

PART NUMBER 4013ABCA-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

INCH-POUND MIL-M-38510/51F 8 October 2004

SUPERSEDING MIL-M-38510/51E 30 April 1984

MILITARY SPECIFICATION MICROCIRCUITS, DIGITAL, CMOS, FLIP-FLOPS AND LATCHES, MONOLITHIC SILICON

Reactivated after 8 Oct. 2004 and may be used for new and existing designs and acquisitions.

This specification is approved for use by all Departments and Agencies of the Department of Defense.

The requirements for acquiring the product herein shall consist of this specification sheet and MIL-PRF 38535

- 1. SCOPE
- 1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon, CMOS, logic microcircuits. Two product assurance classes and a choice of case outlines, lead finishes, and radiation hardness assurance (RHA) are provided and are reflected in the complete Part or Identifying Number (PIN). For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535 (see 6.3).
 - 1.2 Part or identifying number (PIN). The PIN is in accordance with MIL-PRF-38535 and as specified herein.
 - 1.2.1 <u>Device types.</u> The device types are as follows:

Device type	<u>Circuit</u>
01	Dual D-type edge triggered flip-flop
02	Dual J-K master slave flip-flop
03	Quad three-state R/S latch
51	Dual D-type edge triggered flip-flop
52	Dual J-K master slave flip-flop
53	Quad three-state R/S latch

- 1.2.2 Device class. The device class is the product assurance level as defined in MIL-PRF-38535.
- 1.2.3 Case outlines. The case outlines are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
Α	GDFP5-F14 or CDFP6-F14	14	Flat pack
С	GDIP1-T14 or CDIP2-T14	14	Dual-in-line
D	GDFP1-F14 or CDFP2-F14	14	Flat pack
Е	GDIP1-T16 or CDIP2-T16	16	Dual-in-line
F	GDFP2-F16 or CDFP3-F16	16	Flat pack
N	CDFP4-T16	16	Flat pack
Т	CDFP3-F14	14	Flat pack
X <u>1</u> / <u>2</u> /	GDFP5-F14 or CDFP6-F14	14	Flat pack, except A dimension equals 0.1" (2.54 mm) max
Y <u>1</u> / <u>2</u> /	GDFP1-F14 or CDFP2-F14	14	Flat pack, except A dimension equals 0.1" (2.54 mm) max
Z <u>1</u> / <u>2</u> / —	GDFP2-F16 or CDFP3-F16	16	Flat pack, except A dimension equals 0.1" (2.54 mm) max

^{1/} As an exception to MIL-PRF-38535, appendix A, for case outlines X, Y, and Z only, the leads of bottom brazed ceramic packages (i.e., configuration 2 of case outlines A, D, or F) may have electroless nickel undercoating which is 50 to 200 microinches (1.27 to 5.08 μm) thick provided the lead finish is hot solder dip (i.e., finish letter A) and provided that, after any lead forming, an additional hot solder dip coating is applied which extends from the outer tip of the lead to no more than 0.015 inch (0.38 mm) from the package edge.

Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAC, P.O. Box 3990, Columbus, OH 43218-3990, or email CMOS@dscc.dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at www.dodssp.daps.mil.

AMSC N/A FSC 5962

^{2/} For bottom or side brazed packages, case outlines X, Y, and Z only, the S₁ dimension may go to .000 inch (.00 mm) minimum.

1.3 Absolute maximum ratings.

Supply voltage range (V_{DD} - V_{SS}): Device types 01, 02, 03 Device types 51, 52, 53 Input current (each input) Input voltage range Storage temperature range (T_{STG}) Maximum power dissipation (P_D) Lead temperature (soldering, 10 seconds) Thermal resistance, junction to case (θ_{JC}) Junction temperature (T_{J})	-0.5 V dc to +18.0 V dc \pm 10 mA $(V_{SS}$ - 0.5 V) \leq V _I \leq (V _{DD} + 0.5 V) -65° to +175°C 200 mW $+300^{\circ}$ C See MIL-STD-1835
1.4 Recommended operating conditions.	
Device types 01, 02, 03: Supply voltage range (V_{DD} - V_{SS})	$0.0 \text{ V to } 0.85 \text{ V dc } @ \text{ V}_{DD} = 5.0 \text{ V dc}$ $0.0 \text{ V to } 2.0 \text{ V dc } @ \text{ V}_{DD} = 10.0 \text{ V dc}$ $0.0 \text{ V to } 2.1 \text{ V dc } @ \text{ V}_{DD} = 12.5 \text{ V dc}$
Device types 51, 52, 53:	
Supply voltage range (V_{DD} - V_{SS})	4.5 V dc to 15.0 V dc $V_{OL} = 10\% V_{DD}, V_{OH} = 90\% V_{DD}$ $0.0 \text{ V to } 1.5 \text{ V dc} @ V_{DD} = 5.0 \text{ V dc}$ $0.0 \text{ V to } 2.0 \text{ V dc} @ V_{DD} = 10.0 \text{ V dc}$ $0.0 \text{ V to } 4.0 \text{ V dc} @ V_{DD} = 15.0 \text{ V dc}$
Input high voltage range (V _{IH})	$\begin{array}{l} V_{OL} = 10\% \; V_{DD}, \; V_{OH} = 90\% \; V_{DD} \\ 3.5 \; V \; to \; 5.0 \; V \; dc \; @ \; V_{DD} = 5.0 \; V \; dc \\ 8.0 \; V \; to \; 10.0 \; V \; dc \; @ \; V_{DD} = 10.0 \; V \; dc \\ 11.0 \; V \; to \; 15.0 \; V \; dc \; @ \; V_{DD} = 15.0 \; V \; dc \end{array}$
Load capacitance	

2. APPLICABLE DOCUMENTS

2.1 <u>General</u>. The documents listed in this section are specified in sections 3, 4, or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 <u>Specifications and Standards</u>. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

(Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or www.dodssp.daps.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this document and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).
- 3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- 3.3 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein. Although eutectic die bonding is preferred, epoxy die bonding may be performed. However, the resin used shall be Dupont 5504 Conductive Silver Paste, or equivalent, which is cured at 200°C ±10°C for a minimum of 2 hours. The use of equivalent epoxies or cure cycles shall be approved by the qualifying activity. Equivalency shall be demonstrated in data submitted to the qualifying activity for verification.
 - 3.3.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.3.2 Logic diagram. The logic diagram shall be as specified on figure 2.
 - 3.3.3 Truth tables. The truth tables shall be as specified on figure 3.
- 3.3.4 <u>Switching waveforms and test circuits</u>. The switching waveforms and test circuits shall be as specified on figures 4 through 16.
- 3.3.5 <u>Schematic circuits</u>. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity or preparing activity upon request.
 - 3.3.6 <u>Case outlines.</u> The case outlines shall be as specified in 1.2.3.
 - 3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
- 3.5 <u>Electrical performance characteristics</u>. Unless otherwise specified, the electrical performance characteristics are as specified in table I, and apply over the full recommended ambient operating temperature range.
- 3.6 <u>Electrical test requirements.</u> The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
 - 3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
- 3.7.1 <u>Radiation hardness assurance identifier</u>. The radiation hardness assurance identifier shall be in accordance with MIL-PRF-38535 and 4.5.4 herein.
- 3.8 <u>Microcircuit group assignment.</u> The devices covered by this specification shall be in microcircuit group number 38 (see MIL-PRF-38535, appendix A).

TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol	Condition	Device	Lim	its	Unit	
		$V_{SS} = 0 V$		type	Min	Max]
		-55°C ≤ T _A ≤					
Docitive elemning input to	\/	Unless otherwis		All		1.5	V dc
Positive clamping input to V _{DD}	V _{IC (POS)}	$T_A = +25$ °C, $V_{DD} = GI$ $V_{SS} = Open, Output =$		All		1.5	v dc
V DD		$I_{IN} = 1 \text{ mA}$	- Орен				
Negative clamping input to	V _{IC (NEG)}	$T_A = +25^{\circ}C, V_{DD} = O_{I}$	pen	All		-6.0	V dc
V _{SS}	, ,	V _{SS} = GND, Output =					
		$I_{IN} = -1 \text{ mA}$	1				
Quiescent supply current	I _{SS}	Any combination of inputs	$V_{DD} = 15 \text{ V dc}$	01, 02, 03		-2.5	μА
			$V_{DD} = 18 \text{ V dc}$	51, 52, 53		-2.5	
				0 1, 0 = , 0 0			
High level output voltage	V _{OH1}	$V_{DD} = 5 \text{ V dc}, I_{OH} = -1$	75 u A	01, 02, 03	4.5		V dc
(SET-RESET input)	- 0111	(see table III)	το μιτ	01, 00,			
<u> </u>	V _{OH2}	$V_{DD} = 5 \text{ V dc}, I_{OH} = 0.$.0 A	01, 02, 03	4.95		
		(see table III)		, ,			
,	V _{OH3}	$V_{DD} = 12.5 \text{ V dc}, I_{OH} =$	= 0.0 A	01, 02, 03	11.25		
		(see table III)					
High level output voltage	V _{OH4}	$V_{DD} = 5 \text{ V dc}, I_{OH} = 0.$		01, 02	4.95		V dc
(DATA input)		Any one input = V_{IL} , (
	V _{OH5}	$V_{DD} = 15 \text{ V dc}, I_{OH} = 0$	51, 52, 53	14.95			
		(see table III)					
	V_{OH6}	$V_{DD} = 15 \text{ V dc}, I_{OH} = 0$	51, 52	14.95			
		(see table III)					
Low level output voltage	V_{OL1}	$V_{DD} = 5 \text{ V dc}, I_{OL} = 0.$	01, 02, 03		0.50	V dc	
(SET-RESET input)		(see table III)					
	V_{OL2}	$V_{DD} = 5 \text{ V dc}, I_{OL} = 0.0 \text{ A}$		01, 02, 03		0.05	
	.,,	(See table III)		04 00 00		4.05	
	V_{OL3}	$V_{DD} = 12.5 \text{ V dc}, I_{OL} = (Sac table III)$	= 0.0 A	01, 02, 03		1.25	
I am lavel autout valta an	\ /	(See table III)	0.4	04.00		0.05	
Low level output voltage (DATA input)	V_{OL4}	$V_{DD} = 5 \text{ V dc}, I_{OL} = 0.$ (See table III)	0 A	01, 02		0.05	
(DATA input)	\/	, , ,	20.4	E4 E0 E0		0.05	-
	V_{OL5}	$V_{DD} = 15 \text{ V dc}, I_{OL} = 0$ (See table III)	J.U A	51, 52, 53		0.05	
, l-	V _{OL6}	$V_{DD} = 15 \text{ V dc}, I_{OL} = 0$	η η Δ	51, 52		0.05	1
	A OFP	(See table III)	7.0 A	31, 32		0.03	
Input high voltage	V _{IH1}	$V_{DD} = 5 \text{ V dc}$		51, 52, 53	3.5		V dc
	• 1111	$V_0 = 4.5 \text{ V}$		3., 32, 33			
		$ I_0 \le 1\mu A$				<u></u>	<u> </u>
,	V_{IH2}	$V_{DD} = 10 \text{ V dc}$		51, 52, 53	7.0		V dc
		$V_0 = 9.0 \text{ V}$					
,	V _{IH3}	$ I_O \le 1\mu A$ $V_{DD} = 15 \text{ V dc}$		51, 52, 53	11.0		V dc
	v iH3	$V_{DD} = 15 \text{ V dC}$ $V_{O} = 13.5 \text{ V}$		31, 52, 53	11.0		v dc
·		$1 \text{ V} \cap = 13.3 \text{ V}$					

See footnotes at end of the table.

TABLE I. <u>Electrical performance characteristics</u> – Continued.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Test	Symbol	Conditi	Device	Limi	its	Unit	
Imput low voltage					type	Min	Max	
Input low voltage								
Vo = 0.5 V dc	Input low voltage	V _{IL1}		vice opcomed	51, 52,		1.5	V dc
$ \begin{array}{ c c c c c } \hline V_{IL2} & V_{op} = 10 \ V \ dc \\ V_{o} = 1.0 \ V \ dc \\ V_{o} = 1.0 \ V \ dc \\ \hline V_{o} = 1.0 \ V \ dc \\ \hline V_{o} = 1.0 \ V \ dc \\ \hline V_{o} = 1.5 \ V \ dc$					53			
$ V_{O} = 1.0 \ V \ dc \\ I_{O} \leq I_{DA} A $		V., -			51 52		3.0	V do
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		VIL2					3.0	v uc
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
Coutput low (sink) current Coutput low (sink) current Coutput low (sink) current Coutput low (sink) current Coutput low (sink) Coutput low (si		V_{IL3}					4.0	V dc
Output low (sink) current IoL1 V _{DD} = 5 V dc Vot = 0.4 V dc 51, 52, 53 0.36 mA IoL2 V _{DD} = 15 V dc Vot = 1.5 V dc Vot = 1.5 V dc Vot = 1.5 V dc 51, 52, 53 2.4 mA Output high (source) current IoH1 V _{DD} = 5 V dc VoH = 4.6 V dc 51, 52, 53 -0.36 mA Input leakage current, high Input leakage current, high Input leakage current, low Input leakage current,					55			
Current Vol. = 0.4 V dc 53	Output low (sink)	I _{OL1}				0.36		mA
Output high (source)	1				53			
Coutput high (source) Current		I _{OL2}	$V_{DD} = 15 \text{ V dc}$			2.4		mA
Current VoH = 4.6 V dc 53					53			
Input leakage current, high Input leakage current, high 2/ Measure inputs sequentially VDD = 15 V dc VDD = 15 V dc O1, 02 100 NA	Output high (source)	I _{OH1}				-0.36		mA
Input leakage current, high 2 Measure inputs sequentially V _{DD} = 15 V dc 01, 02 100 03 45 100 53 45 100 53 45 100	current		-	V _{OH} = 4.6 V dc				A
Input leakage current, high 2		I _{OH2}			-2.4		MA	
Sequentially Sequ	Input lookaga current high		Measure inputs sequentially	l				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mput leakage current, mgm			$V_{DD} = 15 \text{ V dc}$	01, 02		100	nA
Input leakage current, low Input leakage Input leak		<u>2</u> /			03		45	
Input leakage current, low IIIL 2				$V_{DD} = 18 \text{ V dc}$	51, 52		100	
Sequentially Sequ					53		45	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input leakage current, low	I _{IL}		$V_{DD} = 15 \text{ V dc}$	01, 02		-100	nA
$\begin{array}{ c c c c c c c c }\hline V_{DD} = 18 \ V \ dc & 51,52 & -100 \\\hline \hline S3 & -45 & \\\hline \\ Input capacitance & C_i & V_{DD} = 0 \ V \ dc, \ f = 1 \ MHz, \\ T_A = 25^{\circ}C & \\\hline \\ Propagation delay times, high level to low level & t_{PHL} & V_{DD} = 5 \ V \ dc, \ C_L = 50 \ pF & \\\hline \hline & 01 & 13 & 750 & ns \\\hline & 02 & 13 & 865 & \\\hline & 03 & 10 & 370 & \\\hline & 52 & 13 & 865 & \\\hline & 51 & 13 & 750 & \\\hline & 53 & 10 & 370 & \\\hline \\ Propagation delay times, low level to high level & t_{PLH} & \\\hline & 12 & pF & \\\hline & 02 & 13 & 865 & \\\hline & 51 & 13 & 750 & \\\hline & 53 & 10 & 370 & \\\hline & 01 & 13 & 825 & ns \\\hline & 02 & 13 & 940 & \\\hline & 03 & 10 & 245 & \\\hline & 52 & 13 & 940 & \\\hline & 51 & 13 & 825 & \\\hline & 51 & 13 & 825 & \\\hline \end{array}$		<u>2</u> /		$V_{DD} = 18 \text{ V dc}$	03		-45	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					51, 52			
$ T_{A} = 25^{\circ}C $					53		-45	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input capacitance	Ci		MHz,	All		12	pF
high level to low level 02	Propagation delay times.	tou		50 pF	01	13	750	ns
Propagation delay times, low level to high level 103		UPHL .	- 55 5 7 40, 56 -	F.				1
Propagation delay times, low level to high level to high level to high 245 52 13 865 51 13 750 53 10 370 01 13 825 ns 02 13 940 03 10 245 52 13 940 51 13 825								
Propagation delay times, low level to high level The border of the b								1
Propagation delay times, low level to high level The bound of the								
Propagation delay times, low level to high level 13 825 ns								1
02 13 940 03 10 245 52 13 940 51 13 825	Propagation delay times,	to u	1					ns
03 10 245 52 13 940 51 13 825		¥FLFI						
52 13 940 51 13 825								
51 13 825								
53 10 245								
					53	10	245	

See footnotes at end of table.

TABLE I. <u>Electrical performance characteristics</u> – Continued.

Test	Symbol	Conditions 1/	Device	Lin	nits	Unit
		$V_{SS} = 0 V$	type	Min	Max	
		$-55^{\circ}C \le T_A \le +125^{\circ}C$ Unless otherwise specified				
Propagation delay high to	t _{PHL}	$V_{DD} = 5.0 \text{ V dc}, C_{L} = 50 \text{ pF}$	01	13	825	ns
low level (Set or reset)	(R) or (S)	ι υσυ τ ασ, σε σο μ.	02	13	900	
(22.2)			03	10	370	
			51	13	825	
			52	13	900	
			53	10	370	
Propagation delay low to	t _{PLH}	$V_{DD} = 5.0 \text{ V dc}, C_{L} = 50 \text{ pF}$	01	13	630	ns
high level (Set or reset)	(R) or (S)	ν _{DD} = 3.3 ν ασ, σ _L = 33 μ.	02	13	600	
g 1010. (0010. 1001)			03	10	245	
			51	13	630	
			52	13	600	
			53	10	245	
Transition time high to	t _{THL}	$V_{DD} = 5.0 \text{ V dc}, C_L = 50 \text{ pF}$	01	10	450	ns
low levels		1 0.0 v do, ot = 00 pi	02	10	490	
			03	10	245	
			51	10	450	
			52	10	490	
			53	10	245	
Transition time low to	t _{TLH}	$V_{DD} = 5.0 \text{ V dc}, C_{L} = 50 \text{ pF}$	01	10	525	ns
high levels		V _{DD} = 3.0 V do, O _L = 30 pr	02	10	490	
			03	10	360	
			51	10	525	
			52	10	490	
			53	10	360	
Maximum clock	f _{CL(max)}	$V_{DD} = 5.0 \text{ V dc}, C_{L} = 50 \text{ pF}$	01		1	MHz
	,	V _{DD} = 3.0 V do, O _L = 30 pr	02		700	KHz
frequency			51		1	MHz
			52		700	KHz
Maximum clock	t _{TLHCL}	V _{DD} = 5.0 V dc	01		10	μS
transition times		$C_L = 50 \text{ pF}$	02			·
		σ <u>ε</u> σσ μ.	51			
			52			
Minimum clock pulse	tp	$V_{DD} = 5.0 \text{ V dc}$	01	300		ns
width	-ρ	$C_L = 50 \text{ pF}$	02			
width		SE	51			
			52			
Set-up times	t _{SHL} ,	$V_{DD} = 5.0 \text{ V dc}$	01	225		ns
	t _{SLH}	C _L = 50 pF	02			
			51			
			52			
Hold times	t _{HLH} ,	$V_{DD} = 5.0 \text{ V dc}$	01	225		ns
Tiola iiiio	t _{HHL}	C _L = 50 pF	02			
	-1.1112	1	51			
			52			
	l —	V	03		340	ns
Output enable time	tpzu.	V DD = 5.0 V CC				
Output enable time	t _{PZH} , t _{PZI}	$V_{DD} = 5.0 \text{ V dc}$ $C_1 = 50 \text{ pF}$	53		240	
Output enable time Output disable time	$t_{PZH}, \ t_{PZL}$	$V_{DD} = 5.0 \text{ V dc}$ $C_L = 50 \text{ pF}$ $V_{DD} = 5.0 \text{ V dc}$				ns

 $[\]underline{1}'$ Complete terminal conditions shall be a specified in table III. $\underline{2}'$ Input current at one input node.

Device types	01, 51	02, 52	03, 53
Case outlines	A, C, D, T, X, Y	E, F, N, Z	E, F, N, Z
Terminal number	Terminal	Terminal	Terminal
	symbol	symbol	symbol
1	Q1	Q2	Q4
2	Q1	Q2	Q1
3	CL1	CL2	R1
4	R1	R2	S1
5	D1	K2	EN
6	S1	J2	S2
7	V_{SS}	S2	R2
8	S2	V_{SS}	V_{SS}
9	D2	S1	Q2
10	R2	J1	Q3
11	CL2	K1	R3
12	Q2	R1	S3
13	Q2	CL1	NC
14	V_{DD}	Q1	S4
15		Q1	R4
16		V_{DD}	V_{DD}

FIGURE 1. <u>Terminal connections</u>.

DEVICE TYPES 01 AND 51 SET O-CL MASTER SECTION ★ SLAVE SECTION TG TG $\overline{\mathsf{CL}}$ TG >>--- ā BUFFERED OUTPUTS O-RESET DEVICE TYPES 02 AND 52 SETO MASTER SECTION CL SLAVE SECTION 1 TG TG 2 CL 1 2 CL $\overline{\mathsf{CL}}$ CL TG ↑2 CL TG O-RESET

NOTE: One of two identical flip flops shown.

FIGURE 2. Logic diagram.

DEVICE TYPES 03 AND 53

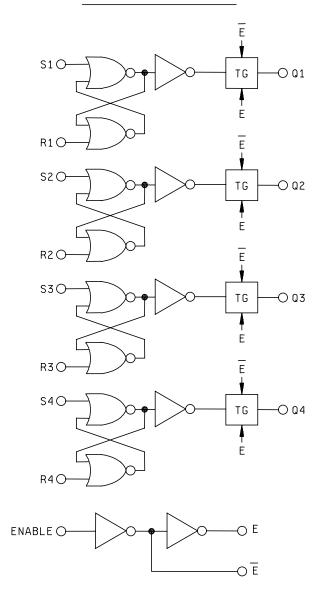


FIGURE 2. <u>Logic diagram</u> – Continued.

MIL-M-38510/51F

Device types 01 and 51

Ir	puts	1		Outputs			
CL	D	R	S	Ø	ΙØ		
↑	L	Ш	Ш	Ш	Η		
↑	Н	L	L	Ι	L		
\downarrow	Χ	L	L	Q	lα	No Change	
Х	Χ	Ι	Ш	Ш	Н		
Х	Χ	L	Τ	Ι	L		
Х	Χ	Η	Η	Ι	Н		

H = High level voltage

L = Low level voltage

X = Irrelevant

 \uparrow = Low to high transition of the clock

 \downarrow = High to low transition of the clock

Device types 02 and 52

	*tr	**	' tn+1	Outputs				
CL	J	K	S	R	Q	Q	Q	
↑	Н	Χ	L	L	L	Н	L	
↑	Х	L	L	L	Н	Н	L	
↑	L	Χ	L	L	L	L	Н	
↑	Χ	Ι	L	L	Н	L	Н	
↓	Χ	Χ	L	L	Χ	Q	lα	No Change
Х	Χ	Χ	Н	L	Χ	Н	L	
Х	Χ	Χ	L	Ι	Χ	L	Н	
Х	Χ	Χ	Н	Ι	Χ	Н	Н	

H = High level voltage

L = Low level voltage

X = Irrelevant

 \uparrow = Low to high transition of the clock

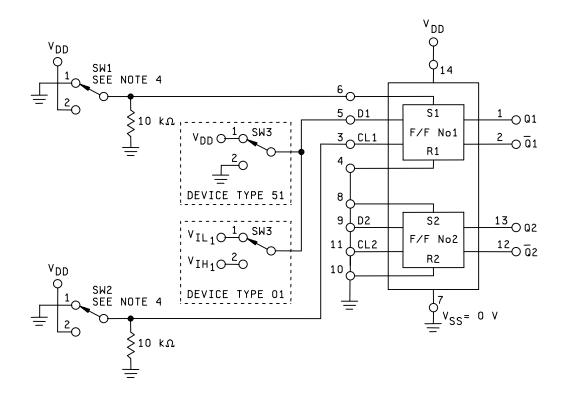
 \downarrow = High to low transition of the clock

* = tn refers to the time interval before the positive clock pulse transition.

** = tn+1 refers to the interval after the positive clock pulse transition.

Device types 03 and 53

Inputs			Output				
S	R	Е	Q				
Χ	Χ	L	Open circuit high impedance				
L	L	Н	No change				
Н	L	Н	Н				
L	Н	Н	L				
Н	Н	Н	Δ High				


H = High level voltage

L = Low level voltage

X = Don't care

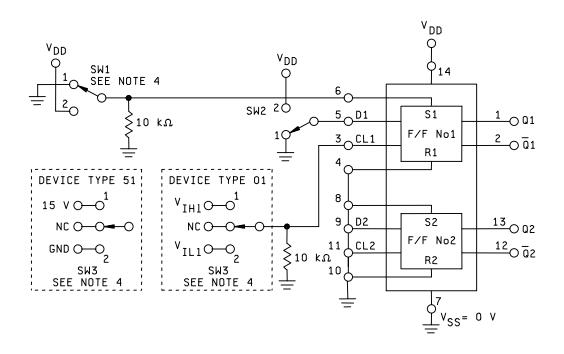
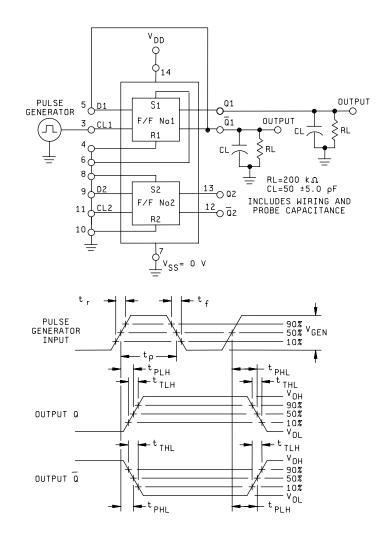

 Δ = Dominated by S = 1 input (high)

FIGURE 3. Truth tables.

- To implement test numbers 63, 64, 65, and 66 (device type 01), and 47, 48, 49, and 50 (device type 51), place SW3 in the V_{IL1} position. Set the flip-flop by momentarily placing SW1 in position 2. Following the return of SW1 to position 1, momentarily place SW2 in position 2. Measure the output levels at Q and Q to insure compliance with table III limits.
- To implement test numbers 67, 68, 69, and 70 (device type 01), and 51, 52, 53, and 54 (device type 51), set the flip-flop as described in note 1. Place SW3 in the V_{IH1} position. Momentarily place SW2 in position 2. Following the return of SW2 to position 1, measure the output level at Q and Q to insure compliance with table III limits.
- 3. Identical measurements are obtained from either flip-flop number 1 or flip-flop number 2.
- 4. SW1 and SW2 are momentary contact switches.

FIGURE 4. Data input high and low test circuit for device types 01 and 51.


1. Test numbers 71 thru 74 (device type 01) and 55 thru 58 (device type 51) implemented by the following step by step sequence:

		SW1 POS	SW2 POS	SW3 POS	Q OUT	Q OUT	
STEP	1	2*	1	-	"1"	"0"	
1	2	1	1	1*	"0"	"1"	* Denotes momentary
	3	1	2	1*	"1"	"0"	contact
	4	1	1	1*	"0"	"1"	
	5	1	2	2*	"0"	"1"	
	6	1	2	2*	"0"	"1"	
\	7	1	2	1*	"1"	"0"	
STEP	8	1	1	1*	"0"	"1"	

Monitor either Q or \overline{Q} of the flip-flop under test. Compliance with table III limits is established by a change of logic levels at the Q or \overline{Q} output in going from step 1 to step 2, step 2 to step 3, step 3 to step 4, step 6 to step 7, and step 7 to step 8, while no change shall occur in going from step 4 to step 5 or step 5 to step 6.

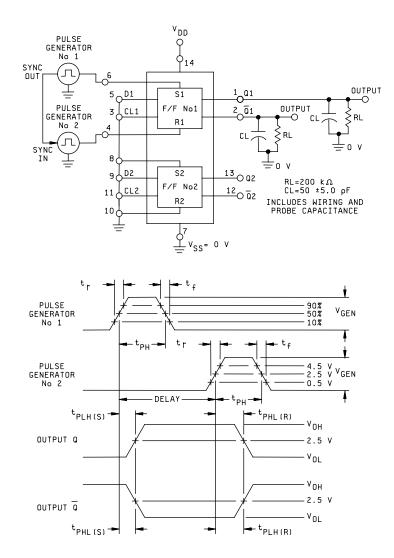

- 2. Identical measurements are obtained from flip-flop number 1 and flip-flop number 2.
- 3. $V_{OH} = 1$ and $V_{OL} = 0$.
- 4. SW1 and SW3 are momentary contact switches.

FIGURE 5. Clock input high and low test circuit for device types 01 and 51.

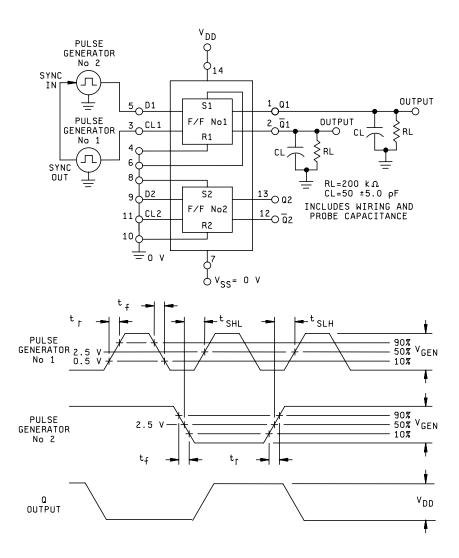
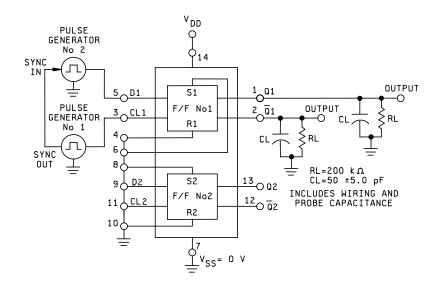
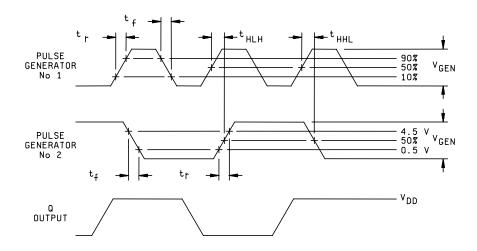
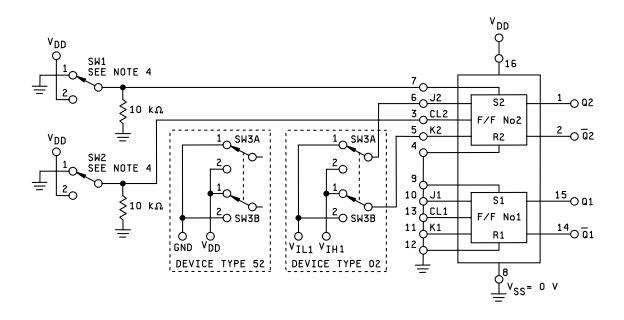

- 1. The pulse generator has the following characteristics: $V_{gen} = V_{DD} \pm 1\%$, duty cycle = 50% t_f and $t_f = 20 \pm 2.0$ ns and pulse repetition period = 5.0 \pm 0.5 μs .
- 2. Identical switching measurements are obtained from flip-flop number 1 and flip-flop number 2.
- 3. For f_{CL} and t_p , the pulse repetition period is variable.
- 4. Requirements for max clock frequency (f_{CL}), max clock rise time and minimum clock pulse width are established by setting the parameter to the limits given in table III and observing proper output state changes.

FIGURE 6. Switching time test circuit and waveforms for device types 01 and 51.


- 1. The pulse generators have the following characteristics: $V_{gen} = V_{DD} \pm 1\%$, $t_{PH} = 1.0 \pm 0.1 \mu s$, t_f and $t_f = 20 \pm 2.0$ ns and pulse repetition period = $5.0 \pm 0.5 \mu s$.
- 2. The reset pulse delay is 2.5 \pm 0.25 $\mu s.$
- 3. Identical switching measurements are obtained from flip-flop number 1 and flip-flop number 2.


FIGURE 7. Set-reset switching test circuit and waveforms for device types 01 and 51.

- 1. Pulse generator number 1 has the following characteristics: $V_{gen} = V_{DD} \pm 1\%$, duty cycle = 50%, t_r and $t_f = 20 \pm 2.0$ ns and pulse repetition period = 5.0 ± 0.5 μ s.
- 2. Pulse generator number 2 has the following characteristics: $V_{gen} = V_{DD} \pm 1\%$, duty cycle = variable, t_r and $t_f = 20 \pm 2.0$ ns and pulse repetition period = twice that of pulse generator number 1.
- 3. Identical switching measurements are obtained from flip-flop number 1 and flip-flop number 2.
- Requirements for setup times are considered met if proper output state changes occur with t_{SETUP} set to that given in the limits column of table III.


FIGURE 8. Setup time test circuit and waveforms for device types 01 and 51.

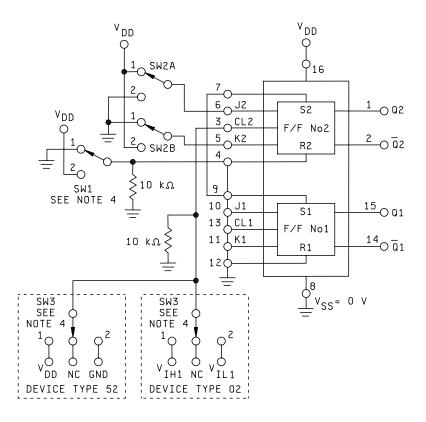
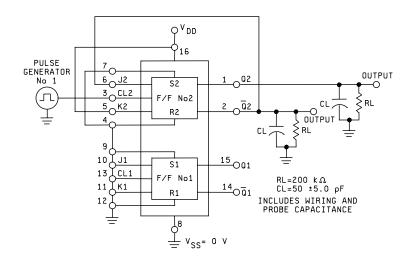
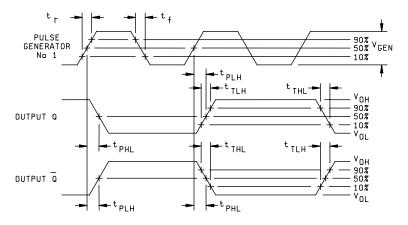

- 1. Pulse generator number 1 has the following characteristics: $V_{gen} = V_{DD} \pm 1\%$, duty cycle = 50%, t_f and $t_f = 20 \pm 2.0$ ns and pulse repetition period = $5.0 \pm 0.5 \ \mu s$.
- 2. Pulse generator number 2 has the following characteristics: $V_{gen} = V_{DD} \pm 1\%$, duty cycle = variable, t_r and $t_f = 20 \pm 2.0$ ns and pulse repetition period = twice that of pulse generator number 1.
- 3. Identical switching measurements are obtained from either flip-flop number 1 or flip-flop number 2.
- 4. Requirements for hold times are considered met if proper output state changes occur with t_{HOLD} set to that given in the limits column of table III.

FIGURE 9. Hold time test circuit and waveforms for device types 01 and 51.

- To implement test numbers 59 thru 62 (device type 02) and 43 thru 46(device type 52), place SW3 in position 1. Set the flip-flop by momentarily placing SW1 in position 2. Following the <u>return of SW1 to position 1</u>, momentarily place SW2 in position 2. Measure the output levels at Q and Q to insure compliance with table III limits.
- To implement test numbers 63 thru 66 (device type 02) and 47 thru 50 (device type 52), set the flip-flop
 as described in note 1. Place SW3 in position 2. Momentarily place SW2 in position 2. Following the
 return of SW2 to position 1, measure the output levels at Q and Q to insure compliance with table III
 limits.
- 3. Identical measurements are obtained from either flip-flop number 1 or flip-flop number 2.
- 4. SW1 and SW2 are momentary contact switches.

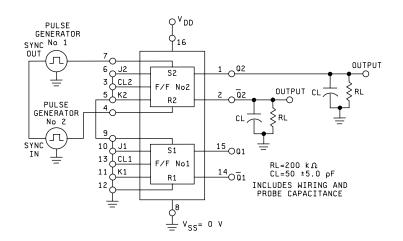
FIGURE 10. J and K input voltage high and low test circuit for device types 02 and 52.

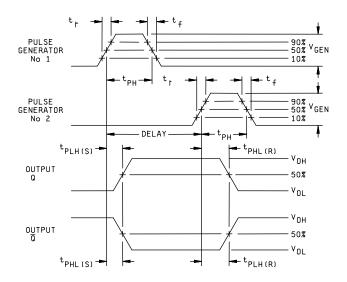

1. Test numbers 67 thru 70 (device type 02) and 51 thru 54 (device type 52) are implemented by the following step by step sequence:


		CVA/A	OMO	OMA	_	_
		SW1	SW2	SW3	Q	Q
		POS	POS	POS	OUT	OUT
STEP	1	2	1	-	"0"	"1"
	2	1	1	1	"1"	"0"
	3	1	2	1	"0"	"1"
	4	1	1	2	"0"	"1"
	5	1	2	2	"0"	"1"
▼	6	1	1	1	"1"	"0"
STEP	7	1	2	1	"0"	"1"

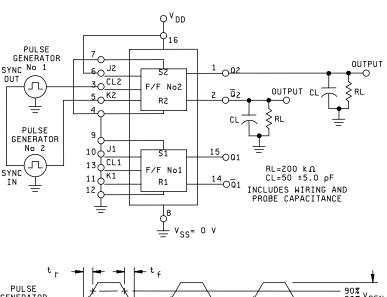
Monitor either Q or \overline{Q} of the flip-flop under test. Compliance with table III limits is established by a change of logic levels at the Q or \overline{Q} output in going from step 1 to step 2, step 2 to step 3, step 5 to step 6, and step 6 to step 7, while no change shall occur in going from step 3 to step 4 to step 5.

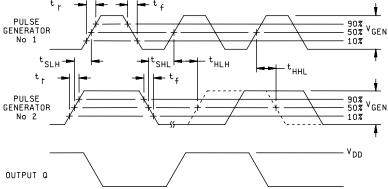
- 2. Identical measurements are obtained from either flip-flop number 1 or flip-flop number 2.
- 3. $V_{OH} = "1"$ and $V_{OL} = "0"$.
- 4. SW1 and SW3 are momentary contact switches.


FIGURE 11. Clock input high and low test circuit for device types 02 and 52.

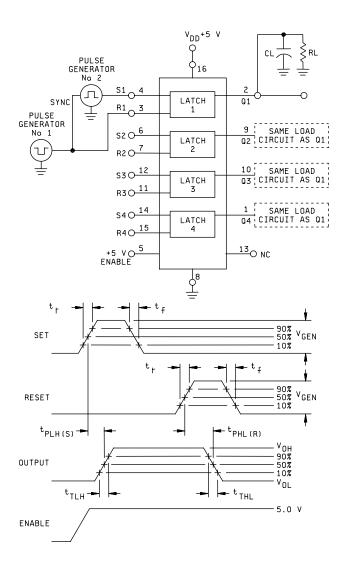


- 1. The pulse generator has the following characteristics: $V_{gen} = V_{DD} \pm 1.0\%$, duty cycle = 50%, t_r and $t_f = 20 \pm 2.0$ ns and pulse repetition period = 5.0 ± 0.5 μs .
- 2. Identical switching measurements are obtained from flip-flop number 1 and flip-flop number 2.
- 3. For K input test, connect terminal 6 to terminal 16 and terminal 5 to terminal 1. Similar connection are required for measurements on flip-flop number 2.
- 4. For f_{CL} and t_p, the pulse repetition period is variable.
- 5. Requirements for max clock frequency (fcl.), max clock rise time and minimum clock pulse width are established by setting the parameter to the limit given in table III and observing proper output state changes.


FIGURE 12. Switching time test circuit and waveforms for device types 02 and 52.



- 1. The pulse generators have the following characteristics: $V_{GEN} = V_{DD} \pm 1.0$ %, $t_{PH} = 1.0 \pm 0.1$ μs , t_{r} and $t_{f} = 20 \pm 2.0$ ns and pulse repetition period = 5.0 ± 0.5 μs .
- 2. The reset pulse delay is 2.5 \pm 0.25 $\mu s.$
- 3. Identical switching measurements are obtained from flip-flop number 1 and flip-flop number 2.


FIGURE 13. Set-reset switching test circuit and waveforms for device types 02 and 52.

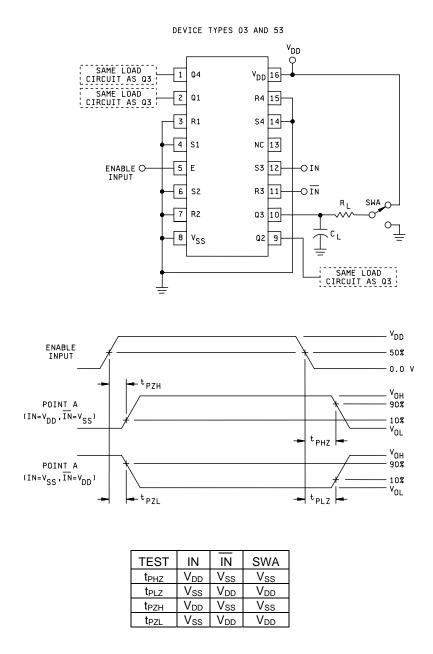

- 1. Pulse generator number 1 has the following characteristics: $V_{gen} = V_{DD} \pm 1\%$, duty cycle = 50%, t_r and $t_f = 20 \pm 2.0$ ns and pulse repetition period = 5.0 \pm 0.5 μ s.
- 2. Pulse generator number 2 has the following characteristics: $V_{gen} = V_{DD} \pm 1\%$, duty cycle = variable, t_f and $t_f = 20 \pm 2.0$ ns and pulse repetition period = 5.0 ± 0.5 µs.
- 3. Identical switching measurements are obtained from flip-flop number 1 and flip-flop number 2.
- 4. For J input test, connect terminal 5 to terminal 16 and terminal 6 to pulse generator number 2. Similar terminal connections are required for measurement on flip-flop number 2.
- 5. Requirements for setup times and hold times are established by setting the parameter to the limit given in table III and observing proper output state changes.

FIGURE 14. Setup and hold time test circuit and waveforms for device types 02 and 52.

- 1. Pulse generator number 1 characteristics: t_r and $t_f \le 20$ ns, $t_P = 1.0$ μ s, $V_{GEN} = 0$ to 5 V, PRR = 200 kHz.
- 2. Pulse generator number 2 characteristics: t_r and $t_f \le 20$ ns, $t_P = 1.0$ μ s, delayed 2.0 μ s after pulse number 1, $V_{GEN} = 0$ to 5 V, PRR = 200 kHz.
- 3. Load conditions: $C_L = 50 \text{ pF}$, $R_L = 200 \text{ k}\Omega$ (includes probe and jig impedances).
- 4. Identical switching measurements are obtained from latch 2, latch 3, and latch 4.

FIGURE 15. Switching time test circuit and waveforms for device types 03 and 53.

- 1. Identical switching measurements are obtained from latch 1, latch 2, latch 3, and latch 4.
- 2. Load conditions: C_L = 50 pF and R_L = 1 k Ω (includes probe and jig impedances).

FIGURE 16. Enable propagation delay time test circuit and waveforms for device types 03 and 53.

4. VERIFICATION

- 4.1 <u>Sampling and inspection.</u> Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- 4.2 <u>Screening.</u> Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and conformance inspection. The following additional criteria shall apply:
 - a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Delete the sequence specified as interim (pre-burn-in) electrical parameters through interim (post-burn-in) electrical parameters of table IA of MIL-PRF-38535 and substitute lines 1 through 7 of table II herein.
 - c. Burn-in (method 1015 of MIL-STD-883).
 - (1) Unless otherwise specified in the manufacturers QM plan for static tests (test condition A), ambient temperature (T_A) shall be +125°C minimum. Test duration for each static test shall be 24 hours minimum for class S devices and in accordance with table I of method 1015 for class B devices.
 - i. For static burn-in I, all inputs shall be connected to 0.0 V.
 - ii. For static burn-in II, all inputs shall be connected to V_{DD}.
 - iii. Except for V_{DD} and V_{SS} , each terminal shall be connected through a resistor whose value is 2 k Ω to 47 k Ω . The actual measured value of the resistor selected shall not exceed $\pm 20\%$ of its branded value due to use, heat or age.
 - iv. Output may be open or connected to $V_{DD}/2$.
 - v. V_{DD} = 12.5 V minimum, 15 V maximum for device types 01, 02, 03. V_{DD} = 15 V minimum, 18 V maximum for device types 51, 52, 53. $V_{DD}/2 = V_{DD}/2 \pm 1.0$ %. V_{SS} = 0.0 V.
 - (2) Unless otherwise specified in the manufacturers QM plan for dynamic test (test condition D), ambient temperature shall be +125°C minimum. Test duration shall be in accordance with table I of method 1015.
 - i. Except for V_{DD} and V_{SS} , the terminals shall be connected through a resistor whose value is 2 k Ω to 47 k Ω . The actual measured value of the resistor selected shall not exceed $\pm 20\%$ of its branded value due to use, heat or age.
 - ii. Input signal requirements: Square wave, 50% duty cycle; 25 kHz < PRR < 1 MHz; t_{TLH} and t_{THL} < 1 μ s. Voltage level: Minimum = V_{SS} 0.5 V, +10% V_{DD} ; Maximum = V_{DD} + 0.5 V, -10% V_{DD} .
 - iii. $V_{DD}=12.5$ V minimum, 15 V maximum for device types 01, 02, 03. $V_{DD}=15$ V minimum, 18 V maximum for device types 51, 52, 53. $V_{DD}/2=V_{DD}/2\pm1.0$ V for all devices. $V_{SS}=0.0$ V.

- d. Interim and final electrical test parameters shall be as specified in table II.
- e. For class S devices, post dynamic burn-in, or class B devices, post static burn-in, electrical parameter measurements may, at the manufacturer's option, be performed separately or included in the final electrical parameter requirements.

TABLE II. Electrical test requirements.

Line	MIL-PRF-38535		Class S device	<u>1</u> /		Class B device	<u>1</u> /
no.	test requirements	Ref.	Table III	Table IV	Ref.	Table III	Table IV
		par.	Subgroups	delta	par.	subgroups	delta
			<u>2</u> /	limits		<u>2</u> /	limits
				<u>3</u> /			<u>3</u> /
1	Interim electrical		1			1	
	parameters						
2	Static burn-in I	4.2c					
	(method 1015)	4.5.2					
3	Same as line 1		1	Δ			
4	Static burn-in II	4.2c			4.2c	<u>4</u> /	
	(method 1015)	4.5.2			4.5.2		
5	Same as line 1		1*	Δ	4.2e	1*	Δ
6	Dynamic burn-in	4.2c					
	(method 1015)	4.5.2					
7	Same as line 1	4.2e	1*	Δ			
8	Final electrical		1*, 2, 3, 7, 9			1*, 2, 3, 7, 9	
	parameters						
	(method 5004)						
9	Group A test	4.4.1	1, 2, 3, 4, 7, 8,		4.4.1	1, 2, 3, 4, 7,	
	requirements		9, 10, 11			9, 10, 11	
	(method 5005)						
10	Group B test	4.4.2	1, 2, 3, 7, 8, 9,	Δ			
	when using		10, 11				
	method 5005						
	QCI option					4.00	
11	Group C end-				4.4.3	1, 2,3	Δ
	point electrical						
	parameters						
12	(method 5005)	4.4.4	1 2 2		4.4.4	1 2 2	
12	Group D end-	4.4.4	1, 2, 3		4.4.4	1, 2, 3	
	point electrical parameters						
	(method 5005)						
	(เกษแบน 5005)						

- 1/ Blank spaces indicate tests are not applicable.
- 2/ * indicates PDA applies to subgroup 1 (see 4.2.1).
- $\underline{3}$ / Δ indicates delta limits shall be required only on table III subgroup 1, where specified, and the delta values shall be computed with reference to the previous interim electrical parameters.
- 4/ The device manufacturer may at his option either perform delta measurements or within 24 hours after burn-in (or removal of bias) perform the final electrical parameter measurements.

4.2.1 Percent defective allowable (PDA).

- a. The PDA for class S devices shall be 5 percent for static burn-in and 5 percent for dynamic burn-in, based on the exact number of devices submitted to each separate burn-in.
- b. Static burn-in I and II failure shall be cumulative for determining the PDA.
- c. The PDA for class B devices shall be in accordance with MIL-PRF-38535 for static burn-in. Dynamic burn-in is not required.
- d. Those devices whose measured characteristics, after burn-in, exceed the specified delta (Δ) limits or electrical parameter limits specified in table III, subgroup 1, are defective and shall be removed from the lot. The verified failures divided by the total number of devices in the lot initially submitted to burn-in shall be used to determine the percent defective for the lot and the lot shall be accepted or rejected based on the specified PDA.
- 4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.
- 4.3.1 <u>Qualification extension</u>. When authorized by the qualifying activity, if a manufacturer qualifies to a 51, 52, or 53 device type which is manufactured identically to a 01, 02, or 03 device type on this specification, then the 01, 02, or 03 device type may be part I qualified by conducting only group A electrical tests and any electrical tests specified as additional group C subgroups and submitting data in accordance with MIL-PRF-38535.
- 4.4 <u>Technology Conformance inspection (TCI).</u> Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.5).
- 4.4.1 <u>Group A inspection.</u> Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
 - a. Tests shall be performed in accordance with table II herein.
 - b. Subgroups 5, 6, and 8 of MIL-STD-883, method 5005 shall be omitted.
 - c. Subgroup 4 (C_I measurement) shall be measured only for initial qualification and after process or design changes that may affect input capacitance. Capacitance shall be measured between the designated terminal and V_{SS} at a frequency of 1 MHz.
 - d. Subgroups 9 and 11 shall be measured only for initial qualification and after process or design changes which may affect dynamic performance.
 - e. When device types 01 through 03 are qualified by extension (see 4.3.1), these device types will be inspected (QCI) according to the requirements for device types 51 through 53, respectively.
 - 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.
- 4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein. Delta limits shall apply only to subgroup 1 of group C inspection and shall consist of tests specified in table IV herein.
 - b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - c. When device types 01 through 03 are qualified by extension (see 4.3.1), these device types will be inspected (QCI) according to the requirements for device types 51 through 53, respectively.

TABLE III. Group A inspection for device type 01.

Symbol	MIL-	Cases						Te	rminal c	onditions	s <u>1</u> /						Measured			Test	limits			Uni
	STD- 883	A,C,D, T,X,Y	Q1	Q1	CLK1	RS1	D1	SET1	V _{SS}	SET2	D2	RS2	CLK2	Q2	Q2	V_{DD}	terminal	Subgr		Subgr T _A = 1		Subgi	oup 3	
	method	Test	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Min	Max	Min	Max	Min	Max	
V _{IC(pos)}		no.						1mA								GND	SET1							V
ю(роз)		2				1mA										"	RS1		"					"
		3 4			1mA		1mA									"	D1 CLK1	1.5	"					"
	1	5			IIIIA					1mA						"	SET2		"					"
		6										1mA				"	RS2		"					"
		7 8									1mA		1mA			"	D2 CLK2		"					
IC(neg)		_						-1mA	GND				1111/				SET1							
		10				-1mA	4		"								RS1		"					
		11 12			-1mA		-1mA		44								D1 CLK1	-6	"					
	9	13							**	-1mA							SET2		"					
		14							"		4 4	-1mA					RS2		"					
		15 16							"		-1mA		-1mA				D2 CLK2		"					
I _{SS} <u>2</u> /	3005	17			15V	GND	GND	GND	"	GND	GND	GND	GND			15V	None							μ
	"	18 19			GND 15V	"	"	"	**	"	"	"	"			"	None None		"		"			
	"	20			15V	"	15V	44	**	66	"	**	66			"	V _{SS}	25	"	-2.5	"			
	"	21			GND	"	"	"	**	66	44	**	66			"	V_{SS}		"		"			•
	"	22 23			15V 15V	"	" GND	"	"	"	"	"	££			"	None None		"		"			
	"	23			GND	"	"	"	**	66	44	**	66			"	V _{SS}		"		"			
	"	25			15V	**	"	"	"	**	"	"	"			"	None		"		"			
	"	26			15V GND	15V 15V	15V	15V	"	"	"	"	66			"	V _{SS}		"		"			
	"	27 28			GND "	GND	15V GND	15V GND	"	"	"	"	15V			"	V _{SS} None		"		"			
	"	29			"	"	"	"	"	"	"	"	GND			"	None		"		"			
	"	30			"	"	"	"	"	"	45\/	"	15V			"	None		"		"			
	"	31 32			"	"	"	"	"	"	15V "	"	15V GND			"	V_{SS} V_{SS}		"		"			
	"	33			"	"	"	"	"	"	"	"	15V			"	None		"		"			
	"	34			"	"	"	"	"	"	GND "	"	15V			"	None		"		"			,
	"	35 36			"	"	"	"	"	66	"	**	GND 15V			"	V _{ss} None		"		"			
	"	37			"	"	"	"	"	15V	15V	15V	15V			"	V _{SS}		"		"			4
	"	38	1 0/		"	"	"	"	"	15V	15V	15V	GND "			" 5 0) /	V _{SS}	4.5	ű		"			4
V_{OH1}	3006	39 40	I _{OH} <u>3</u> /	I _{OH}	"	V _{IL1} <u>7</u> / V _{IH1}	"	V _{IH1} <u>4</u> / V _{IL1}	"	GND GND	GND "	GND GND	"			5.0V	<u>Q</u> 1 Q1	4.5		"		"		
	"	41		IOH	"	GND	u	GND	"	V _{IH1}	"	V _{IL1}	66		I _{OH}	"	Q2	"	4.5	"	4.5	"		
.,	"	42			"	GND	"	GND	"	V_{IL1}	"	V_{IH1}	"	I _{OH}	-	"	Q2	4.05	4.5	ű	4.5	u	V	
V_{OH2}	"	43 44			"	V _{IL1} V _{IH1}	"	V _{IH1} V _{IL1}	"	GND GND	"	GND GND				"	<u>Q1</u> Q1	4.95		"		"		
	"	45			"	GND	"	GND	"	V_{IH1}	"	V_{IL1}	66			"	Q2 Q2	"	4.9	5 "	4.95	"		
1/	"	46			"	GND	"	GND	"	V _{IL1}	"	V _{IH1}	"			" 40.5\/	Q2	" 44.05		"		"	u	
V_{OH3}	"	47 48			"	V _{IL2} <u>8</u> / V _{IH2}	"	V _{IH2} <u>5</u> / V _{IL2}	"	GND GND	"	GND GND				12.5V	<u>Q1</u> Q1	11.25		"		"		"
	"	49			"	GND	u	GND	"	V _{IH2}	"	V _{IL2}	66			"	<u>Q</u> 2	"	11.2		11.2			"
	"	50	l		"	GND	"	GND	"	V_{IL2}	"	V_{IH2}	"			"	Q2	"	l	"		"	"	

TABLE III. Group A inspection for device type 01 – Continued.

Symbol	MIL-	Cases						Te	rminal c	onditions	<u>1</u> /						Measured			Test	limits			Unit
	STD-	A,C,D, T,X,Y	Q1	Q1	CLK1	RS1	D1	SET1	Vss	SET2	D2	RS2	CLK2	Q2	Q2	V_{DD}	terminal		roup 1		roup 2		roup 3	Ī
	883 method		1	0	0	4	-	-	7	0	_	40	44	40	40	4.4	_		25°C		125°C	I _A = ·	-55°C Max	_
	metriou	Test no.	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Min	Max	Min	Max	IVIIN	IVIAX	
V _{OL1}	3007	51	I _{OL} 6/		GND	V _{IH1}	GND	V _{IL1}	GND	GND	GND	GND	GND			5.0V	<u>Q1</u> Q1							V
	"	52		I_{OL}	"	V_{IL1}	"	V_{IH1}	"	GND	"	GND	"			"			"		"		"	"
	"	53			"	GND GND	"	GND GND	"	V _{IL1}	"	V _{IH1}	"	١.	I _{OL}	"	<u>Q2</u> Q2	0.5	"	0.5		0.5	"	"
V _{OL2}	íí .	54 55			"	V _{IH1}	"	V _{IL1}	"	V _{IH1} GND	"	V _{IL1} GND	"	I _{OL}		"	Q2 <u>Q1</u>		-				-	"
V OL2	"	56			"	V _{IL1}	"	V _{IH1}	"	GND	"	GND	"			"	Q1		"		"		"	"
	"	57			"	GND	"	GND	"	V _{IL1}	"	V _{IH1}	"			"	Q2	.05	"	.05	"	.05	"	"
	"	58			"	GND	4	GND	"	V _{IH1}	"	V _{IL1}	"			"	Q2	.05	"	.05	"	.05	"	"
V_{OL3}	"	59			"	V_{IH2}	"	V_{IL2}	"	GND	"	GND	"			12.5V	<u>Q1</u> Q1						"	"
	"	60			"	V _{IL2}	"	V _{IH2}	"	GND	"	GND	"			"			"		. "		-	"
	"	61 62			"	GND GND	"	GND GND	"	V_{IL2} V_{IH2}	"	V_{IH2}	"			"	<u>Q2</u> Q2	1.2	§ "	1.25	" "	1.2	5 "	"
V _{OH4}	3006	63			9/	"	V _{IL1}	9/	66	GND	**	GND	"			5.0V	Q1	4.95		4.95				"
V _{OL4}	3007	64			9/	"	V _{II 1}	9/	"	GND	"	66	"			"	Q1				0.05		0.05	"
V _{OH4}	3006	65				"	GND	GND	66	<u>9</u> /	V _{IL1}	66	<u>9</u> /			es.	Q2	4.95		4.95	4.95	•		"
V_{OL4}	3007	66			GND	"	GND	GND	"	9/	V _{IL1}	"	9/			"	Q2	0.0	5					"
V _{OL4}	3007	67		GNI	D <u>9</u> /	"	V_{IH1}	<u>9</u> /	"	GND	GND	"	GND			"	Q1		0.05		0.6595	•	0.05	"
V_{OH4}	3006	68			<u>9</u> /	"	V_{IH1}	<u>9</u> /	"	GND	GND	"	GND			"	Q1	4.9050	5	4.9505		0.0		íí
V_{OL4}	3007	69				"	GND	GND	66	<u>9</u> /	V_{IH1}	"	<u>9</u> /			66	Q2				0.05		0.05	"
V_{OH4}	3006	70				"	GND	GND	"	9/	V _{IH1}	"	<u>9</u> /			"	Q2	4.95		4.95	4.95	•		"
V _{ICL1}				GNI	10/	"	<u>10</u> /	<u>10</u> /	"	GND	GND	"	GND			"	CLK1, <u>10</u> /	0.0	V _{IH1}		V_{IH1}		V_{IH1}	"
V _{ICL1}		72		GNI	0 10/	"	10/	10/	"	GND 40/	GND	"	GND				CLK1, 10/	V _{IL1}	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V _{IL1}	4.95	V _{IL1}	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	"
V_{ICL2} V_{ICL2}	71	74			GND GND	"	GND GND	GND GND	"	<u>10</u> / 10/	<u>10</u> / 10/	"	<u>10</u> / 10/			"	CLK2, <u>10</u> / CLK2, 10/	V _{IL1}	V_{IH1}	V _{II 1}	V_{IH1}	V _{II 1}	V_{IH1}	"
I _{IH1}	3010	75			15.0V	15.0V	15.0V	15.0V	"	15.0V	15.0V	15.0V	15.0V		1	15.0V	All inputs	V IL1	800	V IL1		V IL1	\vdash	nA
11/	73				. 0.0 7	.0.0 0	.0.0 7	.0.0 0		70.0 V	.0.0 0	.0.0 0	.0.01			10.0 V	together							",
I _{IH2}	"	76			"	"	"	"	"	"	"	"	**			"	ČLK1							"
	"	77			"	"	"	"	"	"	"	"	"			"	RS1	400		460				"
	"	78			"	"	"	"	"	"	"	"	"			"	D1	100	.0 "	100	.0 "			"
	"	79 80			"	"	"	"	"	"	"	"	"			"	SET1 SET2		"		"			"
	"	81			"	"	"	"	"	"	"	"	"			"	D2		"		"			"
	"	82			"	"	"	"	"	"	"	"	"			"	RS2		"		"			"
	"	83			"	"	"	"	"	"	"	"	"			"	CLK2		"		"			**

TABLE III. Group A inspection for device type 01 – Continued.

Symbol	MIL-	Cases						Te	rminal c	onditions	s 1/						Measured			Test	limits			Unit
	STD-	A,C,D,	Q1	Q1	CLK1	RS1	D1	SET1	V _{SS}	SET2	D2	RS2	CLK2	Q2	Q2	V_{DD}	terminal	Subgr			roup 2	Subgi	roup 3	
	883	T,X,Y	α.			1.01	Di	0		OLIZ	DZ		OLIVE					$T_A =$		$T_A =$	125°C		-55°C	
	method	Test no.	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Min	Max	Min	Max	Min	Max	
I _{IL1} 11/	3009	84			GND	GND	GND	GND	GND	GND	GND	GND	GND			15.0V	All inputs together							nA
I _{IL2}	"	85			44	"	"	"	"	"	66	66	"			"	CLK1	-800						"
	"	86			"	"	"	"	"	"	"	"	"			"	RS1	-100	" 0.0 "		"			"
	"	87 88			"	"	"	"	"	"	"	"	"			"	D1 SET1	-100	J.U "	-100	0.0 "			"
	"	89			"	"	"	"	"	"	"	**	"			"	SET1		"		"			"
	"	90			"	"	"	"	"	"	"	"	"			"	D2		"		"			"
	"	91			"	"	"	"	"	"	"	"	"			"	RS2		"		"			"
	"	92			"	"	"	"	"	"	"	"	"			"	CLK2		"		"			"
																		Subgr						
																		T _A =						
Ci	3012	93	l		<u>12</u> /				GND	l	l					GND	CLK1	IVIIN	Max			1 1		pF
Ci	3012	93			12/	12/			GND "							GIND "	RS1		"					pr "
	"	95				<u></u> /	12/		"							"	D1	40	"					"
	"	96					_	<u>12</u> /	"							"	SET1	12	"					"
	"	97							"	<u>12</u> /						44	SET2		66					44
	"	98							"		<u>12</u> /	407				"	D2		"					"
	"	99 100							"			<u>12</u> /	12/			"	RS2 CLK2							"
		100	l							l	l		12/			l	OLINZ	Subgr	roup 7		Subgro	8 auc		
																		T _A =		T _A =	125°C		-55°C	
																		Min	Max	Min	Max	Min	Max	
Truth	3014	101			5.0V	GND	GND	GND	GND	GND	GND	GND	5.0V			5.0V	None		7					
table	"	102			GND	"	"	"	"	"	"	"	GND			"	None							
test	"	103	L "	H	5.0V 5.0V	"	5.0V	"	"	"	5.0V	"	5.0V 5.0V	H	L "	"	All							
	"	104 105	"	**	GND	"	3.00	"	66	"	3.0 v	66	GND	"	**	44	outputs "							
	"	106	н	L	5.0V	"	"	"	**	"	"	**	5.0V	L	н	"	66							
	"	107	Ľ	Ĥ	5.0V	5.0V	"	"	66	"	"	5.0V	5.0V	H	L	44	"							
	"	108	"	"	GND	"	"	"	**	66	"	**	GND	"	**	44	"							
	"	109	"	"	5.0V	"	"		"			"	5.0V	"	"	"	"		>		notes			
	"	110	H	L "	5.0V	GND "	GND "	5.0V	"	5.0V	GND "	GND "	5.0V GND	L "	H	"	"		(13_/	and <u>14</u> /			
	"	111 112	"	"	GND 5.0V	"	"	"	"	"	"	"	5.0V	"	"	"	"							
	"	113	"	"	5.0V 5.0V	"	"	GND	"	GND	"	**	5.0V 5.0V	"	"	"	"							
	"	114	"	"	GND	"	"	"	"	"	"	"	GND	"	"	"	"							
	"	115	L	Н	5.0V	"	"	"	"	"	"	"	5.0V	Н	L	"	"							
	"	116	Н	"	5.0V	5.0V	"	5.0V	"	5.0V	"	5.0V	5.0V	"	Н	"	"							
	"	117	"	"	GND	"	"	"	"	"	"	"	GND 5.0V	"	"	"	")					
		118			5.0V	-		-					0.07	•					/					

TABLE III. Group A inspection for device type 01 – Continued.

Symbol	MIL-	Cases						Te	rminal co	onditions	s <u>1</u> /						Measured			Test	limits			Unit
	STD- 883	A,C,D, T,X,Y	Q1	Q1	CLK1	RS1	D1	SET1	V _{SS}	SET2	D2	RS2	CLK2	Q2	Q2	V_{DD}	terminal		roup 9	Subgro		Subgro		
	method	Test	1	2	3	4	5	6	7	8	9	10	11	12	13	14		T _A =	25°C Max	$T_A = 1$ Min	Max	T _A = -	Max	
		no.	'	_	3	-	3	O	,	0	9	10	''	12	13	14		IVIIII	IVIAX	IVIIII	IVIAX	IVIIII	IVIAX	
t _{PHL}	3003	119	OUT		IN				GND							5.0V	CLK1 to Q1	13	500	18	750	13	500	ns
	(Fig. 6)	120 121		OUT	IN				"				IN		OUT	"	CLK1 to Q1 CLK 2 to Q2	"	"	"	"	"	"	"
	"	121							**				IN	OUT	001	"	CLK 2 to Q2	"	"	44	"	**	"	**
t _{PHL}	3003	123		OUT				IN	"							"	SET1 to Q1	u	550	"	825	"	550	"
R or S	(Fig. 7)	124	OUT			IN			"							"	RS1 to Q1	"	"	"	"	"	"	"
	"	125 126							"	IN		IN		OUT	OUT	"	SET2 to Q2	"	"	"	"	"	"	"
	0000	_	01.17						"			IIN			001	,,	RS2 to Q2	,,	,,	"	"	"	"	"
t _{PLH}	3003 (Fig. 6)	127 128	OUT	OUT	IN IN				"							"	CLK1 to Q1 CLK1 to Q1	"	"	"	"	"	"	"
	(1 19. 0)	129		001	IIN				66				IN		OUT	"	CLK 2 to Q2	"	"	44	"	66	"	66
	"	130							"				IN	OUT		"	CLK 2 to Q2	"	"	"	"	"	"	"
t _{PLH}	3003	131	OUT					IN	"							"	SET1 to Q1	"	420	"	630	"	420	"
R or S	(Fig. 7)	132		OUT		IN			"						OUT	"	RS1 to Q1	"	"	"	"	"	"	"
	"	133 134							"	IN		IN		OUT	001	"	SET2 to Q2 RS2 to Q2	"	"	"	"	"	"	"
t _{THL}	3004	135	OUT		IN				"					001		"		10	300	14	450	10	300	"
	(Fig. 6)	136		OUT	IN				"							"	<u>Q1</u> Q1	"	"	"	"	"	"	"
	"	137							"				IN		OUT	"	<u>Q2</u> Q2	"	"	"	"	"	"	"
+	3004	138 139		OUT	IN				"				IN	OUT		"		"	350	"	525	"	350	"
t _{TLH}	(Fig. 6)	140	OUT	001	IN				"							"	Q1	"	330	"	323	"	330	"
	(1 19. 0)	141	001		"				**				IN	OUT		44	<u>Q1</u> Q2	"	"	44	**	**	"	**
	"	142							"				IN		OUT	"	Q2	"	"	"	"	"	"	"
f _{CL(max)}	(Fig. 6)	143	OUT		IN				"							"	CLK1							μS
<u>15</u> /	"	144							"				IN		OUT	"	CLK2		0.67		1.0		0.67	**
t _{TLHCL} (Max)	(Fig. 6)	145 146	OUT		IN				"				IN		OUT	"	CLK1 CLK2	1 6 .67	[1.0 15		0.67 10	,	66
(Max) 16/		146											IIN		001		CLKZ	15		15		10		
t _p 17/	(Fig. 6)	147	OUT		IN				"							"	CLK1		15		10		-	ns
P —	"	148							"				IN		OUT	"	CLK2		300		450		300	"
t _{SHL}	(Fig. 8)	149			IN				"				l			"	D1 to CLK1	300	165	450	"	300	,,	"
t _{SHL}	"	150			INI				"		IN		IN			"	D2 to CLK2		"					"
t _{SLH} t _{SLH}	"	151 152			IN	IN			"		IN		IN			"	D1 to CLK1 D2 to CLK2		"	225	"	165	"	"
*SLH		102									1114		11.4				DZ 10 OLNZ							

TABLE III. Gloup A IIISpection for device type of - Continuet	TABLE III.	Group A inspection for device type 01 – Continued
---	------------	---

Symbol	MIL-	Cases						Te	rminal c	onditions	<u>1</u> /						Measured			Test	limits			Unit
	STD-	A,C,D,	Q1	Q1	CLK1	RS1	D1	SET1	V _{SS}	SET2	D2	RS2	CLK2	8	Q2	V_{DD}	terminal	Subgr		Subgro		Subgro		
	883	1,X,Y																$T_A = 1$	25°C	$T_A = 1$	125°C	$T_A = -$	-55°C	
	method	Test	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Min	Max	Min	Max	Min	Max	
		no.																						
t _{HHL}	(Fig. 9)	153			IN				GND							5.0V	D1 to CLK1		150					ns
t _{HHL}	"	154							**		IN		IN			44	D2 to CLK2		"		**		66	"
t _{HLH}	"	155			IN				"							"	D1 to CLK1			225		150		"
t _{HLH}	"	156				IN			**		IN		IN			"	D2 to CLK2		"		"		66	"

- Pins not designated may be "high" level logic, "low" level logic, or open. Exceptions are as follows: V_{IC(pos)} tests, the V_{SS} terminal shall be open; V_{IC(neg)} tests, the V_{DD} terminal shall be open; I_{SS} tests, the output terminals shall be open.
- 2/ Test numbers 17 thru 38 shall be run in sequence.
- 3/ I_{OH} = -0.25 mA at 25°C, -0.175 mA at 125°C, -0.31 mA at -55°C.
- 4/ $V_{IH1} = 3.8 \text{ V}$ at 25°C, 3.6 V at 125°C, 3.95 V at -55°C.
- $5/V_{IH2} = 9.5 \text{ V}$ at 25°C, 9.25 V at 125°C, 9.75 V at -55°C.
- 6/ $I_{OL} = 0.5 \text{ mA}$ at 25°C, 0.35 mA at 125°C, 0.65 mA at -55°C.
- 7/ $V_{IL1} = 1.1 \text{ V at } 25^{\circ}\text{C}, 0.85 \text{ V at } 125^{\circ}\text{C}, 1.35 \text{ V at } -55^{\circ}\text{C}.$
- 8/ $V_{IL2} = 2.8 \text{ V}$ at 25°C, 2.55 V at 125°C, 3.0 V at -55°C.
- 9/ For input conditions, see figure 4.
- 10/ For input voltage conditions, see figure 5.
- 11/ The device manufacturer may, at his option, measure I_{IL} and I_{IH} at 25°C for each individual input or measure all inputs together.
- 12/ See 4.4.1c.
- 13/ Test numbers 101 thru 118 shall be run in sequence and the functional tests shall be performed with V_{IH} and $V_{DD} \le 5.0 \text{ V}$ and $\ge 15.0 \text{ V}$.
- $\underline{14}$ / L = V_{SS} + 0.5 V maximum and H = V_{DD} 0.5 V minimum.
- 15/ The maximum clock frequency (f_{CL}) requirement is considered met if proper output state changes occur with the pulse repetition period set to that given in the limits column.
- 16/ Pulse repetition period = 100 μs, 50 percent duty cycle. The maximum clock transition time (t_{TLHCL}) requirement is considered met if proper output state changes occur with the rise time set to that given in the limits column.
- 17/ The minimum clock pulse width (tp) requirement is considered met if proper output state changes occur with the pulse width set to that given in the limits column.

,	MIL-	Cases							Ter	minal c	ondition	s 1/							Measured			Test	limits			Unit
	STD-	E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal		roup 1	Subgi	roup 2	Subg		
	883	and Z																			25°C		125°C		-55°C	
	test method	Test no.	Q2	Q2	CLK2	RS2	K2	J2	SET2	V_{SS}	SET1	J1	K1	RS1	CLK1	Q1	Q1	V_{DD}		Min	Max	Min	Max	Min	Max	
V _{IC(pos)}		10.							1mA									GND	SET2							V
· IC(pos)		2				1mA												44	RS2		"					"
		3						1mA										"	J2	1.5	"					"
		4					1mA											"	K2		"					"
		5			1mA						4 4							"	CLK2		"					"
		6 7									1mA			1 1				"	SET1 RS1		"					"
		8										1mA		1mA				"	J1		**					"
		9										IIIIA	1mA					"	K1		"					"
		10													1mA			"	CLK1		"					"
$V_{IC(neg)}$		11							-1mA	GND									SET2							"
, 0,		12				-1mA				"									RS2		"					**
		13						-1mA		"									J2	-6	"					"
		14 15			1 mm A		-1mA			"									K2 CLK2		"					"
		16			-1mA					"	-1mA								SET1		"					44
		17								"	-11117			-1mA					RS1		"					"
		18								"		-1mA							J1		"					**
		19								"			-1mA						K1		"					"
		20								"					-1mA				CLK1		"					"
I _{SS} <u>2</u> /		21			GND	15.0V	15.0V	15.0V	GND	"	GND	GND	GND	GND	GND			15.0V	V _{SS}		"		"			μA
		22 23			15.0V 15.0V	15.0V GND	"	**	44	**	"	"	"	"	"			"	None	-0.2	25 "	0.5	-			"
		23			GND	GND "	"	**	**	**	**	"	"	"	"			"	V _{SS} None		"	-2.5	"			"
		25			15.0V	**	"	**	**	**	"	"	"	"	"			**	V _{SS}		**		"			"
		26			"	"	GND	GND	**	**	**	"	"	"	"			"	V _{SS}		"		"			"
		27			"	15.0V	"	"	15.0V	"	"	"	"	"	"			44	Vss		"		"			"
		28			GND	GND	"	"	GND	"	"	15.0V	15.0V	15.0V	"			"	V_{SS}		"		**			"
		29			"	"	"	"	"	"	"	"	"	15.0V	15.0V			"	None		"		"			"
		30			"	"	"	"	"	"	"	"	"	GND	15.0V			"	V _{SS}		"		"			
		31 32			44	**	"	**	**	**	**	"	"	"	GND 15.0V			"	None V _{SS}		**		"			"
		33			"	"	"	**	"	**	**	GND	GND	"	10.0 v			"	VSS		"		"			"
		34			"	"	"	"	"	**	15.0V	"	"	15.0V	"			"	V _{SS}		"		"			"
V_{OH1}	3006	35	I _{OH} 3/		"	V _{IL1} <u>7</u> /	"	"	V _{IH1} <u>4</u> /	"	GND	"	"	GND	GND			5.0V	Q2	4.5						
	"	36		I_{OH}	"	V_{IH1}	"	"	V_{IL1}	"	GND	"	"	GND	"			"	Q2	"		"		"		"
	"	37			"	GND	"	"	GND	"	V _{IH1}	"	"	V _{IL1}	"		I _{OH}	"	<u>Q1</u> Q1	"	4.5	"	4.5	"	V	"
\/	"	38				GND	"		GND		V _{IL1}		"	V _{IH1}	"	I _{OH}			Q1							
V_{OH2}	"	39 40			"	V _{IL1}	"	"	V_{IH1} V_{IL1}	"	GND GND	"	"	GND GND	"			"	<u>Q2</u> Q2	4.95		"		"		"
	"	41			"	V _{IH1} GND	"	**	GND	"	V _{IH1}	"	**	V _{IL1}	"			**	Q2 Q1	"	4.9	5 "	4.9	5 "		"
	"	42			"	GND	"	"	GND	"	V _{IL1}	"	"	V _{IH1}	"			"	<u>Q1</u> Q1	"		"	,	"	"	"
V _{OH3}	"	43			"	V _{IL2} <u>8</u> /	"	"	V _{IH2} <u>5</u> /	"	GND	"	"	GND	"			12.5V	<u>Q2</u> Q2	11.2						
	"	44			"	V_{IH2}	"	"	V_{IL2}	"	GND	"	"	GND	"			"	Q2	5	14.	" DE	11.2	25 "		"
	"	45			"	GND	"	"	GND	"	V _{IH2}	"	"	V_{IL2}	"			"	<u>Q1</u> Q1	"	11.2	25 "	11.2	25 "	"	"
		46			"	GND			GND		V_{IL2}		"	V_{IH2}					Q1	"		"				

TABLE III. Group A inspection for device type 02 – Continued.

Symbol	MIL-	Cases							Ter	minal c	ondition	s 1/							Measured			Test	limits			Unit
	STD-	E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal		roup 1		oup 2	Subgr		
	883	and Z																			25°C	$T_A = 0$		$T_A = -$		1
	test method	Test no.	Q2	Q2	CLK2	RS2	K2	J2	SET2	V_{SS}	SET1	J1	K1	RS1	CLK1	Q1	Q1	V_{DD}		Min	Max	Min	Max	Min	Max	
V _{OL1}	3007	47	I _{OL} 6/		GND	V _{IH1}	GND	GND	V _{IL1}	GND	GND	GND	GND	GND	GND			5.0V	<u>Q2</u> Q2		,,		"		"	V
	"	48		I _{OL}	"	V _{IL1}		"	V _{IH1}	"	GND			GND	"			"		۰.						
	"	49 50			"	GND GND	"	"	GND GND	"	V_{IL1} V_{IH1}	"	"	V _{IH1} V _{II 1}	"	Ioi	I _{OL}	"	<u>Q1</u> Q1	0.5	"	0.5	"	0.5	"	"
V _{OL2}	"	51			"	V _{IH1}	tt.	"	V_{IL1}	и	GND	"	íí.	GND	u	02			<u>Q2</u> Q2							"
	"	52			"	V _{IL1}	"	"	V _{IH1}	"	GND	"	"	GND	"			"	Q2	0.0	.		"			"
	"	53 54			"	GND GND	"	"	GND GND	"	V_{IL1} V_{IH1}	"	"	V _{IH1} V _{II 1}	"		"	"	<u>Q1</u> Q1	0.0	o "	0.0	"	0.0	· "	"
V _{OL3}	"	55			"	V _{IH2}	u	"	V _{IL2}	"	GND	"	"	GND	u				<u>Q2</u>							"
020	"	56			"	V _{IL2}	"	"	V _{IH2}	"	GND	"	"	GND	"			"	Q2		"		"		"	"
	"	57			"	GND	"	"	GND	"	V_{IL2}	"	"	V_{IH2}	"		12.	5∨ "	<u>Q1</u>	1.2	5 "	1.2	5 "	1.25		"
	ee .	58			"	GND	"	"	GND	66	V_{IH2}	"		V_{IL2}	"			"	Q1		"		"		"	"
V _{OH4}	3006	59			<u>9</u> /	íí	V _{IH1}	IL1	<u>9</u> /	es.	GND		cc .	GND				5.0V	Q2	4.95		4.95		4.95		
V _{OL4}	3007	60			<u>9</u> /	"	V _{IH1} V	IL1	<u>9</u> /	"	GND	"	"	"	"			"	Q2		.05		.05	4.0=	.05	"
V _{OH4}	3006	61			GND		GND _V	GND	GND		<u>9</u> /	V_{IL1}	V_{IH1}		<u>9</u> /				Q1	4.95		4.95		4.95		
V _{OL4}	3007	62			GND	"	GND	GND	GND	"	<u>9</u> /	V _{IL1}	V _{IH1}	"	<u>9</u> /			"	<u>Q1</u> Q2		0.5		0.5		0.5	"
V _{OL4}	3007 3006	63 64			<u>9</u> / 9/	"	V _{IL1}	V _{IH1}	<u>9</u> /	"	GND	GND	GND	"	GND GND			"	Q2 Q2	4.955	.05	4.955	.05	4.955	.05	"
V _{OH4}	3006	65			gND	"	GND	GND	_/ GND	"	9/	V _{IH1}	V _{IL1}	"	9/			"	Q2 Q1	4.900	.05	4.905	.05	4.905	.05	"
V _{OL4}	3006	66			GND	"	GND	GND GND	"	"	9/	V _{IH1}	V _{IL1}	íí.	9/			"	Q1 Q1	4.95	.00	4.95	.00	4.95	.00	"
V _{ICL1}	3000	- 00			10/	10/	10/	10/	"	"	GND	GND	GND	"	GND			"	CLK2	4.33	V _{IH1}	4.33	V _{IH1}	4.33	V _{IH1}	"
V _{ICL1}		68			10/	<u>10</u> / 10/	10/	10/	"	"	"	GND	GND	"	GND			"	CLK2	V _{II 1}	VINI	V _{II 1}	* In I	V _{II 1}	VIIII	"
V _{ICL2}					GND	GND	GND	GND	"	"	"	<u>10</u> /	<u>10</u> /	<u>10</u> /	<u>10</u> /			"	CLK1		V_{IH1}		V _{IH1}		V _{IH1}	"
V_{ICL2}	67	70			GND	GND	GND	GND	"	"	"	<u>10</u> /	<u>10</u> /	<u>10</u> /	<u>10</u> /			"	CLK1	V_{IL1}		V_{IL1}		V_{IL1}		"
I _{IH1}	67 3010	71			15.0V	15.0V	15.0V	15.0V	15.0V	**	15.0V	15.0V	15.0V	15.0V	15.0V			15.0V	All		1000					nA
<u>11</u> /	69																		inputs							
Long	"	72			"	"	"	"	"	"	"	"	"	"	"		-	"	together CLK2							"
I _{IH2}	"	73			"	"	"	"	"	"	"	"	"	"	"			"	RS2		"		"			"
	"	74			"	"	"	**	"	**	**	"	**	"	"			"	K2	100	0.0 "	100	.0 "			"
	"	75			"	**	"	**	"	"	**	44	"	"	"			"	J2		"		**			44
	"	76			"	"	"	"	"	"	"	"	"	"	"			"	SET2		"		"			"
	"	77			"	"	"	"		"	"	"	"	"	"			"	SET1		"		"			
	"	78 79			"	"	"	"	"	"	"	"	"	"	"			"	J1 K1		"		"			"
	"	80			"	"	"	"	"	"	"	"	"	"	"			"	RS1		"		"			"
	"	81			"	**	"	"	"	"	"	"	"	"	"			"	CLK1		"		"			"

TABLE III. Group A inspection for device type 02 – Continued.

Symbol	MIL-	Cases							Ter	minal c	ondition	s 1/							Measured			Test	limits			Unit
	STD-	E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subg	roup 1	Subg	roup 2	Subgr	oup 3	
	883	and Z																			25°C		125°C	T _A = -		_
	test method	Test no.	Q2	Q2	CLK2	RS2	K2	J2	SET2	V_{SS}	SET1	J1	K1	RS1	CLK1	Q1	Q1	V_{DD}		Min	Max	Min	Max	Min	Max	
I _{IL1}	3009	82			GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND			15.0V	All		-1000					nA
<u>11</u> /																			inputs							
<u> </u>	"	00			66	"	"	"	"	"	"	"	"	"	"			"	together							u
I _{IL2}	"	83 84			44	66	"	44	**	"	44	"	"	"	"			44	CLK2 RS2		"		**			"
	"	85			"	"	"	"	**	**	44	"	**	"	"			44	K2	-10	0.0	-10	0.0 "			"
	"	86			66	**	"	"	**	**	"	44	"	"	"			"	J2		"		"			"
	"	87			"	"	"	"	"	"	"	"	"	"	"			"	SET2		"		"			"
	"	88 89			"	"	"	"	"	"	"	"	"	"	"			"	SET1 J1		"		"			"
	"	90			**	"	"	"	"	"	"	"	"	"	"			"	K1		"		"			"
	"	91			"	"	"	"	**	**	44	"	**	"	"			44	RS1		"		"			"
	"	92			66	66	££	"	"	"	"	"	"	"	"			"	CLK1		"		"			"
																					roup 4					
																				T _A =	25°C Max					
Ci	3012	93		1	<u>12</u> /	1	1	1		GND				1	1	1	l	1	CLK2	IVIIII	IVIAX					pF
O _i	3012	94			12/	<u>12</u> /				"								"	RS2		"					γ''
	"	95					<u>12</u> /			**							GN		K2	12	44					"
	"	96						<u>12</u> /	401	"								"	J2		"					"
	"	97 98							<u>12</u> /	"	12/							"	SET2 SET1		"					"
	"	99								"	12/	12/						"	J1		"					"
	"	100								**		<u></u>	12/					"	K1		"					**
	"	101								**			_	<u>12</u> /				"	RS1		44					"
	"	102													<u>12</u> /			"	CLK1		- "					"
																					roup 7 25°C	т	Subgi 125°C	oup 8	EE°C	
																				Min	Max	Min	Max	Min	Max	1
Truth	3014	103			5.0V	GND	5.0V	GND	GND	GND	GND	GND	5.0V	GND	5.0V			5.0V	None	IVIIII	IVIAX	IVIIII	IVIAX	IVIIII	IVIAX	
table	"	104			GND	"	"	"	"	"	"	"	"	"	GND			**	None)					
test	"	105	L "	Н	5.0V	"	"	"	"	"	"	"	"	"	5.0V	H	L "	"	All							
	"	106	"	"	5.0V	"	GND "	"	"	"	"	"	GND "	"	5.0V	"	"	"	outputs "							
	"	107 108	"	"	GND 5.0V	"	"	"	"	**	"	**	"	"	GND 5.0V	"	66	"	"							
	"	109	**	**	5.0V	**	"	5.0V	"	"	"	5.0V	"	"	5.0V	"	"	"	44							
	"	110	"	"	GND	"	"	"	"	"	"	"	"	"	GND	"	**	**	"							
	"	111	Н	L	5.0V	"	"	"	"	"	"	"	"	"	5.0V	L	H	"	"							
	"	112	"	"	5.0V	"	"	GND "	"	"	"	GND "	"	"	5.0V GND	"	**	"	"		~	,	See <u>13</u> /	and <u>14</u>	/	
	"	113 114	"	"	GND 5.0V	"	"	"	"	"	"	"	"	"	5.0V	"	"	"	"		1					
	"	115	"	"	5.0V 5.0V	66	5.0V	5.0V	"	"	"	5.0V	5.0V	"	5.0V	"	"	"	"							
	"	116	"	"	GND	"	"	"	"	"	"	"	"	"	GND	"	"	"	"							
	"	117	L	Н	5.0V	"	"	"	"	"	"	"	"	"	5.0V	Н	L	"	"							
	"	118	Н	L	5.0V	"	"	GND "	5.0V	"	5.0V	GND "	"	"	5.0V	Ļ	Н	"	"							
	"	119 120	H	L H	GND GND	5.0V	GND	44	5.0V GND	"	5.0V GND	"	GND	5.0V	GND GND	L H	H L	"	"		J					
	"	121	Ĺ					"	GND	"	GND	"	GND	5.0V	5.0V	H	Ĺ	"	"	ノ	,					
		120 121	L L	H	GND 5.0V	5.0V 5.0V	GND			"		"								1	<u> </u>					

TABLE III. Group A inspection for device type 02 – Continued.

Symbol	MIL-	Cases							Ter	minal c	ondition	ıs 1/							Measured			Test	limits			Unit
		E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subgr			Subgro			
	883 test	and Z																		T _A =		$T_A = 1$		T _A = -		1
	method	Test no.	Q2	Q2	CLK2	RS2	K2	J2	SET2	V_{SS}	SET1	J1	K1	RS1	CLK1	Q1	Q1	V_{DD}		Min	Max	Min	Max	Min	Max	
Truth	3014	122	Н	L "	5.0V	GND	GND	GND	5.0V	GND	5.0V	GND "	GND	GND	5.0V	L	H	5.0V	All							
table	"	123 124	"	"	5.0V GND	"	5.0V	"	GND "	"	GND "	"	5.0V	"	5.0V GND	"	"	"	outputs							
test	"	125		Н	5.0V	"	66	"	"	"	"	"	**	**	5.0V	н	L	"	"							
	44	126	"	"	5.0V	"	66	5.0V	"	"	"	5.0V	"	**	5.0V	"	"	"	"							
	44	127	"	"	GND	"	"	"	"	"	"	"	"	**	GND	"	"	"	44							
	"	128	Н	L	5.0V	"	**	"	"	"	"	"	"	"	5.0V	L	Н	"	44	l ≻	-	S	ee <u>13</u> /	and <u>14</u> /		
	"	129	L	H	5.0V	5.0V	"	"	"	"	"	"	"	5.0V	5.0V	H	L "	"	"	lí						
	"	130	"	"	GND 5.0V	"	"	"		"	"	"	"		GND 5.0V	"	"	"	"							
	"	131 132	Н	"	5.0V 5.0V	"	GND	GND	5.0V	"	5.0V	GND	GND	**	5.0V 5.0V	"	Н	"	"							
	44	133	"	"	GND	"	"	"	3.0 V	"	0.0 V	"	"	66	GND	"	"	"	"							
	44	134	**	"	5.0V	"	"	"	"	"	"	"	"	**	5.0V	"	"	"	44	ノ						
																				Subgr		Subgro		Subgro		
																				T _A =		$T_A = 1$		$T_A = -$		
	2222		01.17	1						0115				1	1	1		= 0\ /	011/0 : 00	Min	Max	Min	Max	Min	Max	<u> </u>
t _{PHL}	3003	135 136	OUT	OUT	IN IN					GND "								5.0V	CLK2 to Q2 CLK2 to Q2	13	575	18	865	13	575	ns "
	Fig. 12	137		001	IIN					**					IN		OUT	"	CLK2 to Q2	"	**	"	"	"	44	"
	"	138								**					IN	OUT	001	"	CLK1 to Q1	"	**	"	"	"	44	"
t _{PHL}	3003	139	OUT							66								"	RS2 to Q2	"	600	66	900	"	600	"
R or S	Fig.	140		OUT					IN	**								"	SET2 to Q2	"	**	**	"	"	"	"
	13	141			IN					"				IN			OUT	"	RS1 to Q1	"	"	"	"	"	"	"
	3003	142 143	OUT		INI					"	IN					OUT		"	SET1 to Q1	"	625		940		625	"
t _{PLH}	Fig.	143	001	OUT	IN IN					"								"	CLK2 to Q2 CLK2 to Q2	"	625	"	940	"	625	"
	19.	145		001	114					**					IN		OUT	"	CLK1 to Q1	"	**	"	"	"	44	"
	"	146								**					IN	OUT		"	CLK1 to Q1	"	**	"	"	"	44	"
t _{PLH}	3003	147	OUT						IN	"								"	SET2 to Q2	"	400	"	600	"	400	"
R or S	Fig.	148		OUT		IN				"	١						01.17	"	RS2 to Q2	"	"	"	"	"	"	"
	13	149 150								"	IN			IN		OUT	OUT	"	SET1 to Q1	"	"	"	"	"	"	"
+	3004	151	OUT		IN					"		-		IIN		001		"	RS1 to Q1 Q2	10	325	14	490	10	325	"
t _{THL}	Fig.	152	001	OUT	IN					"								"	<u>Q2</u> Q2	"	°	"	490	"	323 "	"
	12	153								"					IN		OUT	"	Q1	"	"	"	"	"	"	"
	44	154								íí.					IN	OUT		44	Q1	66	"	"	"	"	"	"
t _{TLH}	"	155	OUT		IN					"								"	<u>Q2</u> Q2	"	"	"	"	"	"	"
	"	156		OUT	IN					"							OUT	"	Q2	"	"	"	"	"	"	"
	"	157 158								"					IN IN	OUT	OUT	"	<u>Q1</u> Q1	"	"		"	"	"	"
f _{CL(max)}	44	159	OUT		IN					"					IIV	501		"	CLK2							μS
15/	44	160								"					IN		OUT	"	CLK1		1.0		1.4		1.0	μo "
	•	•		•					•		•		•			•				1.0		1.4		1.0		

Symbol	MIL-	Cases							Ter	minal c	ondition	s <u>1</u> /							Measured			Test	limits			Unit
	STD- 883	E,F,N, and Z	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal				oup 10			
																				$T_A = 2$	_		125°C		-55°C	. !
	test method	Test no.	Q2	Q2	CLK2	RS2	K2	J2	SET2	V_{SS}	SET1	J1	K1	RS1	CLK1	Q1	Q1	V_{DD}		Min	Max	Min	Max	Min	Max	
t _{TLHCL}	Fig.	161	OUT		IN					GND								5.0V	CLK2	15						μS
<u>16</u> /	12	162								"					IN		OUT	"	CLK1	15		15		10		μS
t _p <u>17</u> /	"	163	OUT		IN					"								"	CLK2		15		45100			ns
r —	"	164								**					IN		OUT	"	CLK1		300		450		300	"
t _{SHL}	Fig.	165	OUT				IN			"								"	K2 to CLK2	300	165			300		££
	14	166	OUT		IN			IN		"								"	J2 to CLK2		**		"		"	"
	"	167		IN						"			IN		IN		OUT	"	K1 to CLK1		"	225	"	165	"	"
	"	168								"		IN			IN		OUT	"	J1 to CLK1		"		"		"	"
t _{SLH}	"	169	OUT				IN			"								"	K2 to CLK2		"					"
	"	170	OUT		IN			IN		**								"	J2 to CLK2		"		**		**	"
	"	171		IN						"			IN		IN		OUT	"	K1 to CLK1		**	"	"	"	"	"
	"	172								"		IN			IN		OUT	"	J1 to CLK1		"		"		"	"
t _{HLH}	"	173	OUT				IN			**								"	K2 to CLK2		150					"
	"	174	OUT		IN			IN		"								"	J2 to CLK2		**		**		**	"
	"	175		IN						"			IN		IN		OUT	"	K1 to CLK1		"	"	"	150	"	"
	"	176								"		IN			IN		OUT	"	J1 to CLK1		"		"		"	"
t _{HHL}	"	177	OUT		l		IN	l		"									K2 to CLK2		"					"
	"	178	OUT		IN			IN		"									J2 to CLK2		"		"		"	"
		179		IN						"			IN		IN		OUT		K1 to CLK1		"	"	"	"	"	"
1	**	180			l	ĺ		ĺ				IN		ĺ	IN		OUT		J1 to CLK1	ĺ	"					1 "]

TABLE III. Group A inspection for device type 02 - Continued.

- Pins not designated may be "high" level logic, "low" level logic, or open. Exceptions are as follows: $V_{IC(pos)}$ tests, the V_{SS} terminal shall be open; V_{IC(neg)} tests, the V_{DD} terminal shall be open; I_{SS} tests, the output terminals shall be open.
- Test numbers 21 thru 34 shall be run in sequence.

36

- $I_{OH} = -0.25$ mA at 25°C, -0.175 mA at 125°C, -0.31 mA at -55°C.
- $V_{IH1} = 3.8 \text{ V at } 25^{\circ}\text{C}, 3.6 \text{ V at } 125^{\circ}\text{C}, 3.95 \text{ V at } -55^{\circ}\text{C}.$
- $V_{1H2} = 9.5 \text{ V}$ at 25°C, 9.25 V at 125°C, 9.75 V at -55°C.
- $I_{OL} = 0.5 \text{ mA}$ at 25°C, 0.35 mA at 125°C, 0.65 mA at -55°C.
- $V_{IL1} = 1.1 \text{ V at } 25^{\circ}\text{C}, 0.85 \text{ V at } 125^{\circ}\text{C}, 1.35 \text{ V at } -55^{\circ}\text{C}.$
- $V_{IL2} = 2.8 \text{ V at } 25^{\circ}\text{C}, 2.55 \text{ V at } 125^{\circ}\text{C}, 3.05 \text{ V at } -55^{\circ}\text{C}.$
- 14 For input voltage conditions, see figure 10. 15
- 10/ For input voltage conditions, see figure 11.

- 11/ The device manufacturer may, at his option, measure I_{IL} and I_{IH} at 25°C for each individual input or measure all inputs together.
- 12/ See 4.4.1c.
- 13/ Test numbers 103 thru 134 shall be run in sequence and the functional tests shall be performed with V_{IH} and $V_{DD} \le 5.0 \text{ V}$ and $\ge 15.0 \text{ V}$.
- / $L = V_{SS} + 0.5 \text{ V}$ maximum and $H = V_{DD} 0.5 \text{ V}$ minimum.
- __/ The maximum clock frequency (f_{CL}) requirement is considered met if proper output state changes occur with the pulse repetition period set to that given in the limits column.
- Pulse repetition period = $100 \mu s$, 50 percent duty cycle. The maximum clock transition time (t_{TLHCL}) requirement is considered met if proper output state changes occur with the rise time set to that given in the limits column.
- 17/ The minimum clock pulse width (t_p) requirement is considered met if proper output state changes occur with the pulse width set to that given in the limits column.

TABLE III. Group A inspection for device type 03.

Symbol	MIL-	Cases							Terr	ninal co	ondition	s 1/							Measured			Test	limits			Unit
,		E,F,N, Z	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subgr T _A = 2		Subgr	oup 2	Subgr		
	test method	Test no.	Q4	Q1	R1	S1	Е	S2	R2	Vss	Q2	Q3	R3	S3	NC	S4	R4	V _{DD}		Min	Max	Min	Max	Min	Max	
V _{IC(pos)}	1	2 3 4 5 6 7 8 9			1mA	1mA	1mA	1mA	1mA				1mA	1mA		1mA	1mA	GND " " "	R1 S1 E S2 R2 R3 S3 S4 R4	1.5	" " "					V
V _{IC(neg)}	10	11 12 13 14 15 16 17 18			-1mA	-1mA	-1mA	-1mA	-1mA	GND " " " " " " "			-1mA	-1mA		-1mA	-1mA	R1	S1 E S2 R2 R3 S3 S4 R4	-6	" " " "					" " " "
I _{SS} <u>2</u> /	3005	19 20 21 22 23 24			GND GND 15.0V GND 15.0V GND	15.0V GND " " 15.0V GND	15.0V " " " GND	15.0V GND " " 15.0V GND	GND GND 15.0V GND 15.0V GND	"			GND GND 15.0V GND 15.0V GND	15.0V GND " " 15.0V GND	15.	GND 0V " " 15.0V GND	GND GND 15.0V GND 15.0V GND	15.0V " "	V _{SS} "	-1.0	"	-2.5				μA " "
V _{OH1}	3006	25 26 27 28	I _{OH}	I _{он} <u>3</u> /	V _{IL1} <u>7</u> / "	V _{IH1} <u>4</u> / V _{IL1} V _{IL1} V _{IL1}	V _{IH1} "	V _{IL1} V _{IH1} V _{IL1} V _{IL1}	V _{IL1} "	" "	I _{OH}	I _{OH}	V _{IL1} "	V _{IL1} V _{IL1} V _{IH1} V _{IL1}	٧	V _{IL1} V _{IL1} V _{IL1}	V _{IL1} "	5.0V "	Q1 Q2 Q3 Q4	4.5 "	4.5	"	4.5	"	V	"
V _{OH2}	"	29 30 31 32			" "	V _{IH1} V _{IL1} V _{IL1} V _{IL1}	"	V _{IL1} V _{IH1} V _{IL1} V _{IL1}	"	" "			 	V _{IL1} V _{IL1} V _{IH1} V _{IL1}	>	V _{IL1} V _{IL1} V _{IL1}	ee ee	"	Q1 Q2 Q3 Q4	4.95	4.9	5 "	4.9	5 "	ű.	"
V _{ОНЗ}	"	33 34 35 36			V _{IL2} <u>8</u> / "	V _{IH2} <u>5</u> / V _{IL2} V _{IL2} V _{IL2}	V _{IH2} "	V_{IL2} V_{IH2} V_{IL2} V_{IL2}	V _{IL2} "	" "			V _{IL2} "	V_{IL2} V_{IL2} V_{IH2} V_{IL2}	>	V _{IL2} V _{IL2} V _{IL2}	V _{IL2} "	12.5V "	Q1 Q2 Q3 Q4	11.25	11.	25 "	11.:	" 25 "	ű.	"
V _{OL1}	3007	37 38 39 40	I _{OL}	I _{OL} <u>6</u> /	V _{IH1} "	V _{IL1} V _{IH1} V _{IH1} V _{IH1}	V _{IH1} "	V _{IH1} V _{IL1} V _{IH1} V _{IH1}	V _{IH1} "	"	I _{OL}	I _{OL}	V _{IH1} "	V _{IH1} V _{IH1} V _{IL1} V _{IH1}	٧	V _{IH1} V _{IH1} V _{IH1} V _{IL1}	V _{IH1} "	5.0V "	Q1 Q2 Q3 Q4	.5	"	.5	"	.5	"	"
V _{OL2}	"	41 42 43 44			"	V _{IL1} V _{IH1} V _{IH1} V _{IH1}	"	V _{IH1} V _{IL1} V _{IH1} V _{IH1}	ee ee	ee ee			ee ee	V _{IH1} V _{IH1} V _{IL1} V _{IH1}	V	IH1 V _{IH1} V _{IH1} V _{IL1}	"	"	Q1 Q2 Q3 Q4	.05	"	.05	"	.05	"	"

TABLE III. Group A inspection for device type 03 – Continued.

V _{OL3}	STD- 883 test method	E,F,N, Z Test		2	3	4	5																			
	test method	Test					3	6	7	8	9	10	11	12	13	14	15	16	terminal	Subgr		Subgr		Subgro		
	method																			$T_A = 2$		$T_A = 1$		T _A = -		
V_{OL3}	3007	no.	Q4	Q1	R1	S1	Е	S2	R2	Vss	Q2	Q3	R3	S3	NC	S4	R4	V_{DD}		Min	Max	Min	Max	Min	Max	
	66	45			V _{IH2}	V _{IL2}	V _{IH2}	V _{IH2}	V _{IH2}	GND "			V _{IH2}	V_{IH2}		IH2	V _{IH2}	12.5V	Q1		"		"		"	V "
	"	46 47			"	V_{IH2} V_{IH2}	"	V_{IL2} V_{IH2}	"	"			"	V_{IH2} V_{IL2}	V	V_{IH2} V_{IH2}	"	"	Q2 Q3	1.25		1.25		1.25	"	"
	"	48			"	V _{IH2}	"	V _{IH2}	"	"			"	V _{IH2}	V	V _{II 2}	"	"	Q4	1.2	"	1.20	"	1.20	"	"
I _{IH1}	3010	49			15.0V	15.0V	15.0V	15.0V	15.0V	"			15.0V	15.0V		15.0V	15.0V	15.0V	All		9					nA
<u>9</u> /																			inputs together							
I _{IH2}	"	50			"	66	"	"	"	"			"	"			"	"	R1							"
	"	51			"	"	"	"	"	"			"	"		"	"	"	S1		"		"			"
	"	52 53			"	44	**	"	"	"			"	"	"	66	44	**	E S2	1.0	**	45	**			"
	"	54			"	"	**	66	"	**			"	"		66	"	**	R2		**		**			"
	"	55			"	"	"	"	"	"			"	"		66	"	"	R3		"		"			"
	"	56			"	"	"	"	"	"			"	"		"	"	"	S3		"		"			"
	"	57 58			"	"	"	"	"	"			"	"		"	"	"	S4 R4		"		"			"
I _{IL1}	3009	59			GND	GND	GND	GND	GND	u			GND	GND		GND	GND	"	All		-9					"
<u>9</u> /	0000				0.12	0.12	0.15	0.15	0.12				0.12	0.12		0.15	0.12		inputs		Ů					
																			together							
I _{IL2}	"	60			"	"	"	"	"	"			"	"		"	"	"	R1		"		"			"
	"	61 62			"	"	"	"	"	"			"	"		"	"	"	S1 E	-1.0		4.5	"			"
	"	63			"	"	**	"	"	**			"	"	"	66	"	**	S2	-1.0	"	-45	**			"
	"	64			"	"	"	"	"	"			"	"		"	"	"	R2		"		"			"
	"	65			"	"	"	"	"	"			"	"		"	"	"	R3		"		"			"
	"	66 67			"	"	"	"	"	"			"	"		"	"	"	S3 S4		"		"			"
	"	68			"	"	"	"	"	"			"	"		"	"	"	R4		"		"			"
<u> </u>				l			l											1		Subgr	oup 4		1			<u> </u>
																				$T_A = 2$	25°C					
						•							•							Min	Max					
Ci	3012	69			<u>10</u> /	401				GND								GND	R1		"					,,
	"	70 71				<u>10</u> /	<u>10</u> /			"								"	S1 E		"					"
	"	72					10/	<u>10</u> /		"								"	S2	12	"					"
	"	73							<u>10</u> /	"								"	R2		"					"
	"	74								"			<u>10</u> /					"	R3		"					"
	"	75 76								"				<u>10</u> /		10/		"	S3		"			pF		"
	"	76 77								"						<u>10</u> /	10/	"	S4 R4		"			•		"

TABLE III. Group A inspection for device type 03 – Continued.

Symbol	MIL-	Cases	<u> </u>						Teri	minal c	ondition	s 1/							Measured			Test	limits			Unit
'		E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subgr	oup 7		Subg	roup 8		1
	883	Z																		$T_A = 2$	25°C	T _A = 1	25°C	T _A = -	55°C	
	test method	Test	Q4	Q1	R1	S1	Е	S2	R2	V _{SS}	Q2	Q3	R3	S3	NC	S4	R4	V _{DD}		Min	Max	Min	Max	Min	Max	
		no.	~ .								~_					<u> </u>				_						
Truth	3014	78	<u> </u>	Н	Ŀ	H	5.0V	L	H	GND	Ŀ	H	L	H		<u> </u>	H	5.0V	All]						
table	"	79	l L H	H	L H	Ļ	"	L	L.		l L H	Н	L	L.		l L H	Ŀ		outputs							
test	"	80 81	Н	L		L .	"	H	-	**	Н	L	Η -	L		[Ļ	"	44	≻	See	11/ and	12/			
	"	82		Ь	H	Ь	"	Ĺ	н	**	L	H	Н	Ь'n		-	H	"	"			_				
	"	83	Ι'n	l ii	Н.	l ï	"	H	Н	"	Ь	i	н	l ï		Ь	Н	44	"	リノ						
		- 00										_								Subgr	oup 9	Subgro	oup 10	Subgro	oup 11	
																				$T_A = 2$		T _A = 1		T _A = -		
																				Min	Max	Min	Max	Min	Max	
t _{PHL}	3003	84		OUT	IN		5.0V			GND								5.0V	R1 to Q1	10	320	14	370	10	270	ns
R	Fig.	85					"		IN	"	OUT							44	R2 to Q2	"	"	"	44	"	"	"
	15	86					"			"		OUT	IN					"	R3 to Q3	"	"	"	"	"	"	"
	"	87	OUT				"			"							IN	"	R4 to Q4	"						"
t _{PLH}	"	88		OUT		IN					OUT								S1 to Q1 S2 to Q2	10	200	14	245	9	185	"
	"	89 90					"	IN		"	OUT	OUT		IN				44	S2 to Q2 S3 to Q3	"		"	44	66	"	"
	"	91	OUT				66			**		001		IIN		IN		"	S4 to Q4	**	**	"	"	**	"	**
t _{PZH}	Fig.	92	001	OUT	GND	5.0V	IN	GND	GND	"			GND	GND		GND	GND	"	E to Q1		230				230	"
4PZH	16	02			CITE	0.01		OND	0112				CITE	0112		0110	0110		2 10 001		200				200	
t _{PHZ}	"	93				GND	"	5.0V	"	"	OUT		"	GND			66	"	E to Q2			340				"
	"	94			"	"	"	GND	"	"		OUT	"	5.0V		"	"	"	E to Q3		"		"		"	"
	íí	95	OUT		"	"	"	"	"	"			"	GND		5.0V	"	"	E to Q4		ű		"		"	u
t_{PZL}	ű	96		OUT	5.0V	"	"	"	"	"			"	"		GND	"	"	E to Q1		180				180	"
t_{PLZ}	"	97			"	"	"	"	5.0V	"	OUT	OLIT	" 5 0) /	"		"	"	"	E to Q2		"		"		"	"
	"	98	OUT	GN				"	GND GND	"		OUT	5.0V	"			-	"	E to Q3		"	240	"		"	"
-	3004	99 100	001	OUT	, ,	IN	5.0V		GND	"			GND				5.0V		E to Q4 Q1	10	200	14	245	9	185	"
t _{THL}	Fig.	100		001		IIN	5.07	IN		"	OUT							**	Q1 Q2	10	200	14	245	9	185	"
	15	101					"	111		"	001	OUT		IN				"	Q3	"	"	"	"	"	"	"
	"	103	OUT				"			**		501		''`		IN		"	Q4	"	**	"	"	**	"	**
t _{TLH}	"	104		OUT		IN	"			"								"	Q1	10	300	18	360	10	250	"
1101	"	105					"	IN		"	OUT							"	Q2	"	"	"	"	"	-"	**
	"	106					"			"		OUT		IN				"	Q3	"	"	"	"	"	"	"
	"	107	OUT	l			"			"						IN		**	Q4	"	"	"	"	**	"	"

See footnotes on next page.

TABLE III. Group A inspection for device type 03 – Continued.

- $\underline{1}$ / Pins not designated may be "high" level logic, "low" level logic, or open. Exceptions are as follows: $V_{IC(pos)}$ tests, the V_{SS} terminal shall be open; $V_{IC(neg)}$ tests, the V_{DD} terminal shall be open; I_{SS} tests, the output terminals shall be open.
- 2/ Test numbers 19 thru 24 shall be run in sequence.
- $I_{OH} = -0.175 \text{ mA}$ at 25°C, -0.12 mA at 125°C, -0.22 mA at -55°C.
- 4/ V_{IH1} = 3.8 V at 25°C, 3.6 V at 125°C, 3.95 V at -55°C.
- $V_{IH2} = 9.5 \text{ V at } 25^{\circ}\text{C}, 9.25 \text{ V at } 125^{\circ}\text{C}, 9.75 \text{ V at } -55^{\circ}\text{C}.$
- 6/ $I_{OL} = 0.20$ mA at 25°C, 0.14 mA at 125°C, 0.25 mA at -55°C.
- $7/V_{IL1} = 1.10 \text{ V at } 25^{\circ}\text{C}, 0.8 \text{ V at } 125^{\circ}\text{C}, 1.35 \text{ V at } -55^{\circ}\text{C}.$
- 8/ $V_{IL2} = 2.8 \text{ V}$ at 25°C, 2.55 V at 125°C, 3.0 V at -55°C.
- 9/ The device manufacturer may, at his option, measure I_{IL} and I_{IH} at 25°C for each individual input or measure all inputs together.
- 10/ See 4.4.1c.
- $\underline{11}$ / Test numbers 78 thru 83 shall be run in sequence and the functional tests shall be performed with V_{IH} and V_{DD} ≤ 5.0 V and ≥ 15.0 V.
- $\underline{12}/L = V_{SS} + 0.5 \text{ V}$ maximum and $H = V_{DD} 0.5 \text{ V}$ minimum.

TABLE III. Group A inspection for device type 51.

Symbol		Cases						Te	rminal co	onditions	1/						Measured			Test	limits			Unit
	STD-	A,C,D,	Q1	Q1	CLK1	RS1	D1	SET1	Vss	SET2	D2	RS2	CLK2	Q2	Q2	V_{DD}	terminal	Subgr		Subgr		Subgi	roup 3	
	883	T,X,Y																T _A =		$T_A = 1$			-55°C	
	method	Test no.	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Min	Max	Min	Max	Min	Max	
V _{IC(pos)}		1						1mA								GND	SET1							V
ю(роо)	ļ	2				1mA										"	RS1		"					"
	ļ	3					1mA									"	D1	1.5	"					"
	ļ	4			1mA											"	CLK1		"					"
	ļ	5								1mA						"	SET2		"					"
	ļ	6 7									1 mm A	1mA				"	RS2		"					"
	ļ	8									1mA		1mA			"	D2 CLK2		"					**
V _{IC(neg)}	+	9						-1mA	GND				IIIIA				SET1							"
V IC(neg)	ļ	10				-1mA		11117	OND.								RS1		"					"
	ļ	11					-1mA		"								D1	_	"					"
	ļ	12			-1mA				"								CLK1	-6	"					"
	ļ	13							"	-1mA							SET2		"					"
	ļ	14							"			-1mA					RS2		"					"
	ļ	15							"		-1mA		4				D2		"					"
	3005	16 17			18.0V	GND	GND	GND	"	GND	GND	GND	-1mA GND			18.0V	CLK2							
I _{SS} <u>2</u> /	3005	18			GND	GIND "	GIND "	GIND "	**	GND "	GND "	GND "	GND "			16.00	None None		"		"			μ A "
<i>=</i> /	"	19			18.0V	"	"	"	"	"	"	"	**			"	None	25	"	-2.5	44			"
	"	20			18.0V	"	18.0V	"	"	"	"	"	"			"	V _{SS}	25	"	-2.5	"			"
	"	21			GND	**	**	**	"	"	"	"	"			"	Vss		"		"			"
	"	22			18.0V	"	66	"	"	"	"	"	"			"	None		"		"			"
	"	23			18.0V	"	GND	"	"	"	"	"	"			"	None		"		44			"
	"	24			GND	"	"	"	"	"	"	"	"			"	V _{SS}		"		"			"
		25			18.0V					"		"	"			"	None		"					"
	"	26 27			18.0V GND	18.0V 18.0V	18.0V 18.0V	18.0V 18.0V	"	"	"	"	"			"	V _{SS} V _{SS}		"		"			"
	"	28			GIND "	GND	GND	GND	**	"	"	"	18.0V			"	None		"		"			"
	"	29			"	"	"	"	"	"	"	"	GND			"	None		"		"			"
	"	30			44	"	"	"	"	"	"	"	18.0V			"	None		"		"			"
	"	31			44	"	"	"	"	"	18.0V	"	18.0V			"	V_{SS}		"		"			"
	"	32			"	"	"	"	"	"	"	"	GND			"	V _{SS}		"		"			"
	"	33			"	"	"	"	"	"		"	18.0V			"	None		"		"			"
	"	34			"	"	"	"		"	GND "	"	18.0V			"	None		"		"			"
	"	35 36			"	"	"	"	"	"	"	"	GND 18.0V			"	V _{SS} None		"		"			"
	"	37			"	"	"	"	"	18.0V	18.0V	18.0V	18.0V 18.0V			"	V _{SS}		"		"			"
	"	38			"	"	"	"	"	18.0V	18.0V	18.0V	GND			"	V _{SS}		"		"			"
V _{OH5}	3006	39			"	"	"	15.0V	"	GND	GND	GND	"		 	15.0V	<u>Q1</u>	14.95						
0.10	"	40			"	15.0V	"	GND	"	GND	"	"	"			"	Q1	"		"		"		"
	"	41			"	GND	"	"	"	15.0V	"	"	"			"	<u>Q2</u>	"	14.9	-	14.9	95 "	V	"
	"	42			**	GND	"	"	"	GND	"	15.0V	"			"	Q2	"		"		"	V	"
V_{OL5}	3007	43			"	15.0V	"	15 0) /	"	"	"	GND	"			"	<u>Q</u> 1		"		"		"	"
	"	44			"	GND "	"	15.0V	"	"	"	GND 15 OV	"			"	Q1					0.00		"
	"	45 46			44	"	"	GND GND	"	15.0V	"	15.0V GND	"			"	<u>Q2</u> Q2	0.05	"	0.05	"	0.05	"	"
V _{OH6}	3006	47		 	3/	"	"	3/	66	GND	"	"	u			"		14.95		14.95		14.95		tt.
				1		"	- "		66		44	"	"				Q1	1 1.55		1 1.55		1 1.55		"
V_{OL6}	3007	48			<u>3</u> /			<u>3</u> /		GND							Q1							

0.05 0.05 0.05

MIL-M-38510/51F

Symbol	MIL-	Cases						Te	rminal c	onditions	1/						Measured			Test				Unit
	STD- 883	A,C,D, T,X,Y	Q1	Q1	CLK1	RS1	D1	SET1	V_{SS}	SET2	D2	RS2	CLK2	Q2	Q2	V_{DD}	terminal	Subgroup $T_A = 2$		Subgr $T_A = 1$		Subgr $T_A = -$		
	method	Test	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Min	Max	Min	Max	Min	Max	
.,	0000	no.			0115	0115	ONE	0115	0115		0115	0115				45.014		4405						.,
V _{OH6}	3006	49			GND	GND	GND	GND	GND	<u>3</u> /	GND	GND	<u>3</u> /			15.0V	Q2	14.95		14.95		14.95		V
V _{OL6}	3007	50			GND	"	GND	GND	ii	<u>3</u> /	"	"	<u>3</u> /			"	Q2				0.05		0.05	"
V _{OL6}	3007	51			<u>3</u> /	-	15.0V	<u>3</u> /		GND			GND				Q1	0.06			0.05		0.05	
V _{OH6}	3006	52			3/	"	15.0V	3/	u	GND	"	"	GND			"	Q1	14.95 ⁵		14.95		14.95		"
V _{OL6}	3007	53			GND		GND	GND		<u>3</u> /	15.0V		<u>3</u> /				Q2		'		0.05		0.05	
V _{OH6}	3006	54			GND	"	GND	GND	"	<u>3</u> /	15.0V	"	<u>3</u> /			"	Q2	14.95 0.05		14.95		14.95		"
V _{ICL1}		55 56			<u>4</u> / 4/	"	<u>4</u> / 4/	<u>4</u> / 4/	"	GND GND	GND GND	"	GND GND			"	CLK1 CLK1	4/	<u>4</u> /	4/	<u>4</u> /	4/	<u>4</u> /	"
V _{ICL2}		30			GND	"	GND	GND	"			"				"	CLK1	4/	4/	4/	4/	4/	4/	66
* ICL2		58			"	44	GND	GND	"	<u>4</u> / <u>4</u> /	<u>4</u> / <u>4</u> /	"	<u>4</u> / <u>4</u> /			"	CLK2	<u>4</u> /	<u></u>	<u>4</u> /		<u>4</u> /		"
V_{IH1}					í,	1.5V	1.5V	3.5V	"	GND	GND	"	GND			5.0V	Q1 Q1	4.5						
	57	60				3.5V	1.5V	1.5V	"	"	"	"	"			"		"		"		"		"
	50	61 62			<u>5</u> / <u>5</u> /	1.5V 1.5V	3.5V 1.5V	"	"	"	"	"	"			"	<u>Q1</u> Q1	"	4.5	"	4.5	"	"	"
	59	63			GND	GND	GND	GND	"	3.5V	1.5V	1.5V	"			"	Q2	"		"		**		"
		64			"	"	"	"	"	1.5V	1.5V	3.5V	"			"	Q2	"		"		"		"
		65			"	"	"	"	"	"	3.5V	1.5V	<u>5</u> /			"	<u>Q2</u> Q2	"		"		"		"
V _{IH2}		66			"	3.0V	3.0V	7.0V	"	GND	1.5V GND	1.5V GND	<u>5/</u> GND			10.0V	Q2 <u>Q</u> 1	9.0				- "		-
V IH2		68			"	7.0V	3.0V	3.0V	"	GIND "	GND "	GIND "	GIND "			10.00	Q1	9.0		"		"		"
		69			<u>5</u> /	3.0V	7.0V	"	"	"	**	**	"			"	Q1 Q1	"	9.0	"	9.0	"	"	"
	67	70			<u>5</u> / <u>5</u> /	3.0V	3.0V	"	"	"	"	"	"			"		"	9.0	"	9.0	"		"
		71			GND "	GND "	GND "	GND "	"	7.0V 3.0V	3.0V 3.0V	3.0V 7.0V	"			"	<u>Q2</u> Q2	"		"		"		"
		72 73			"	**	44	"	"	3.00	7.0V	7.0V 3.0V	<u>5</u> /			"	Q2 Q2	"		"		"		"
		74			"	"	"	"	"	"	3.0V	3.0V	<u>5</u> /			"	Q2	"		"		"		"
V _{IH3}		75			"	4.0V	4.0V	11.0V	"	GND	GND	GND	GND			15.0V	<u>Q1</u>	13.5						
		76			-,	11.0V	4.0V	4.0V	"	"	"	"	"			"	Q1	"		"		"		"
		77 78			<u>5</u> / <u>5</u> /	4.0V 4.0V	11.0V 4.0V	"	"	"	"	"	"			"	<u>Q1</u> Q1	"	13.5	" "	13.	5 "	"	"
		76 79			GND	GND	GND	GND	"	11.0V	4.0V	4.0V	"			"	Q2	"		"		"		"
		80			"	"	"	"	"	4.0V	4.0V	11.0V	66			"	Q2	"		"		"		"
		81			"	"	"	"	"	"	11.0V	4.0V	<u>5</u> /			"	<u>Q2</u> Q2	"		"		"		"
		82			"	"	"	íí.	"	"	4.0V	4.0V	<u>5</u> /			"	Q2	"		"		"		"

TABLE III. Group A inspection for device type 51 – Continued.

TABLE III. Group A inspection for device type 51 – Continued.

Symbol	MIL-	Cases						Tei	minal c	onditions	s <u>1</u> /						Measured			Test I				Unit
	STD- 883	A,C,D, T,X,Y	Q1	Q1	CLK1	RS1	D1	SET1	V_{SS}	SET2	D2	RS2	CLK2	Q2	Q2	V_{DD}	terminal	Subgroup $T_A = 2$		Subgroup $T_A = 1$	oup 2 25°C	Subgroup $T_A = -1$		
	method	Test no.	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Min	Max	Min	Max	Min	Max	
V _{IL1}		84 85			GND GND <u>5</u> /	3.5V 1.5V	3.5V 3.5V 1.5V	1.5V 3.5V 1.5V	GND "	GND "	GND "	GND "	GND "			5.0V "	<u>Q1</u> Q1 <u>Q1</u>	0.5	"	0.5	"	0.5	"	V "
	83	86 87 88 89 90			<u>5</u> / GND "	GND "	3.5V GND "	1.5V GND "	" "	1.5V 3.5V 1.5V 1.5V	3.5V 3.5V 1.5V 3.5V	3.5V 1.5V	" " <u>5</u> /			"	Q1 Q2 Q2 Q2 Q2	0.5	 	0.5	"	0.5	"	"
V _{IL2}	91	92 93 94			" <u>5</u> / <u>5</u> /	7.0V 3.0V "	7.0V 7.0V 3.0V 7.0V	3.0V 7.0V 3.0V 3.0V	"	GND "	GND "	GND "	GND "			10.0V "	Q1 Q1 Q1 Q1 Q1	1.0	ee ee	1.0	"	1.0	"	ee ee
		95 96 97 98			GND "	GND "	GND "	GND "	"	3.0V 7.0V 3.0V 3.0V	7.0V 7.0V 3.0V 7.0V	7.0V 3.0V "	" <u>5</u> / <u>5</u> /			ee ee	Q2 Q2 Q2 Q2 Q2		ee ee		"		"	44 44
V _{IL3}	99	100 101 102 103 104			" <u>5/</u> <u>5/</u> GND "	11.0V 4.0V " " GND	11.0V 11.0V 4.0V 11.0V GND	4.0V 11.0V 4.0V 4.0V GND	 	GND " " 4.0V 11.0V	GND " " 11.0V 11.0V	GND " " 11.0V 4.0V	GND "			15.0V " "	Q1 Q1 Q1 Q1 Q2 Q2	1.5	ee ee ee	1.5	"	1.5	 	66 66 66
		105 106			"	"	"	"	"	4.0V 4.0V	4.0V 11.0V	"	<u>5</u> / <u>5</u> /			"	<u>Q2</u> Q2		"		"		"	"
I _{OL1}	107	108 109 110	0.4V	0.4V	" "	5.0V GND "	" "	5.0V GND "	"	GND " 5.0V	GND "	GND GND 5.0V GND	GND "	0.4V	0.4V	5.0V "	<u>Q1</u> Q1 <u>Q2</u> Q2	0.51	0.30	" 6 "	0.64	1 "	mA	
I _{OL2}	111	112 113 114	1.5V	1.5V	"	15.0V GND "	"	" 15.0V GND "	"	GND " 15.0V	"	" 15.0V GND	"	1.5V	1.5V	15.0V "	<u> </u>	3.4	2.4	"	4.2	"	"	"
I _{OH1}		115 116 117 118	4.6V	4.6V	"	5.0V GND "	"	5.0V GND "	"	GND " 5.0V GND	"	" " 5.0V	"	4.6V	4.6V	5.0V "	Q1 Q1 Q2 Q2	-0.51 "	-0.3	6 "	-0.6	4 "	66	"
I _{OH2}		119 120 121 122	13.5V	13.5V	"	" 15.0V GND "	"	15.0V GND "	"	" 15.0V GND	"	GND " 15.0V	"	13.5V	13.5V	15.0V "	<u>Q1</u> Q1 Q2 Q2	-3.4	-2.4	"	-4.2	"	"	"
I _{IH1} <u>6</u> /	3010	123			18.0V	18.0V	18.0V	18.0V	"	18.0V	18.0V	18.0V	18.0V			18.0V	All inputs together		800.0					nA

TABLE III. Group A inspection for device type 51 – Continued.

Symbol	MIL-	Cases						Tei	minal c	onditions	s 1/						Measured			Test I	limits			Unit
Cymbol	STD-	A,C,D,	Q1	Q1	CLK1	RS1	D1	SET1	V _{SS}	SET2	D2	RS2	CLK2	Q2	Q2	V_{DD}	terminal	Subgi	roup 1	Subgr	roup 2	Subgr	oup 3	Oiiii
	883	T,X,Y	Qī	QI	CLKI	KSI	וט	SEII	VSS	SEIZ	D2	K52	CLKZ	Q2	Q2	V DD			25°C		125°C	T _A = -		
	method	Test	1	2	3	4	5	6	7	8	9	10	11	12	13	14]	Min	Max	Min	Max	Min	Max	
	3010	no. 124			18.0V	18.0V	18.0V	18.0V	GND	18.0V	18.0V	18.0V	18.0V			18.0V	CLK1							nA
I _{IH2}	3010	125			10.0 V	10.00	10.00	10.00	GIVD	10.0 v	10.0 V	10.0 v	10.0 V			10.0 v	RS1		"		44			"
	"	126			"	"	"	"	"	"	"	"	"			"	D1	100	.0 "	100	.0 "			44
	"	127			"	"	"	"	"	"	"	"	"			"	SET1		"		"			"
	"	128 129			"	"	"	"	"		"	"	"			"	SET2 D2		"		"			"
	"	130			"	**	"	"	"	"	**	**	"			"	RS2		**		44			"
	"	131			"	66	"	"	"	"	66	**	44			"	CLK2		"		"			"
I _{IL1}	3009	132			GND	GND	GND	GND	íí.	GND	GND	GND	GND			66	All inputs							"
<u>6</u> /	"	133			"	"	"	"	u	"	"	"	44			"	together CLK1	-800	0 ()					"
I _{IL2}	"	134			"	"	"	"	"	"	"	"	"			"	RS1		"		"			"
	"	135			"	"	"	"	"	"	"	"	"			"	D1	-100	0.0 "	-100	.0 "			"
	"	136			"	"	"	"	"	"	"	**	"			"	SET1		"		"			"
	"	137			"	"	"	"	"	"	"	"	"			"	SET2		"		"			"
	"	138 139			"	"	"	"	"	"	"		"			"	D2 RS2		"		44			"
	"	140			"	"	"	"	"	"	"	"	"			"	CLK2		"		"			"
								<u> </u>											roup 4					
																			25°C					
Ci	3012	141			<u>7</u> /				GND	l			1		l	GND	CLK1	Min	Max					pF
O ₁	"	142			<u>.,</u>	7/			GIVD.							"	RS1		"					ρı "
	"	143				_	<u>7</u> /		"							"	D1	12	"					"
	"	144						<u>7</u> /	"	- ,						"	SET1	12	"					"
	"	145 146							"	<u>7</u> /	<u>7</u> /					"	SET2 D2		"					"
	"	147							"		<i>_L</i> /	<u>7</u> /				"	RS2		"					"
	"	148							"			_	<u>7</u> /			**	CLK2		"					"
																			roup 7 25°C	T /	Subgro			
																		Min	Max	I _A = 1	125°C Max	T _A = -	Max	
Truth	3014	149			5.0V	GND	GND	GND	GND	GND	GND	GND	5.0V			5.0V	None		IVIGA	IVIIII	IVIUX	IVIIII	IVIGA	
table	"	150			GND	**	"	"	"	"	"	**	GND			"	None	l 1						
test	"	151	L "	H	5.0V	"	" 5 0\/	"	"	"	" 5 0\/	"	5.0V	H	L "	"	All							
	"	152 153	"	"	5.0V GND	"	5.0V	"	"	44	5.0V "	66	5.0V GND	"	"	"	outputs "							
	"	154	Н	L	5.0V	"	"	"	"	"	"	"	5.0V	L	Н	"	44							
	"	155	L	Н	5.0V	5.0V	"	"	"	"	"	5.0V	5.0V	Н	L	"	"							
	"	156	"	"	GND	"	"	"	"	"	"	"	GND	"	"	"	"		_		_,			
	"	157 158	" H	L L	5.0V 5.0V	" GND	" GND	" 5.0V	"	5.0V	 GND	 GND	5.0V 5.0V	L L	H	"	"		S	ee notes	<u>ਲ</u> / and <u>9</u>	<u>d</u> /		
	"	159	"	"	GND	"	"	3.0 v	"	3.0 v	"	מאט	GND	"	"	"	"							
	"	160	"	"	5.0V	"	"	"	"	"	"	66	5.0V	"	"	"	"							
	"	161	"	"	5.0V	"	"	GND "	"	GND	"	"	5.0V	"	"	"	"							
	"	162 163	" L	" H	GND 5.0V	"	"	"	"	"	"	"	GND 5.0V		L	"	"							
	"	163	Н	H "	5.0V 5.0V	5.0V	"	5.0V	"	5.0V	"	5.0V	5.0V 5.0V	"	H	"	"							
	"	165	"	"	GND	"	"	"	"	"	"	**	GND	"	"	"	44							
	"	166	"	"	5.0V	66	"	"	"	"	"	"	5.0V	u	"	"	"	ノ						

TABLE III. Group A inspection for device type 51 – Continued.

Symbol	MIL-	Cases						Ter	minal c	onditions	s 1/						Measured			Test	limits			Unit
'	STD-	A,C,D,	Q1	Q1	CLK1	RS1	D1	SET1	Vss	SET2	D2	RS2	CLK2	Q2	Q2	V _{DD}	terminal	Subgr		Subgro		Subgro		
1	883	T,X,Y																T _A =		$T_A = 1$		T _A = -		
	method	Test no.	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Min	Max	Min	Max	Min	Max	
t _{PHL}	3003	167	OUT		IN				GND							5.0V	CLK1 to Q1	13	500	18	750	13	500	ns
	(Fig. 6)	168		OUT	IN				"							"	CLK1 to Q1	"	"	"	"	"	"	"
Į.	"	169 170							"				IN IN	OUT	OUT	"	CLK2 to Q2 CLK2 to Q2	"	"	"	"	"	"	"
t _{PHL}	3003	171		OUT				IN	"							"	SET1 to Q1	13	550	18	825	13	550	"
R or S	(Fig. 7)	172	OUT			IN			44	١				O. I.T.		"	RS1 to Q1	"	"	"	"	"	"	44
	"	173							44	IN		IN		OUT	OUT	"	SET2 to Q2	"	"	"	"	"	"	"
	0000	174	OUT		15.1				"			IIN			001	"	RS2 to Q2	"	"	"	"	"	"	"
t _{PLH}	3003 (Fig. 6)	175 176	OUT	OUT	IN IN				"							"	CLK1 to Q1 CLK1 to Q1	"	"	"	"	"	"	"
	(1 ig. 0)	177		001	""				44				IN		OUT	"	CLK2 to Q2	44	**	"	**	"	"	44
	"	178							"				IN	OUT		"	CLK2 to Q2	"	"	"	"	"	"	"
t _{PLH}	3003	179	OUT					IN	"							"	SET1 to Q1	13	420	18	630	13	420	"
R or S	(Fig. 7)	180		OUT		IN			"	INI					OUT	"	RS1 to Q1	"	"	"	"	"	"	"
1	66	181 182							"	IN		IN		OUT	001	"	SET2 to Q2 RS2 to Q2	"	"	"	"	"	"	"
t _{THL}	3004	183	OUT		IN				"							"	Q1	10	300	14	450	10	300	"
	(Fig. 6)	184		OUT	IN				44							"	Q1	"	**	"	"	"	"	44
	"	185							"				IN	OUT	OUT	"	<u>Q2</u>	"	"	"	"	"	"	"
t _{TLH}		186							-				IN	OUT		-	Q2						-	
TILH	"	187 188	OUT	OUT	IN IN				"							"	Q1	10	350	14	525	10	350	"
	44	189	001		IIN				44				IN	OUT		"	<u>Q1</u> Q2	"	"	"	"	"	44	"
	"	190							44				IN	001	OUT	"	Q2	"	44	"	"	"	"	44
f _{CL(MAX)}	(Fig. 6)	191	OUT		IN				"							"	CLK1							μS
<u>10</u> /	"	192	O. 1=										IN		OUT	"	CLK2		0.67		1.0		0.67	"
t _{TLHCL}	"	193 194	OUT		IN				"				IN		OUT	"	CLK1 CLK2	19.67 15		1.0 15		0.67 10		"
(max) 11/		194											IIN		001		CLNZ	ıυ		10		10		
t _p	"	195	OUT		IN				**							"	CLK1		15		10			ns
<u>12</u> /	"	196							"				IN		OUT	"	CLK2		300		450		300	"
t _{SHL}	(Fig.8)	197			IN		IN		"		INI		INI			"	D1 to CLK1	300	165	450	"	300	44	"
t _{SHL}	"	198 199			IN		IN		"		IN		IN			"	D2 to CLK2 D1 to CLK1		"	007	-	465	-	"
t _{SLH}	66	200			""		""		"		IN		IN			"	D2 to CLK1		"	225	"	165	"	"

45

TABLE III. Group A inspection for device type 51 – Continued.

Symbol	MIL-	Cases						Tei	minal c	onditions	s <u>1</u> /						Measured			Test	limits			Unit
	STD-	A,C,D,	Q1	Q1	CLK1	RS1	D1	SET1	Vss	SET2	D2	RS2	CLK2	Q2	Q2	V_{DD}	terminal	Subgr		Subgro		Subgro		i I
	883	1,X,Y																$T_A =$	25°C	$T_A = 1$	25°C	$T_A = -$	55°C	
	method	Test	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Min	Max	Min	Max	Min	Max	
		no.																						
t _{HHL}	(Fig. 9)	201			IN		IN		GND							5.0V	D1 to CLK1		150					ns
t _{HHL}		202							"		IN		IN			"	D2 to CLK2		"		"		"	"
t _{HLH}	"	203			IN		IN		"							"	D1 to CLK1			225		150		"
t _{HLH}	"	204							"		IN		IN			"	D2 to CLK2		66	220	66	100	"	"

- 1/ Pins not designated may be "high" level logic, "low" level logic, or open. Exceptions are as follows: V_{IC(pos)} tests, the V_{SS} terminal shall be open; V_{IC(neg)} tests, the V_{DD} terminal shall be open; I_{SS} tests, the output terminals shall be open.
- 2/ Test numbers 17 thru 38 shall be run in sequence.
- 3/ For input conditions, see figure 6.
- 4/ For input conditions, see figure 7.
- 5/ Apply a clock pulse
- 6/ The device manufacturer may, at his option, measure I_{IL} and I_{IH} at 25°C for each individual input or measure all inputs together.
- <u>7</u>/ See 4.4.1c.
- 8/ Test numbers 144 thru 166 shall be run in sequence and the functional tests shall be performed with V_{IH} and $V_{DD} \le 5.0$ V and ≥ 18.0 V.
- 9/ L = V_{SS} + 0.5 V maximum and H = V_{DD} 0.5 V minimum.
- 10/ The maximum clock frequency (f_{CL}) requirement is considered met if proper output state changes occur with the pulse repetition period set to that given in the limits column.
- 11/ Pulse repetition period = 100 μs, 50 percent duty cycle. The maximum clock transition time (t_{TLHCL}) requirement is considered met if proper output state changes occur with the rise time set to that given in the limits column.
- 12/ The minimum clock pulse width (tp) requirement is considered met if proper output state changes occur with the pulse width set to that given in the limits column.

TABLE III. Group A inspection for device type 52.

Symbol	MIL-	Cases							Ter	minal c	ondition	s 1/							Measured			Test	limits			Unit
-	STD- 883	E,F,N, Z	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subgr	oup 1	Subg	roup 2	Subgr		l
	test	Test		=	01.1/2	DOC	1/0	10	OFTC	.,	057	14	174	D04	01.14	-	0.4	.,		$T_A = 1$ Min	Max	I _A = '	125°C Max	T _A = -	Max	l
	method		Q2	Q2	CLK2	RS2	K2	J2	SET2	V _{SS}	SET1	J1	K1	RS1	CLK1	Q1	Q1	V_{DD}			Wax		Wax		IVIOX	<u> </u>
$V_{IC(pos)}$		2				1 mm A			1mA									GND	SET2		"					V
		2				1mA		1mA										"	RS2 J2	1.5	"					"
	1	4					1mA	IIIIA										"	K2	1.5	"					**
		5			1mA													"	CLK2		"					"
		6									1mA							"	SET1		"					"
		7										4 4		1mA				"	RS1		"					"
		8 9										1mA	1mA					"	J1 K1		"					"
		10											IIIIA		1mA			"	CLK1		"					"
V _{IC(neg)}									-1mA	GND									SET2							"
. 3/		12				-1mA				"									RS2		"					"
	11	13					1 1	-1mA		"									J2 K2	-6	"					"
		14 15			-1mA		-1mA			"									CLK2		"					"
		16			111111					"	-1mA								SET1		"					"
		17								"				-1mA					RS1		"					"
		18								"		-1mA							J1		"					"
		19 20								"			-1mA		-1mA				K1 CLK1		"					"
I _{SS} <u>2</u> /		21			GND	18.0V	18.0V	18.0V	GND	"	GND	GND	GND	GND	GND			18.0V	V _{SS}							μА
		22			18.0V	18.0V	"	"	"	"	"	"	"	"	"			"	None	0.3	5 "		"			"
		23			18.0V	GND	"	"	"	"	"	"	"	"	"			"	V _{SS}	-0.2		-2.5	"			"
		24 25			GND 18.0V	"	"	"	"	"	"	"	"	"	"			"	None V _{SS}		"		"			"
		26			10.0 V	"	GND	GND	44	"	"	"	"	**	"			44	V _{SS}		"		"			"
		27			44	18.0V	"	"	18.0V	"	"	"	"	**	"			44	V _{SS}		"		"			"
		28			GND	GND	"	"	GND	"	"	18.0V	18.0V	18.0V	"			"	V _{SS}		"		"			"
		29			"	"	"	"	"	"	"	"	"	18.0V	18.0V			"	None		"		"			
		30 31			"	"	"	"	"	"	"	"	"	GND "	18.0V GND			"	V _{SS}		"		"			"
		32			"	"	"	"	"	"	"	"	"	"	18.0V			"	None V _{SS}		"		"			"
		33			44	"	"	"	**	"	"	GND	GND	**	"			44	Vss		"		"			"
		34			"	66	66	**	"	"	18.0V	**	"	18.0V	66			и	V_{SS}		"		66			"
V_{OH5}	3006	35			"	"	"	"	15.0V	"	GND	"	"	GND	GND "			15.0V	<u>Q2</u> Q2	14.95		"		,,		"
	"	36 37			"	15.0V GND	"	"	GND "	"	GND	"	"	"	"			"	Q2	"	14.	95 "	14.9	95 "		"
	"	38			"	GND	"	"	"	"	15.0V GND	"	"	15.0V	"			"	<u>Q1</u> Q1	"		"		"	V	"
$V_{OL.5}$	3007	39			"	15.0V	"	"	"	"	"	"	"	GND	"			"	Q2							"
02.0	"	40			"	GND	66	"	15.0V	"	"	"	"	GND	"			"	Q2		"		"		"	"
	"	41			"	"	"	"	GND	"	"	"	"	15.0V	"			"	<u>Q1</u>	0.0	5 "	0.0	5 "	0.0	5 "	"
		42							GND		15.0V		-	GND					Q1		"		"		"	
V _{OH6}	3006	43			<u>3</u> /	"	15.0V	"	3/	"	GND	"	"	"	"			"	Q2	14.95	0.05	14.95	0.05	14.95	0.05	"
V _{OL6}	3007	44			<u>3</u> /		15.0V		<u>3</u> /		GND	"							Q2		0.05		0.05		0.05	
V_{OH6}	3006	45			GND	"	GND	"	GND	"	<u>3</u> /		15.0V	"	<u>3</u> /			44	Q1	14.95		14.95		14.95		"

MIL-M-38510/51F

TABLE III. Group A inspection for device type 52 – Continued.

Symbol	MIL-	Cases							Terr	ninal co	nditions	: 1/							Measured			Test	limits			Unit
,	STD-	E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal		roup 1	Subgr	oup 2	Subgr		
	883 test	Z															<u> </u>			T _A =	25°C Max	$T_A = 1$ Min	125°C Max	T _A = -	55°C Max	
	method	Test no.	Q2	Q2	CLK2	RS2	K2	J2	SET2	V _{SS}	SET1	J1	K1	RS1	CLK1	Q1	Q1	V_{DD}		IVIIN	IVIAX	IVIIN	iviax	IVIIN	wax	
V _{OL6}	3007 3007	46 47			GND 3/	GND "	GND "	GND 15.0V	GND 3/	GND "	<u>3</u> / GND	GND "	15.0V GND	GND "	<u>3</u> / GND			15.0V	<u>Q1</u> Q2		0.05		0.05		0.05	V "
V _{OH6}	3006	48			3/	"	"	15.0V	3/	"	GND	"	"	"	GND			"	Q2	14.95	5	14.95%	5	14.959	,	"
V _{OL6}	3007	49			GND	u	"	GND	GND	er.	3/	15.0V	"	"	3/			"	Q1		0.05		0.05		0.05	íí.
V _{OH6}	3006	50			GND	"	66	GND	GND	"	<u>3</u> /	15.0V	66	"	<u>3</u> /			"	Q1	14.95		14.95		14.95		"
V _{ICL3}		52			<u>4</u> / 4/	<u>4</u> / 4/	<u>4</u> / 4/	<u>4</u> / 4/	"	"	GND "	GND GND						"	CLK2 CLK2	4/	<u>4</u> /	4/	<u>4</u> /	4/	<u>4</u> /	"
V _{ICL3}		52			GND	GND	GND	GND	u	"	"	4/	<u>4</u> /	<u>4</u> /	<u>4</u> /			"	CLK2 CLK1	<u>4</u> /	<u>4</u> /	4/	4/	4/	4/	"
V _{ICL4}	51	54			"	GND	"	"	"	"	**	4/	4/	4/	4/			"	CLK1	<u>4</u> /		4/		<u>4</u> /		"
V _{IH1}	53				"	1.5V	"	"	3.5V	"	"	GND	GND	GND	GND			5.0V	<u>Q2</u> Q2	4.5		"		"		"
	00	56 57				3.5V 1.5V	1.5V	3.5V	1.5V "	"	"	"	"	"	"			"	Q2 Q2	"	4.5	"	4.5	"		"
	55	58			<u>5</u> / <u>5</u> /	1.5V	3.5V	1.5V	"	"	"	"	"	"	"			"	Q2 Q2	"	4.5	"	4.5	"	"	"
		59			GND	GND	GND	GND	GND	"	3.5V	"	"	1.5V	"			"	<u>Q1</u> Q1	"		"		"		"
		60 61			"	"	"	"	"	"	1.5V	3.5V	4 5\/	3.5V 1.5V	" E/			"	Q1 <u>Q1</u>	"		"		"		"
		62			"	"	"	"	"	"	"	3.5 V 1.5 V	1.5V 3.5V	1.5V 1.5V	<u>5</u> / 5/			"	Q1	"		"		"		"
V _{IH2}					"	3.0V	"	"	7.0V	"	GND	GND	GND	GND	GND			10.0V	<u>Q2</u> Q2	9.0						
		64			"	7.0V	/	" 7 0) /	3.0V	"	"	"	"	"	"			"	Q2	"		"		"		"
	63	65 66			<u>5</u> / <u>5</u> /	3.0V 3.0V	3.0V 7.0V	7.0V 3.0V	"	"	"	"	"	"	"			"	<u>Q2</u> Q2	"	9.0	44	9.0	"	"	"
		67			GND	GND	GND	GND	GND	"	7.0V	"	"	3.0V	**			"	Q1 Q1	"		"		"		"
		68			"	"	"	"	"	"	3.0V		"	7.0V				"		"		"		"		"
		69 70			"	"	"	"	"	"	"	7.0V 3.0V	3.0V 7.0V	3.0V 3.0V	<u>5</u> / 5/			"	<u>Q1</u> Q1	"		"		"		"
V _{IH3}		70			"	4.0V	"	"	11.0V	"	GND	GND	GND	GND	GND			15.0V	Q2 Q2	13.5						
		72			"	11.0V	"		4.0V	"	"	"	"	"	"			"	Q2	"		"		"		"
	71	73 74			<u>5</u> / <u>5</u> /	4.0V 4.0V	4.0V 11.0V	11.0V 4.0V	"	"	"	"	"	"	"			"	<u>Q2</u> Q2	"	13.	"	13.5	. "	"	"
		75			GND	GND	GND	GND	GND	"	11.0V	"	"	4.0V	"			"	Q1	"		"		66		"
		76			**	**	"	"	"	"	4.0V	"	"	11.0V	"			"	<u>Q1</u> Q1	"		"		"		"
		77 78			"	"	"	"	"	"	"	11.0V 4.0V	4.0V 11.0V	4.0V 4.0V	<u>5</u> / 5/			"	<u>Q1</u> Q1	"		"		"		"
V _{IL1}		10			"	3.5V	"	"	1.5V	"	GND	GND	GND	GND	GND			5.0V	Q2							íí.
- 121		80			"	1.5V	"	"	3.5V	"	"	"	"	**	"			**	<u>Q2</u> Q2		"		"		44	"
	79	81			<u>5</u> /	"	3.5V	1.5V	1.5V	"	"	"	"	"	"			"	<u>Q2</u> Q2	0.0	5 "	0.0	5 "	0.0	· "	"
	, ,	82 83			<u>5</u> / GND	GND	1.5V GND	3.5V GND	1.5V GND	"	1.5V	"	"	3.5V	"			"	Q2 Q1		"		"		"	"
		84			"	"	"	"	"	"	3.5V	"	"	1.5V	"			44	<u>Q1</u> Q1		"		"		"	"
		85			"	"	"	"	"	"	1.5V	1.5V	3.5V	"	<u>5</u> / 5/			"	Q1		"		"		"	"
		86		<u> </u>							1.5V	3.5V	1.5V		<u>5</u> /	<u> </u>	L		Q1	<u> </u>		ļ				

TABLE III. Group A inspection for device type 52 – Continued.

Symbol	MIL-	Cases							Ter	minal c	ondition	s 1/							Measured			Test	limits			Unit
	STD- 883	E,F,N, Z	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal		roup 1 25°C	Subg	roup 2 125°C	Subgr		
	test method	Test no.	Q2	Q2	CLK2	RS2	K2	J2	SET2	V _{SS}	SET1	J1	K1	RS1	CLK1	Q1	Q1	V _{DD}		Min	Max	Min	Max	Min	Max	
V _{IL2}		87			GND	7.0V	GND	GND	3.0V	GND	GND	GND	GND	GND	GND			10.0V	<u>Q2</u> <u>Q2</u>		,,		"		"	V
		88 89			GND 5/	3.0V "	GND 7.0V	GND 3.0V	7.0V 3.0V	"	"	"	"	"	"			"	Q2 Q2	1.0	"	1.0		1.0	"	"
		90			<u>5</u> / <u>5</u> /	"	3.0V	7.0V	3.0V	"	"	"	"	"	"			"	<u>Q2</u> Q2	1.0	"	1.0	"	1.0	"	"
		91 92			GND "	GND "	GND "	GND "	GND "	"	3.0V 7.0V	"	"	7.0V 3.0V	"			"	Q1 Q1		"		"		"	"
		93			"	"	"	"	"	"	3.0V	3.0V	7.0V	"	<u>5</u> /			"	Q1		"		"		"	"
V _{IL3}		94 95			"	11.0V	"	"	4.0V	"	3.0V GND	7.0V GND	3.0V GND	GND	<u>5</u> / GND			15.0V	Q1 Q2 Q2							"
120		96			"	4.0V	"	"	11.0V	"	"	"	"	"	"			"	<u>Q2</u>		"		"		"	"
		97 98			<u>5</u> / <u>5</u> /	"	11.0V 4.0V	4.0V 11.0V	4.0V 4.0V	"	"	"	"	"	"			"	Q2 Q2	1.5	"	1.5	"	1.5	"	"
		99			GND "	GND	GND	GND	GND	"	4.0V	"	"	11.0V	"			"	Q1 Q1		"		"		"	"
		100 101			"	"	"	"	"	"	11.0V 4.0V	4.0V	11.0V	4.0V	<u>5</u> /			"	Q1		"		"		"	"
		102	0.417		"	"	"	"	"	"	4.0V	11.0V	4.0V	"	<u>5</u> /			"	Q1	0.54	"		"		"	"
I _{OL1}		104	0.4V	0.4V	"	5.0V GND	"	"	5.0V	"	GND "	GND "	GND "	GND GND	GND "			5.0V	<u>Q2</u> Q2	0.51		"		"		"
	400	105			"	"	"	"	GND	"	"	"	"	5.0V	"	0.41/	0.4V	"	<u>Q1</u> Q1	"	0.36	"	0.64	l "	mA	"
I _{OL2}	103	106	1.5V		"	15.0V	u	"	"	u	5.0V GND	u	"	GND "	u	0.4V		15.0V	Q1 Q2	3.4		-				
OLE		108		1.5V	"	GND	"	"	15.0V	"	"	"	"	"	"			"	Q2 Q2	"		"		"		"
	107	109 110			"	"	"	"	GND "	"	15.0V	"	"	15.0V GND	"	1.5V	1.5V	"	Q1 Q1	"	2.4	"	4.2	"	"	"
I _{OH1}		111	4.6V		"	"	"	"	5.0V	"	GND	"	"	"	"			5.0V	Q2 Q2	-0.51		"		"		
		112 113		4.6V	"	5.0V GND	"	"	GND "	"	GND 5.0V	"	"	"	"		4.6V	"	Q2 Q1	"	-0.3		-0.6			"
		114			"	"	"	"	"	"	GND "	"	"	5.0V	"	4.6V		"	Q1 Q1	"		"		"	"	"
I _{OH2}		115 116	13.5V	13.5V	"	 15.0V	"	"	15.0V GND	"	"	"	"	GND "	"			15.0V	<u>Q2</u> Q2	-3.4		"		"		"
		117			"	GND	"	"	"	"	15.0V	"	"	"	"	40 => 4	13.5V	"	Q1 Q1	"	-2.4	. "	-4.2	"	"	"
I _{IH1}	3010	118 119			18.0V	GND 18.0V	18.0V	18.0V	18.0V	"	GND 18.0V	18.0V	18.0V	15.0V 18.0V	18.0V	13.5V		18.0V				-				nA
<u>6</u> /	0010	110			10.01	10.01	10.01	10.01	10.01		10.01	10.01	10.01	10.01	10.01			10.01	inputs	100	0.0					1,,,
I _{IH2}	"	120			"	"	"	"	"	"	"	"	"	"	"			"	together CLK2	100	0.0					"
-1172	"	121			"	"	"	"	"	"	"	"	"	"	"			"	RS2	400	. "	100	" .0 "			"
	"	122 123			"	"	"	"	"	"	"	"	"	"	"			"	K2 J2	100	.0 "	100				"
	"	124			"	"	"	"	"	"	"	"	"	"	"			"	SET2		"		"			"
	"	125 126			"	"	"	"	"	"	"	"	"	"	"			"	SET1 J1		"		"			"
	"	127			"	"	"	"	"	"	"	"	"	"	"			"	K1		"		"			"
	"				"	"	"	"	"	"	"	"	"	"	"			"			"		"			"
	"	128 129			"	"	"	"	"	"	u	"	"	"	"			"	RS1 CLK1		"		u			_

TABLE III. Group A inspection for device type 52 – Continued.

Symbol	MIL-	Cases							Terr	ninal co	nditions	: 1/							Measured			Test	limits			Unit
	STD-	E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subg	roup 1		roup 2	Subgr	oup 3	1
	883	Z]	T _A =	25°C	$T_A = 1$	125°C	$T_A = -$		
	test	Test	Q2	Q2	CLK2	RS2	K2	J2	SET2	V_{SS}	SET1	J1	K1	RS1	CLK1	Q1	Q1	V_{DD}		Min	Max	Min	Max	Min	Max	
	method	no.																								
I _{IL1} <u>6</u> /	3009	130			GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND			18.0V	All							nA
<u>o</u> /																			inputs together	-100	00					
I _{IL2}	"	131			"	"	"	"	"	"	"	"	"	"	"			"	CLK2							"
'ILZ	"	132			"	"	"	"	"	"	"	"	"	"	"			"	RS2		"		"			**
	"	133			"	44	44	"	"	"	**	"	44	"	"			**	K2	-100	0 "	-10	0 "			"
	"	134			"	"	"	"	"	"	"	"	"	"	"			"	J2		"		"			"
	"	135			"	"	"	"	"	"	"	"	"	"	"			"	SET2		"		"			**
	"	136			"	44	"	"	"	"	"	"	44	"	"			"	SET1		"		44			"
	"	137			"		"	"	"	"	"	"	"	"	"			"	J1		"		"			"
	"	138			"	"	"	"	"	"	"	"		"				"	K1		"					"
	"	139			"	44	"	"	"	"	"	"	"	"	"			"	RS1 CLK1		"		"			"
		140				-						<u> </u>				<u> </u>			CLKI	Cuba	roup 4					
																					25°C					
																				Min	Max	1				
Ci	3012	141			<u>7</u> /					GND		1				1		GND	CLK2	IVIIII	IVIAX					I
O ₁	"	142			<u></u>	<u>7</u> /				GIVD.								"	RS2		"					**
	"	143					<u>7</u> /			"								44	K2	40	"					"
	"	144					_	<u>7</u> /		"								"	J2	12	"					"
	"	145						_	<u>7</u> /	"								"	SET2		"					"
	"	146								"	<u>7</u> /							**	SET1		"					"
	"	147								"		<u>7</u> /	_,					"	J1		"			pF		"
	"	148								"			<u>7</u> /	٠,				"	K1							"
	"	149 150								"				<u>7</u> /	7/			"	RS1 CLK1		"					"
		130										l		l	<u>I</u> /	l			CLKT	Suba	roup 7		Suba	roup 8		
																					25°C	T 1	125°C	$T_A = -$	55°C	-
																				Min	Max	Min	Max	Min	Max	
Truth	3014	151			5.0V	GND	5.0V	GND	GND	GND	GND	GND	5.0V	GND	5.0V			5.0V	None		IVIGA	141111	IVIAX	IVIIII	IVIGA	
table	"	152			GND	"	"	"	"	"	"	"	"	"	GND			ű.ű	None	١ ١						
test	"	153	L	Н	5.0V	"	"	"	"	"	"	"	"	"	5.0V	Н	L	"	All							
	"	154	"	66	5.0V	44	GND	"	"	"	"	"	GND	"	5.0V	"	"	"	outputs							
	"	155	"	"	GND	**	"	"	"	"	"	"	"	"	GND	"	"	"	"							
	"	156	"	"	5.0V	"	"	" 5 0) /	"	"	"	- "	44	"	5.0V	"	"	"	"							
	"	157		"	5.0V		"	5.0V	"	"	"	5.0V	"	"	5.0V	"	"		"							
	"	158 159	Н	L	GND 5.0V	"	"	"	"	"	"	"	"	**	GND 5.0V	L	Н	**	"	(
	"	160	"	"	5.0V 5.0V	44	44	GND	"	"	"	GND	"	"	5.0V 5.0V	"	"	"	"	/		See <u>8</u> /	and Q/			
	"	161	"	"	GND	"	"	GIVD	"	"	"	"	"	"	GND	**	"	**	"			∪ee <u>o</u> /	anu <u>3</u> /			
	"	162	"	"	5.0V	"	"	"	"	"	"	"	"	"	5.0V	"	"	"	"							
	"	163	"	44	5.0V	44	5.0V	5.0V	"	"	"	5.0V	5.0V	"	5.0V	"	"	"	"							
	"	164	"	"	GND	**	44	"	"	"	"	"	"	"	GND	"	44	**	"							
	"	165	L	Н	5.0V	44	44	"	"	"	"	"	"	"	5.0V	Н	L	"	"							
	"	166	Н	L	5.0V	**	"	GND	5.0V	"	5.0V	GND	"	"	5.0V	L	Н	"	"							
	"	167	H	L	GND	- "		"	5.0V	"	5.0V	"			GND	L	H	"	"							
	"	168	L I	Н	GND	5.0V	GND	"	GND	"	GND GND	"	GND GND	5.0V	GND	Н	L		"							
		169	L	Н	5.0V	5.0V	GND		GND		GIND	l	GIND	5.0V	5.0V	Н	_ L									

Symbol		Cases							Tern	ninal co	nditions	<u>1</u> /							Measured			Test	limits			Unit
	STD-	E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subg	roup 7		Subgr	oup 8		1
	883	Z																								1
	test	Test	Q2	Q2	CLK2	RS2	K2	J2	SET2	V_{SS}	SET1	J1	K1	RS1	CLK1	Q1	Q1	V_{DD}		$T_A =$	25°C	$T_A = 1$	25°C	$T_A = -$	55°C	1
T (1	method	no.			5.01/	GND	GND	OND	5.0V	GND	F 0\/	GND	GND	OND	5 OV				A.II	_						—
Truth table	3014	170 171	H	L "	5.0V 5.0V	GND "	5.0V	GND "	GND	GND "	5.0V GND	GND "	5.0V	GND "	5.0V 5.0V	L "	H	5.0V	All outputs	1 1						1
test	"	172	"	"	GND	"	3.0 V	"	"	"	"	"	3.0 V	"	GND	"	"	"	"							l
1001	"	173	1	Н	5.0V	**	44	"	"	"	"	"	"	"	5.0V	Н	L	"	66							l
	"	174	"	"	5.0V	"	"	5.0V	"	"	"	5.0V	"	"	5.0V	"	"	"	"							l
	"	175	66	"	GND	**	44	"	"	"	"	"	"	"	GND	"	"	"	66							l
	"	176	Н	L	5.0V	"	"	"	"	"	"	"	"	"	5.0V	L	Н	"	"	\		See <u>8</u> /	and <u>9</u> /			l
	"	177	L	Н	5.0V	5.0V	"	"	"	"	"	"	"	5.0V	5.0V	Н	L	"	66							Ì
	"	178	**	"	GND	"	44	"	"	"	"	"	"	"	GND	"	"	"	"							Ì
	"	179		"	5.0V					"	- 0) /		"	"	5.0V	"	"	"	"							Ì
	"	180	H		5.0V	"	GND	GND	5.0V		5.0V	GND	GND	"	5.0V	"	H		"							Ì
	"	181 182		,,	GND 5.0V	"	"	"		"	"	"	"	"	GND 5.0V	,,	"	"	"	1)						Ì
		102		l	5.00			l	l			l	l		5.00	l				Suba	roup 9	Cubar	oup 10	Subgro	Nun 11	-
																					25°C	$T_A = 1$		$T_A = -$		l
																				Min	Max	Min	Max	Min	Max	l
t _{PHI}	3003	183	OUT		IN					GND								5.0V	CLK2 to Q2	13	575	18	865	13	575	ns
YPHL	Fig.	184	001	OUT	İN					"								ű.ű	CLK2 to Q2	"	"	"	"	"	"	"
	12	185		00.	"'					"					IN		OUT	"	CLK1 to Q1	"	"	"	"	"	"	"
	"	186								"					IN	OUT		"	CLK1 to Q1	"	"	"	"	"	"	"
t _{PHL}	3003	187	OUT							"								"	RS2 to Q2	13	600	18	900	13	600	"
R or S	Fig.	188		OUT					IN	"								"	SET2 to Q2	"	"	"	"	"	"	"
	13	189			IN					"				IN			OUT	"	RS1 to Q1	"	"	"	**	"	"	"
	"	190								"	IN					OUT		"	SET1 to Q1	"	íí	"	"	u	"	"
t _{PLH}	3003	191	OUT	O	IN					"								"	CLK2 to Q2	13	625	18	940	13	625	
	Fig.	192		OUT	IN					"							OUT		CLK2 to Q2	"	"		"	"	"	
	12	193 194								"					IN IN	OUT	001	"	CLK1 to Q1 CLK1 to Q1	**	"	"	"	"	**	"
+	3003	194	OUT						IN	"					IIN	001		"	SET2 to Q2	13	400	18	600	13	400	"
R or S	Fig.	195	001	OUT		IN			IIN	"								"	RS2 to Q2	"	400	"	"	"	400	"
1, 0, 0	13	197		551						"	IN						OUT	"	SET1 to Q1	"	"	"	"	"	"	"
	"	198								"				IN		OUT	001	"	RS1 to Q1	"	"	"	"	"	"	"
t _{THL}	3004	199	OUT		IN					"								"	Q2	10	325	14	490	10	325	"
	Fig.	200		OUT	IN					"								"	Q2	"	"	"	"	"	"	"
	12	201								"					IN		OUT	"	Q1	**	"	"	**	"	44	"
	"	202								"					IN	OUT		"	Q1	"	"	"	"	"	"	"
t_{TLH}	"	203	OUT		IN					"								"	<u>Q2</u>	**	"	"	**	"	44	"
	"	204		OUT	IN					"							a: :=	"	Q2	"	"	"	"	"	"	"
	"	205								"					IN	Q. :-	OUT	,,	<u>Q1</u>	"	"	"	"	"	"	"
_	"	206	OUT		INI					"					IN	OUT	!		Q1	<u> </u>			-	-	-	
t _{CL(max)}	"	207 208	OUT		IN					"					IN		OUT	"	CLK2 CLK1		1.0		1 1		1.0	μS "
<u>10</u> /	l	200		l	l			l	l			l	l		IIN	l	001	İ	CLKI	1.0			1.4	4.0	1.0	
																				1.0		1.4		1.0		

TABLE III. Group A inspection for device type 52 – Continued.

TABLE III. Group A inspection for device type 52 - Continued.

Symbol	MIL-	Cases		,	,	•	•	•	Tern	ninal co	nditions	1/	•	,	,		•	,	Measured		•	Test	limits	•	•	Unit
	STD-	E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subgr	oup 9	Subgr	oup 10	Subgro	oup 11	Í
	883	Z																		T _A =	25°C	$T_A =$	125°C	$T_A = \cdot$	-55°C	
	test method	Test no.	Q2	Q2	CLK2	RS2	K2	J2	SET2	V _{SS}	SET1	J1	K1	RS1	CLK1	Q1	Q1	V_{DD}		Min	Max	Min	Max	Min	Max	
t _{TLHCL}	Fig.	209	OUT		IN					GND								5.0V	CLK2	15						μS
<u>11</u> /	12	210								"					IN		OUT	"	CLK1	15		15		10		μS
t _p	"	211	OUT		IN					"								"	CLK2		15		10			ns
<u>12</u> /	"	212								"					IN		OUT	"	CLK1		300		450		300	ns
t_{SHL}	Fig.	213	OUT				IN			"								"	K2 to CLK2	300		450		300	1	"
	14	214	OUT		IN			IN		"								"	J2 to CLK2		"		"		"	"
	"	215		IN						"			IN		IN		OUT	"	K1 to CLK1	165		225		165		"
	"	216								"		IN			IN		OUT	"	J1 to CLK1		**		"		**	"
t_{SLH}	"	217	OUT				IN			"								**	K2 to CLK2							"
	"	218	OUT		IN			IN		"								"	J2 to CLK2		"		"		"	"
		219		IN									IN		IN		OUT	"	K1 to CLK1	"	"	"	"	"		l ",
		220	~									IN			IN		OUT		J1 to CLK1							<u> </u>
t _{HLH}		221	OUT				IN			"								"	K2 to CLK2		"		"		"	
		222	OUT		IN			IN										"	J2 to CLK2				"	450		l "
	"	223		IN						"		INI	IN		IN		OUT	"	K1 to CLK1	150	"	**	"	150	"	
	"	224	01.17							,,		IN			IN		OUT	"	J1 to CLK1							
t _{HHL}	"	225	OUT		INI		IN	INI		"								"	K2 to CLK2		"		"		"	
		226	OUT		IN			IN		"			INI		INI		OUT	"	J2 to CLK2		"		"		"	
	"	227 228		IN						"		IN	IN		IN IN		OUT	"	K1 to CLK1 J1 to CLK1	"	"	"	"	"	"	"

- $\underline{1}/$ Pins not designated may be "high" level logic, "low" level logic, or open. Exceptions are as follows: $V_{IC(pos)}$ tests, the V_{SS} terminal shall be open; $_{IC(neg)}$ tests, the V_{DD} terminal shall be open; I_{SS} tests, the output terminal shall be open. V
- 2/ Test numbers 21 thru 34 shall be run in sequence.
- 3/ For input voltage conditions, see figure 10.
- 4/ For input voltage conditions, see figure 11.
- 5/ Apply a clock pulse
- $\underline{6}/$ The device manufacturer may, at his option, measure I_{IL} and I_{IH} at $^{\circ}C$ for each individual input or measure all inputs together.
- <u>₹</u>5 See 4.4.1c.

- $\underline{8}$ / Test numbers 151 thru 182 shall be run in sequence and the functional tests shall be performed with V_{IH} and V_{DD} ≤ 5.0 V and ≥ 18.0 V.
- 9/ L = V_{SS} + 0.5 V maximum and H = V_{DD} 0.5 V minimum.
- 10/ The maximum clock frequency (f_{CL}) requirement is considered met if proper output state changes occur with the pulse repetition period set to that given in the limits column.
- 11/ Pulse repetition period = 100 μ s, 50 percent duty cycle. The maximum clock transition time (t_{TLHCL}) requirement is considered met if proper output state changes occur with the rise time set to that given in the limits column.
- 12/ The minimum clock pulse width (t_p) requirement is considered met if proper output state changes occur with the pulse width set to that given in the limits column.

TABLE III. Group A inspection for device type 53.

Symbol	MIL-	Cases							Ter	minal c	ondition	s 1/							Measured			Tes	t limits			Unit
	STD-	E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subgr		Subg	roup 2	Subgr		1
	883	Z																		$T_A = 2$			125°C		-55°C	
	test method	Test	Q4	Q1	R1	S1	E	S2	R2	V_{SS}	Q2	Q3	R3	S3	NC	S4	R4	V_{DD}		Min	Max	Min	Max	Min	Max	
V _{IC(pos)}	metriou	no.			1mA													GND	R1							V
VIC(pos)		2			1110	1mA												"	S1		"					"
		3					1mA											"	E	1.5						"
	1	4						1mA										"	S2		"					"
		5 6							1mA				1mA					"	R2 R3		"					"
		7											IIIIA	1mA				**	S3		"					"
		8												111111		1mA		"	S4		"					"
		9															1mA	"	R4		**					"
V _{IC(neg)}					-1mA					GND "											"					"
		11 12				-1mA	-1mA			"									S1 E		"					"
	10	13					- IIIIA	-1mA		**								R1	S2	-6	"					"
		14						11117	-1mA	"								KI	R2		"					"
		15								44			-1mA						R3		"					"
		16								"				-1mA					S3		"					"
		17 18								"						-1mA	-1mA		S4 R4		"					"
I _{SS}		10			GND	18.0V	18.0V	18.0V	GND	66			GND	18.0V			GND	18V	V _{SS}							μА
2/		20			GND	GND	"	GND	GND	"			GND	GND		GND V "	GND	"	" 55		"		**			"
_	10	21			18.0V	"	"	"	18.0V	**			18.0V	"	18.0		18.0V	**	"	-1.0		-2.5				"
	19	22			GND	"	"	"	GND	"			GND	"		"	GND	"	"		"		"			"
		23 24			18.0V GND	18.0V GND	GND	18.0V GND	18.0V GND	"			18.0V GND	18.0V GND		18.0V GND	18.0V GND	"	"		"		"			"
V _{OH5}	3006	25			"	15.0V	15.0V	GND	"	"			"	"		GIND	"	15.0V	Q1	14.95						
V OH5	"	26			"	GND	"	15.0V	"	**			"	"		"	"	10.0 0	Q2	14.55		"		"		**
	"	27			"	"	"	GND	"	"			"	15.0V		"	"	"	Q3	"	14.	.95 "	14.9	95 "	V	"
	"	28			"	"	"	GND	"	u			"	GND		15.0V	"	ű	Q4	"		"		"	V	"
V_{OL5}	3007	29			15.0V	45.0\/	"	15.0V	15.0V	"			15.0V	15.0V		"	15.0V	"	Q1		"		"		"	"
	"	30 31			"	15.0V	"	GND 15.0V	"	"			"	15.0V GND		"	"	"	Q2 Q3	0.0	5 "	0.0		0.0		"
	66	32			"	"	"	15.0V	44	**			"	15.0V	"	GND	"	**	Q4		"	0.0	"	0.00	"	"
V _{IH1}					1.5V	3.5V	3.5V	GND	GND	u			GND	GND			GND	5.0V	Q1	4.5			1			
		34			3.5V	3.5V	"	GND	GND	"			"	"		"	"	"	Q1	"		"		"		"
	33	35			GND	GND	"	3.5V	1.5V	"			"	"	"	"	"	"	Q2	"	4.5	· "	4.5	"	"	"
		36 37			"	"	"	3.5V GND	3.5V GND	"			1.5V	3.5V		"	"	"	Q2 Q3	"		"		"		"
		38			"	"	"	"	"	"			3.5V	3.5V		"	"	"	Q3	"		"		"		"
		39			"	"	"	44	44	"			GND	GND		3.5V	1.5V	"	Q4	"		"		"		"
		40			"	"	"	"	"	"			"	"		3.5V	3.5V	"	Q4	"		"		ű		"
V_{IH2}		40			3.0V	7.0V	7.0V	"	"	"			"	"		"	GND	10.0V	Q1	9.0		"		"		"
		42			7.0V	7.0V GND	"			"			"	"	GN		"	"	Q1 Q2	"						"
	41	43 44			GND "	GIND "	"	7.0V 7.0V	3.0V 7.0V	"			"	"	GIV	"	"	"	Q2 Q2	"	9.0	"	9.0	"	"	"
		45			"	"	"	GND	GND	"			3.0V	7.0V		"	"	"	Q3	"		"		"		"
		46			"	"	"	44	44	"			7.0V	7.0V		"	"	"	Q3	"		"		"		"
		47			"	"	"	"	"	"			GND	GND		7.0V	3.0V	"	Q4	"		"		"		"
		48						"	"							7.0V	7.0V		Q4							

TABLE III. Group A inspection for device type 53 – Continued.

Symbol	MIL-	Cases							Ter	minal c	ondition	s <u>1</u> /							Measured			Test	limits			Unit
		E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subgr		Subgr		Subgr		
	883 test	Z Test																		$T_A = 2$ Min	25°C Max	$T_A = 1$ Min	Max	T _A = -	55°C Max	
	method	no.	Q4	Q1	R1	S1	Е	S2	R2	V_{SS}	Q2	Q3	R3	S3	NC	S4	R4	V_{DD}		IVIIII	IVIAX	IVIIII	IVIAX	IVIIII	IVIAX	
V _{IH3}					4.0V	11.0V	11.0V	GND	GND	GND			GND	GND		"	GND	15.0V	Q1	13.5		"		"		"
		50 51			11.0V GND	11.0V GND	"	GND 11.0V	GND 4.0V	"			"	"	GN		"	"	Q1 Q2	"	13.		13.5			"
	49	52			GIND "	GIND "	**	11.0V	11.0V	"			**	"	OIV	"	44	"	Q2 Q2	"		"	13.0	"	V	"
		53			"	"	**	GND	GND	"			4.0V	11.0V		"	"	"	Q3	"		"		"		"
		54			"	"	"	"	"	"			11.0V	11.0V			"	"	Q3	"		"		"		"
		55 56			"	"	"	"	"	"			GND "	GND "		11.0V 11.0V	4.0V 11.0V	"	Q4 Q4	"		"		"		"
V _{IL1}		36			3.5V	1.5V	3.5V	"	"	"			"	"		GND	GND	5.0V	Q4 Q1							"
- 151		58			GND	GND	"	1.5V	3.5V	"			"	"		"	"	"	Q2		"		66		"	"
	57	59			"	"	"	GND	GND	"			3.5V	1.5V		"	"	"	Q3	0.5	"	0.5	"	0.5	"	"
\/	31	60			7.0V	3.0V	7.0V	"	"				GND "	GND "		1.5V GND	3.5V GND	10.0V	Q4 Q1							
V_{IL2}		62			GND	GND	7.00	3.0V	7.0V	"			"	"		GND "	GND "	10.00	Q1 Q2		"		66		"	"
		63			"	"	66	GND	GND	**			7.0V	3.0V		"	44	"	Q3	1.0	"	1.0	"	1.0	"	"
	61	64			"	"	"	"	"	"			GND	GND		3.0V	7.0V	"	Q4		"	1.0	"	1.0	íí.	"
V_{IL3}		65			11.0V	4.0V	11.0V	4 0) /	" 11.0V	"			"	"		GND	GND "	15.0V	Q1 Q2		"		"		"	"
		66 67			GND "	GND "	**	4.0V GND	GND	"			11.0V	4.0V		"	"	**	Q2 Q3	1.5	"	1.5	66	1.5	"	"
		68			"	"	"	"	"	"			GND	GND		4.0V	11.0V	"	Q4	1.0	"	1.5	"	1.5	"	"
I _{OL1}		69		0.4V	5.0V	"	5.0V	"	"	"			"	"			GND	5.0V	Q1	0.51						
		70 71			GND	"	"	"	5.0V GND	"	0.4V	0.4V	" 5.0V	"	GNI		"	"	Q2 Q3	"	0.3	6 "	0.64	"		"
		72	0.4V		"	"	"	"	GIND "	"		0.4 V	GND	"	GIVI	"	5.0V	"	Q3 Q4	"	0.0	"	0.64	"	mA	"
I _{OL2}		73	0	1.5V	15.0V	"	15.0V	"	"	"			"	"			GND	15.0V	Q1	3.4						
		74			GND	"	"	"	15.0V	"	1.5V		"	"		"	"	"	Q2	"		"		"		"
		75 76	1.5V		"	"	"	"	GND "	"		1.5V	15.0V GND	"	"	"	15.0V	"	Q3 Q4	"	2.4	"	4.2	"	"	"
I _{OH1}		77	1.57	4.6V	"	5.0V	5.0V	"	"	u			"	"		"	GND	5.0V	Q4 Q1	-0.51						
•опі		78			"	GND	"	5.0V	"	"	4.6V		"	"		"	"	"	Q2	"		"		"		"
		79	4.00		"	"	"	GND	"	"		4.6V	"	5.0V		"	"	"	Q3	"	-0.3	36 "	-0.6	4 "	"	"
		80 81	4.6V	13.5V	"	" 15.0V	" 15.0V	"	"	"			"	GND "		5.0V GND	"	" 15.0V	Q4 Q1	-3.4						
I _{OH2}		82		13.57	"	GND	15.07	15.0V	"	"	13.5V		"	"		GIND.	"	15.07	Q1 Q2	-3.4		í,		"		"
		83			"	"	"	GND	"	"		13.5V	"	15.0V		"	"	"	Q3	44	-2.		-4.2	"	"	"
		84	13.5V		"	"	"	GND	"	"			íí	GND		15.0V	"	"	Q4	"		íí		u		"
I _{IH1}	3010	85			18.0V	18.0V	18.0V	18.0V	18.0V	**				18.0V		18.0V	18.0V	18.0V	All		9					nΑ
<u>3</u> /												18.0	V						inputs together							

MIL-M-38510/51F

TABLE III. Group A inspection for device type 53 – Continued.

Symbol	MIL-	Cases							Ter	minal co	ndition	s 1/							Measured			Test	limits			Unit
3,501		E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subgr	oup 1		roup 2	Subgr	oup 3	J
	883	Z																		$T_A = 2$	25°C		125°C	$T_A = -$	55°C	
	test method	Test no.	Q4	Q1	R1	S1	Е	S2	R2	Vss	Q2	Q3	R3	S3	NC	S4	R4	V_{DD}		Min	Max	Min	Max	Min	Max	
I _{IH2}	3010	86			18.0V	18.0V	18.0V	18.0V	18.0V	GND			18.0V	18.0V		"	18.0V	18.0V	R1		"		66			nA "
		87 88			"	"	"	"	"	"			"	"	18.0	 V "	"	"	S1 E	1.0	"		"			"
	"	89			"	"	"	"	"	"			"	"		"	"	"	S2	1.0	"	45	"			"
	"	90			"	"	"	"	"	"			"	"		"	"	"	R2		"		66			"
	66	91			"	44	66	"	"	"			66	"		"	"	"	R3		"		66			"
	"	92			"	"	"	"	"	"			"	"		"	"	"	S3		"		"			"
	"	93 94			"		"	"	"	"			"	"		"	"		S4 R4		"		"			"
I _{IL1}	3009	95				GND	GND	GND	GND	66			GND	GND		GND	GND	44	All		-9					u
3/	3003	33				CIVE	OND	OND	OND				CIVE	OND		CIVE	OND		inputs							
				GN	Þ														together							
I_{IL2}	"	96			"	"	"	"	"	"			"	"		"	"	"	R1				"			"
	"	97			"	"	"	"	"	"			"	"		"	"	"	S1	-1.0	"		,,			"
	66	98 99			"	"	"	"	"	"			"	"	"	"	"	"	E S2	-1.0	"	-45	"			"
	"	100			"	"	"	"	"	"			"	"		"	"	"	R2		"		"			"
	66	101			"	"	66	"	"	"			"	"		"	"	"	R3		"		66			"
	66	102			"	"	**	"	"	"			**	"		"	"	"	S3		"		"			"
	66	103			"	"	"	"	"	"			"	"		"	"	"	S4 R4		"		"			"
		104							-	-									K4	Subgre	oup 4					
																				$T_A = 2$	25°C					
																					Max					
Ci	3012	105			<u>4</u> /					GND								GND	R1							pF "
	"	106				<u>4</u> /	47			"								"	S1		"					"
	"	107 108					<u>4</u> /	<u>4</u> /		"								"	E S2	12	"					"
	"	108						4/	<u>4</u> /	"								"	R2		"					"
	66	110								"			<u>4</u> /					"	R3		"					"
	66	111								"			_	<u>4</u> /				"	S3		"					"
	66	112								"						<u>4</u> /	.,	"	S4		"					"
		113															<u>4</u> /		R4	Cubar	" 7		Cubar	O		
																				Subgroup $T_A = 2$		T _A = '	Subgr	T _A = -	55°€	
																					Max	Min	Max	Min	Max	
Truth	3014	114	L	Н	L	Н	5.0V	L	Н	GND	L	Н	L	Н			Н	5.0V	All	7	IVIUX	I IVIIII	IVIUX	141111	ivian	
table	"	115	L	Н	L	L	"	L	L	"	L	Н	L	L		L	L	"	outputs							
test	"	116	Н	L	Н	L	"	Н	L	"	Н	L	Н	L	L	Н	L	"	"	\		_				
	"	117	H	L	L	L	"	L	L	"	H	L	L	L	L	L	L	"	"			See <u>5</u>	/ and <u>6</u> /			
	"	118 119	L H	H	H H	H	"	L H	H	"	L H	H L	H H	H L		L H	H	"	"							
	l	110										_		_				l .								

TABLE III. Group A inspection for device type 53 – Continued.

Symbol	MIL-	Cases							Ter	minal co	nditions	<u>1</u> /							Measured			Test	limits			Unit
	STD- 883	E,F,N, Z	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subgr T _A = 1			oup 10 125°C		oup 11 -55°C	
	test method	Test no.	Q4	Q1	R1	S1	Е	S2	R2	V _{SS}	Q2	Q3	R3	S3	NC	S4	R4	V _{DD}		Min	Max	Min	Max	Min	Max	
t _{PHL} R	3003 Fig. 15	120 121 122		OUT	IN		5.0V "		IN	GND "	OUT	OUT	IN					5.0V "	R1 to Q1 R2 to Q2 R3 to Q3	10	320	14	370	10	270	ns "
	"	123	OUT	01.17			"			"							IN	"	R4 to Q4	"	"	"	"	"	"	"
t _{PLH}	"	124 125 126 127	OUT	OUT		IN	"	IN		"	OUT	OUT		IN		IN		"	S1 to Q1 S2 to Q2 S3 to Q3 S4 to Q4	10	200	10	245	9 "	185	"
t _{PZH}	Fig. 16	128		OUT	GND	5.0V	IN	GND	GND	"			GND	GND		GND	GND	"	E to Q1				340		230	"
t _{PHZ}	"	129 130 131	OUT		"	GND "	"	5.0V GND "	"	"	OUT	OUT	"	GND 5.0V GND		" 5.0V	"	"	E to Q2 E to Q3 E to Q4	230	"		"		"	"
t _{PZL}	"	132		OÜT	5.0V	"	"	"	"	"			"	"		GND	"	"	E to Q1	"			240	"	180	"
t _{PLZ}	"	133 134 135	OUT	GNI	" D "	"	"	"	5.0V GND GND	"	OUT	OUT	5.0V GND	"		"	" 5.0V	"	E to Q2 E to Q3 E to Q4	180	"		"		"	"
t _{THL}	3004 Fig. 15	136 137 138 139	OUT	OUT		IN	5.0V "	IN		"	OUT	OUT		IN		IN		"	Q1 Q2 Q3 Q4	10	200	14	245	10	185	"
t _{TLH}	"	140 141 142 143	OUT	OUT		IN	"	IN		"	OUT	OUT		IN		IN		"	Q1 Q2 Q3 Q4	10	300	18	360	10	250	"

- $\underline{1}$ / Pins not designated may be "high" level logic, "low" level logic, or open. Exceptions are as follows: $V_{IC(pos)}$ tests, the V_{SS} terminal shall be open; $V_{IC(neg)}$ tests, the V_{DD} terminal shall be open; V_{IS} tests, the output terminals shall be open.
- 2/ Test numbers 19 thru 24 shall be run in sequence.
- 3/ The device manufacturer may, at his options, measure I_{IL} and I_{IH} at 25°C for each individual input or measure all inputs together.
- <u>4</u>/ See 4.4.1c.
- 5/ Test numbers 114 thru 119 shall be run in sequence and the functional tests shall be performed with V_{IH} and $V_{DD} \le 5.0$ V and ≥ 18.0 V.
- $\underline{6}$ / L = V_{SS} + 0.5 V maximum and H = V_{DD} 0.5 V minimum.

- 4.4.4 <u>Group D inspection.</u> Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.
- 4.4.5 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.7 herein). RHA levels for device classes B and S shall be as specified in MIL-PRF-38535 and 4.5.4 herein.
 - 4.5 Methods of inspection. Methods of inspection shall be specified and as follows:
- 4.5.1 <u>Voltage and current</u>. Unless otherwise specified, all voltages given are referenced to the microcircuit V_{SS} terminal. Currents given are conventional current and positive when flowing into the referenced terminal.
- 4.5.2 <u>Burn-in and life test cool down procedures</u>. When the burn-in and life tests are completed and prior to removal of bias voltages, the devices under test (DUT) shall be cooled to a temperature of 25° C $\pm 3^{\circ}$ C; then, electrical parameter endpoint measurements shall be performed.

Parameter 1/		Device	types	
	01, 02	03	51, 52	53
I _{SS}	±75 nA	±250 nA	±75 nA	±250 nA
V_{OL1}	±0.04 V	±0.04 V		
V_{OH1}	±0.08 V	±0.08 V		
I _{OL1}			±15%	±15%
I _{OH1}			+15%	+15%

TABLE IV. Delta limits at 25°C.

- 4.5.3 Quiescent supply current (I_{SS} test). When performing quiescent supply current measurements (I_{SS}), the meter shall be placed so that all currents flow through the meter.
- 4.5.4 <u>Radiation hardness assurance (RHA) testing</u>. The RHA testing shall be performed in accordance with test procedures and sampling specified in MIL-PRF-38535 and herein.
 - a. Before irradiation, selected samples shall be assembled in qualified packages and pass the governing electrical parameters (group A subgroup 1 at 25°C) and also be subjected to the threshold-voltage test in table VII in order to calculate the delta threshold (ΔV_T) after irradiation.
 - b. The devices shall be subjected to a total radiation dose as specified in MIL-PRF-38535 for the radiation hardness assurance level being tested, and meet the end-point electrical parameters as defined in table V at 25°C, after exposure. The start and completion of the end-point electrical parameter measurements shall not exceed 2 hours following irradiation.
 - c. Threshold-voltage test circuit conditions shall be as specified in table VII and on figure 17. In situ and remote testing, the tests shall be performed with the devices biased in accordance with table VI and the bias may be interrupted for up to 1 minute to remove devices to the remote bias fixture.
 - d. After irradiation, the devices shall pass the truth table test as specified in subgroup 7 in table III or if subgroup 7 is not required, then an equivalent truth table test shall be performed.

^{1/} Each of the above parameters shall be recorded before and after the required burn-in and life tests to determine delta (Δ).

TABLE V. Radiation hardened end-point electrical parameters at 25°C.

		V	' _{DD}
Parameter	All device types	Devic	e types
		01, 02, 03	51, 52, 53
V_{TN}	0.3 V min	10 V	10 V
V_{TP}	2.8 V max	10 V	10 V
ΔV_T	1.4 V max	10 V	10 V
I_{SS}	100 x max limit	15 V	18 V
t_{PLH}	1.35 x max limit	5 V	5 V
t _{PHL}	1.35 x max limit	5 V	5 V

TABLE VI. Bias during exposure to radiation.

Device type	Pin connect	tions <u>1</u> /	
	V_{DD} = 10 V dc (through a 30 k Ω to	$V_{SS} = GND$	$V_{DD} = 10 \text{ V dc}$
	60 kΩ resistor)		
01, 51	3, 4, 5, 6, 8, 9, 10, 11	7	14
02, 52	3, 4, 5, 6, 7, 9, 10, 11, 12, 13	8	16
03, 53	3, 4, 5, 6, 7, 11, 12, 14, 15	8	16

^{1/} Pins not designated are open, or tied to 10 V dc through a 30 k Ω to 60 k Ω resistor.

5. PACKAGING

5.1 <u>Packaging</u>. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of material is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Department of Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.

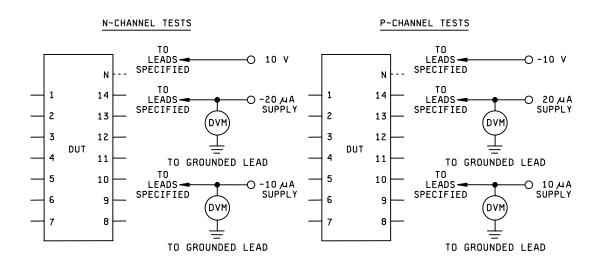


FIGURE 17. Threshold-voltage test circuit.

TABLE VII. Threshold-voltage test circuit conditions.

Device	GND	10 V	V_{TN} m	easured at	GND	-10 V	V _{TP} me	asured at
			-20 μA supply	-10 μA supply			20 μA supply	10 μA supply
01, 51	3	14		4-11	3	4-11		14
02, 52	13	3-7, 9-12,		8	13	3-12		16
		16						
03, 53	5	16		3, 4, 6-8, 11, 12,	5	3, 4, 6-8, 11, 12,		16
				14, 15		14, 15		

- 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. PIN and compliance identifier, if applicable (see 1.2).
 - c. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirements for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
 - f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
 - Requirements for product assurance and radiation hardness assurance options.
 - h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - i. Requirements for "JAN" marking.
 - j. Packaging requirements. (see 5.1)
- 6.3 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractors parts lists.
- 6.4 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, P.O. Box 3990, Columbus, Ohio 43218-3990.
- 6.5 <u>Abbreviations, symbols, and definitions.</u> The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:

C _I	Input terminal-to-GND capacitance.
GND	Ground zero voltage potential.
lss	Quiescent supply current.
T _A	Free air temperature.
V _{DD}	Positive supply voltage.
V _{SS}	Negative supply voltage.

- 6.6 <u>Logistic support.</u> Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class S for National Aeronautics and Space Administration or class B for Department of Defense (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.
- 6.7 <u>Data reporting</u>. When specified in the purchase order or contract, a copy of the following data, as applicable, will be supplied.
 - a. Attributes data for all screening tests (see 4.2) and variables data for all static burn-in, dynamic burn-in, and steady-state life tests (see 3.6).
 - b. A copy of each radiograph.
 - c. The technology conformance inspection (TCI) data (see 4.4).
 - d. Parameter distribution data on parameters evaluated during burn-in (see 3.6).
 - e. Final electrical parameters data (see 4.2d).
 - f. RHA delta limits.

6.8 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges, post irradiation performance or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device	Generic-industry
type	type
01	4013A
02	4027A
03	4043A
51	4013B
52	4027B
53	4043B

6.9 <u>Changes from previous issue</u>. Marginal notations are not used in this revision to identify changes with respect to the previous issue due to the extent of the changes.

Custodians:

Army - CR Navv - EC

Air Force - 11 DLA - CC Preparing activity: DLA - CC

(Project 5962-2063)

Review activities:

Army - MI, SM

Navy - AS, CG, MC, SH, TD

Air Force - 03, 19, 99

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using ASSIST Online database at www.dodssp.daps.mil.