoHS Comp	pliant	High power density DC-DC synchronous buck converter				
Pin 1 To MOSFET	$Dual Cool^{TM} 33 Bottom$ Maximum Ratings T _A = 25 °C unless of	$S = \begin{bmatrix} 1 & 0 \\ 0 & 0 $				
Symbol	Parameter	Ratings Units				
V _{DS}	Drain to Source Voltage	(Note 5) 25 V				
V _{GS}	Gate to Source Voltage	(Note 4) ±12 V				

N-Channel Dual CoolTM 33 PowerTrench[®] MOSFET

February 2016

Symbol	Parameter		Ratings	Units
V _{DS}	Drain to Source Voltage	(Note 5)	25	V
V _{GS}	Gate to Source Voltage	(Note 4)	±12	V
	Drain Current - Continuous (Package limited) T _C = 25 °C		40	
	- Continuous (Silicon Limited) T _C = 25 °C		73	A
D	- Continuous	(Note 1a)	17	A
	- Pulsed		60	
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	29	mJ
D	Power Dissipation $T_{C} = 25 \text{ °C}$		41	w
PD	Power Dissipation $T_A = 25 \degree C$	(Note 1a)	3.0	VV
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency and to minimize switch node

Thermal Characteristics

FAIRCHILD

FDMC8588DC

25 V, 40 A, 5.7 mΩ

■ Dual CoolTM Top Side Cooling PQFN package

Features

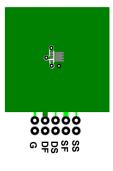
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Top Source)	7.0	
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Bottom Drain)	3.0	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	42	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1b)	105	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1i)	17	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1j)	26	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1k)	12	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
08DC	FDMC8588DC	Dual Cool [™] 33	13 "	12 mm	3000 units

FDMC8588DC N
N-Channel Dual Cool
M
33 PowerTrench [®]
MOSFET

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I_D = 250 μ A , V_{GS} = 0 V	25			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA , referenced to 25 °C		5		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 20 V, V _{GS} = 0 V			1	μA
I _{GSS}	Gate to Source Leakage Current, Forward	V _{GS} = 12 V, V _{DS} = 0 V			100	nA
On Chara	octeristics					
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250 μA	0.8	1.2	1.8	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 µA , referenced to 25 °C		-4		mV/°C
		V _{GS} = 10 V, I _D = 18 A		3.6	5.0	
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 4.5 V, I _D = 17 A		4.1	5.7	mΩ
		V_{GS} = 10 V, I_{D} = 18 A, T_{J} = 125 °C		5.5	7.6	
9 _{FS}	Forward Transconductance	V _{DD} = 5 V, I _D = 17 A		103		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			1695		pF
C _{oss}	Output Capacitance	V _{DS} = 13 V, V _{GS} = 0 V, f = 1 MHz		493		pF
C _{rss}	Reverse Transfer Capacitance			63		pF
R _g	Gate Resistance			0.4		Ω
Switching	g Characteristics					
t _{d(on)}	Turn-On Delay Time			8		ns
t _r	Rise Time	V _{DD} = 13 V, I _D = 17A,		3		ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		25		ns
t _f	Fall Time			2		ns
Q _{g(TOT)}	Total Gate Charge at 4.5V			12		nC
Q _{gs}	Total Gate Charge	V _{DD} = 13 V, I _D = 17 A		3.0		nC
Q _{gd}	Gate to Drain "Miller" Charge	1		3.0		nC


V	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 2 A$ (Note 2)	0.7	1.2	V
V _{SD} Source to Drain Diode Forward voltage		$V_{GS} = 0 V, I_S = 17 A$ (Note 2)	0.8	1.2	V
t _{rr}	Reverse Recovery Time	I _F = 17 A, di/dt = 100 A/μs		25		ns
Q _{rr}	Reverse Recovery Charge			10		nC

Thermal Characteristics

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Top Source)	7.0	
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Bottom Drain)	3.0	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	42	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1b)	105	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1c)	29	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1d)	40	
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	(Note 1e)	19	*CAN/
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1f)	23	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1g)	30	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1h)	79	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1i)	17	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1j)	26	
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	(Note 1k)	12	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1I)	16	

Notes:

1. $R_{\theta,JA}$ is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta,CA}$ is determined by the user's board design.

 a. 42 °C/W when mounted on a 1 in² pad of 2 oz copper

b. 105 °C/W when mounted on a minimum pad of 2 oz copper

c. Still air, 20.9x10.4x12.7mm Aluminum Heat Sink, 1 in² pad of 2 oz copper

d. Still air, 20.9x10.4x12.7mm Aluminum Heat Sink, minimum pad of 2 oz copper

e. Still air, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper

f. Still air, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper

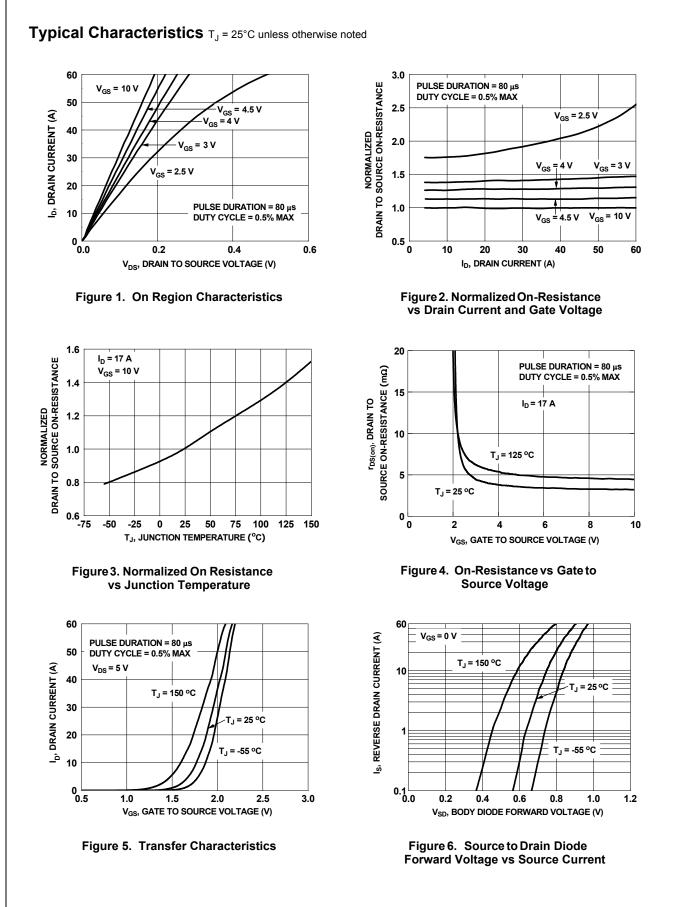
g. 200FPM Airflow, No Heat Sink,1 in² pad of 2 oz copper

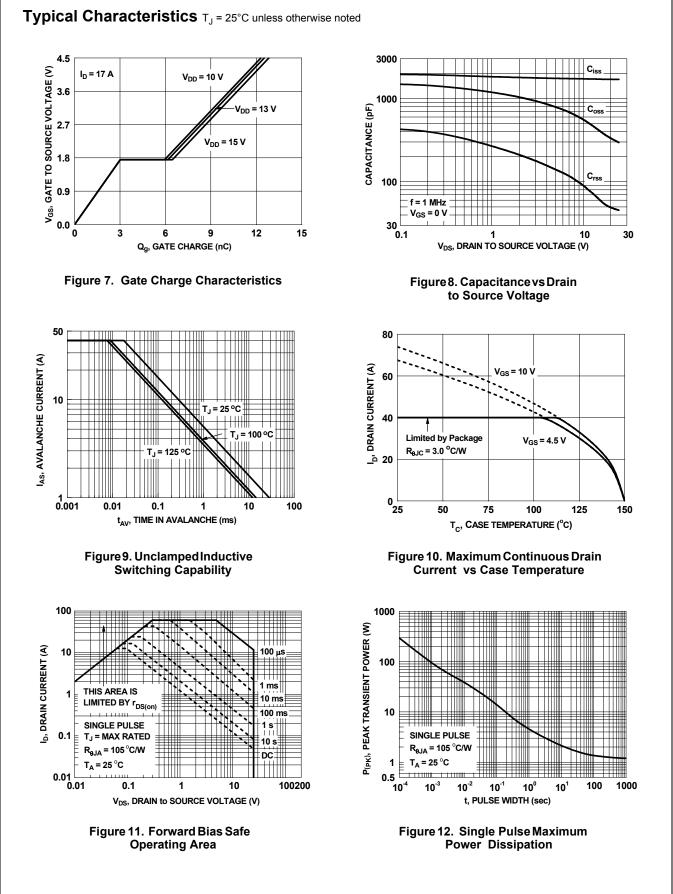
h. 200FPM Airflow, No Heat Sink, minimum pad of 2 oz copper

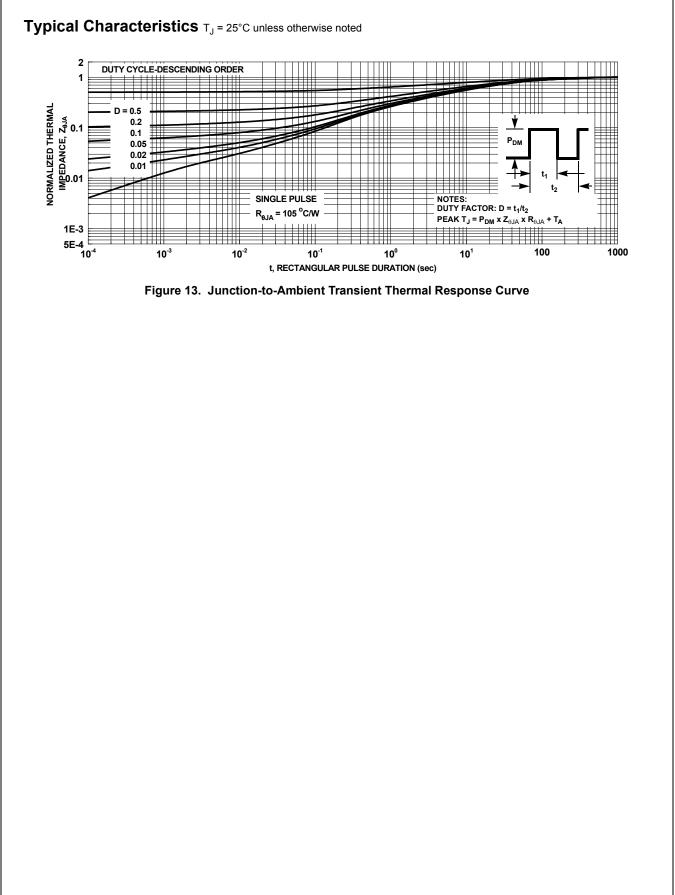
i. 200FPM Airflow, 20.9x10.4x12.7mm Aluminum Heat Sink, 1 in² pad of 2 oz copper

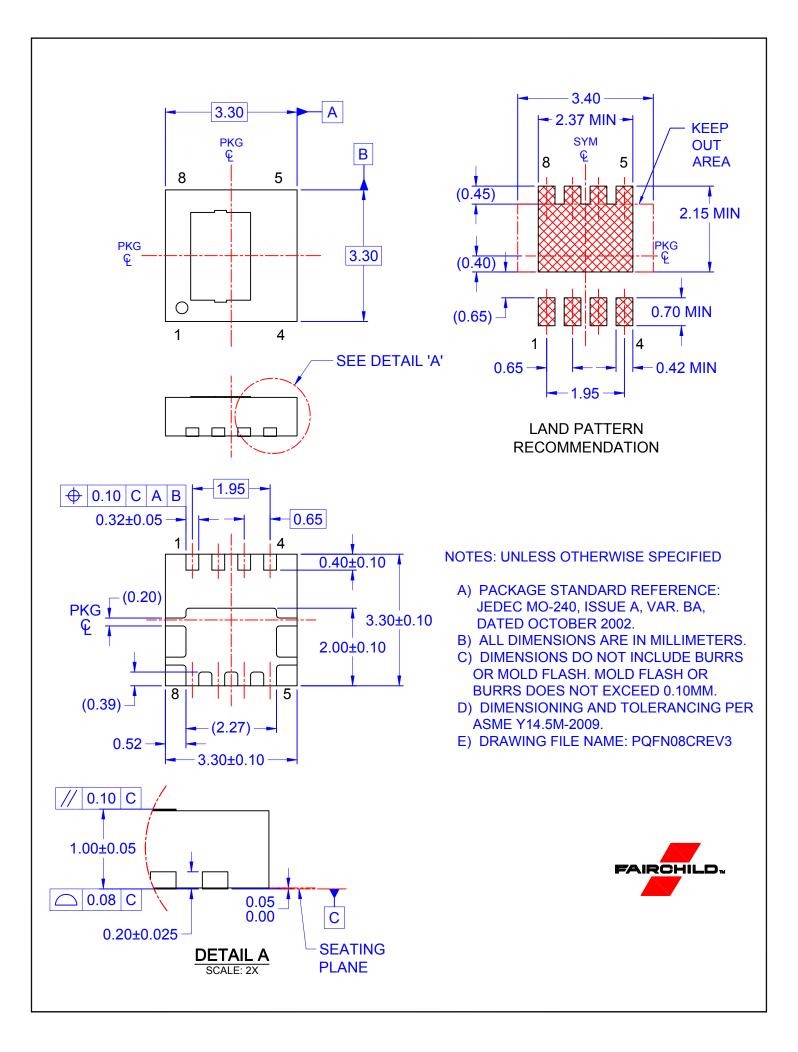
j. 200FPM Airflow, 20.9x10.4x12.7mm Aluminum Heat Sink, minimum pad of 2 oz copper

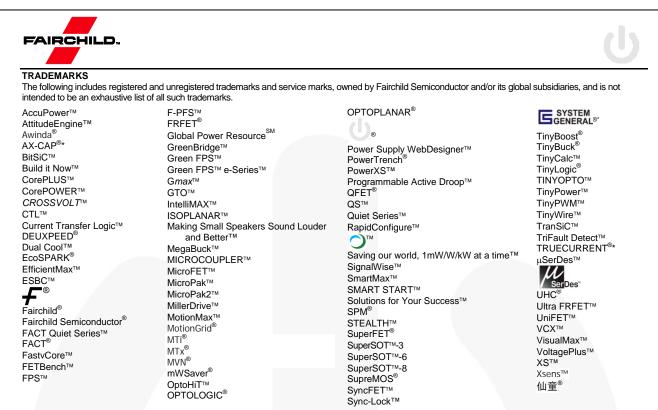
k. 200FPM Airflow, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper


I. 200FPM Airflow, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper


2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.


3. E_{AS} of 29 mJ is based on starting T_J = 25 °C, L = 1.2 mH, I_{AS} = 7 A, V_{DD} = 23 V, V_{GS} = 10V. 100% tested at L = 0.1 mH, I_{AS} = 16 A.


4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.


5. The continuous Vds rating is 25V; however, a pulse of 28 V peak voltage for no longer than 3ns duration at 500KHz frequency can be applied.

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms					
Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev. 177