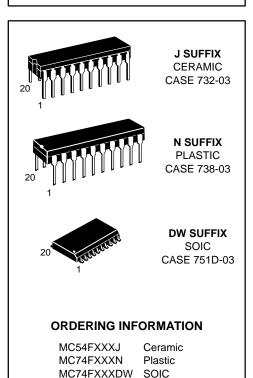
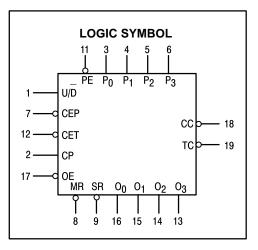


4-BIT BIDIRECTIONAL COUNTERS (WITH 3-STATE OUTPUTS)

The MC54/74F568 and MC54/74F569 are fully synchronous, reversible counters with 3-state outputs. The F568 is a BCD decade counter; the F569 is a binary counter. They feature preset capability for programmable operation, carry lookahead for easy cascading, and a U/D input to control the direction of counting. For maximum flexibility there are both synchronous and master asynchronous reset inputs as well as both Clocked Carry (CC) and Terminal Count (TC) outputs. All state changes except Master Reset are initiated by the rising edge of the clock. A HIGH signal on the Output Enable (OE) input forces the output buffers into the high impedance state but does not prevent counting, resetting or parallel loading.


- 4-Bit Bidirectional Counting F568 Decade Counter F569 Binary Counter
- Synchronous Counting and Loading
- Lookahead Carry Capability for Easy Cascading
- Preset Capability for Programmable Operation
- 3-State Outputs for Bus Organized Systems
- Master Reset (MR) Overrides All Other Inputs
- Synchronous Reset (SR) Overrides Counting and Parallel Loading



MC54/74F568 MC54/74F569

4-BIT BIDIRECTIONAL COUNTERS (WITH 3-STATE OUTPUTS)

FAST[™] SCHOTTKY TTL

MC54/74F568 • MC54/74F569

Symbol	Parameter			Тур	Max	Unit
V _{CC}	Supply Voltage	54, 74	4.5	5.0	5.5	V
т.	T _A Operating Ambient Temperature Range	54	-55	25	125	°C
^I A		74	0	25	70	
ЮН	Output Current — High	54, 74			-3.0	mA
IOL	Output Current — Low	54, 74			24	mA

FUNCTIONAL DESCRIPTION

The F568 counts modulo-10 in the BCD (8421) sequence. From state 9 (HLLH) it will increment to 0 (LLLL) in the Up mode; in Down mode it will decrement from 0 to 9. The F569 counts in the modulo-16 binary sequence. From state 15 it will increment to state 0 in the Up mode; in the Down mode it will decrement from 0 to 15. The clock inputs of all flip-flops are driven in parallel through a clock buffer. All state changes (except due to Master Reset) occur synchronously with the LOWto-HIGH transition of the Clock Pulse (CP) input signal.

The circuits have five fundamental modes of operation, in order of precedence: asynchronous reset, synchronous reset, parallel load, count and hold. Five control inputs - Master Reset (MR), Synchronous Reset (SR), Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable Trickle (CET) plus the Up/Down (U/D) input, determine the mode of operation, as shown in the Mode Select Table. A LOW signal on MR overrides all other inputs and asynchronously forces the flip-flop Q outputs LOW. A LOW signal on SR overrides counting and parallel loading and allows the Q outputs to go LOW on the next rising edge of CP. A LOW signal on PE overrides counting and allows information on the Parallel Data (Pn) inputs to be loaded into the flip-flops on the next rising edge of CP. With MR, SR and PE HIGH, CEP and CET permit counting when both are LOW. Conversely, a HIGH signal on either CEP or CET inhibits counting.

The F568 and F569 use edge-triggered flip-flops and changing the SR, PE, CEP, CET or U/D inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.

Two types of outputs are provided as overflow/underflow indicators. The Terminal Count (TC) output is normally HIGH and goes LOW providing CET is LOW, when the counter reaches zero in the Down mode, or reaches maximum (9 for the F568,15 for the F569) in the Up mode. TC will then remain LOW until a state change occurs, whether by counting or presetting, or until U/D or CET is changed. To implement synchronous multistage counters, the connections between the TC output and the CEP and CET inputs can provide either slow or fast carry propagation. Figure A shows the connections for simple ripple carry, in which the clock period must be longer than the CP to TC delay of the first stage, plus the cumulative CET to TC delays of the intermediate stages, plus the CET to CP setup time of the last stage. This total delay plus setup time sets the upper limit on clock frequency. For faster clock rates, the carry lookahead connections shown in Figure B are recommended. In this scheme the ripple delay through the intermediate stages commences with the same clock that causes the first stage to tick over from max to min in the Up mode, or min to max in the Down mode, to start its final cycle. Since this final cycle takes 10 (F568) or 16 (F569) clocks to complete, there is plenty of time for the ripple to progress through the intermediate stages. The critical timing that limits the clock period is the CP to TC delay of the first stage plus the CEP to CP setup time of the last stage. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, registers or counters. For such applications, the Clocked Carry (CC) output is provided. The CC output is normally HIGH. When CEP, CET, and TC are LOW, the CC output will go LOW when the clock next goes LOW and will stay LOW until the clock goes HIGH again, as shown in the CC Truth Table. When the Output Enable (OE) is LOW, the parallel data outputs O_0-O_3 are active and follow the flip-flop Q outputs. A HIGH signal on OE forces O_0-O_3 to the High Z state but does not prevent counting, loading or resetting.

LOGIC EQUATIONS:

Count Enab<u>le = CEP·CET·</u>PE

Up ('F568): $\underline{TC} = Q_0 \cdot Q_1 \cdot Q_2 \cdot Q_3 \cdot (Up) \cdot \underline{CET}$

('F569): TC = $Q_0 Q_1 Q_2 Q_3 (Up) CET$ Down (Both): TC = $Q_0 Q_1 Q_2 Q_3 (Down) CET$

CC TRUTH TABLE

	Output					
SR	PE	CEP	CET	TC*	СР	CC
L	Х	Х	Х	Х	Х	Н
Х	L	Х	Х	Х	Х	н
Х	Х	н	Х	Х	Х	н
Х	Х	Х	н	Х	Х	н
Х	Х	Х	Х	н	Х	н
н	н	L	L	L		

* = TC is generated internally

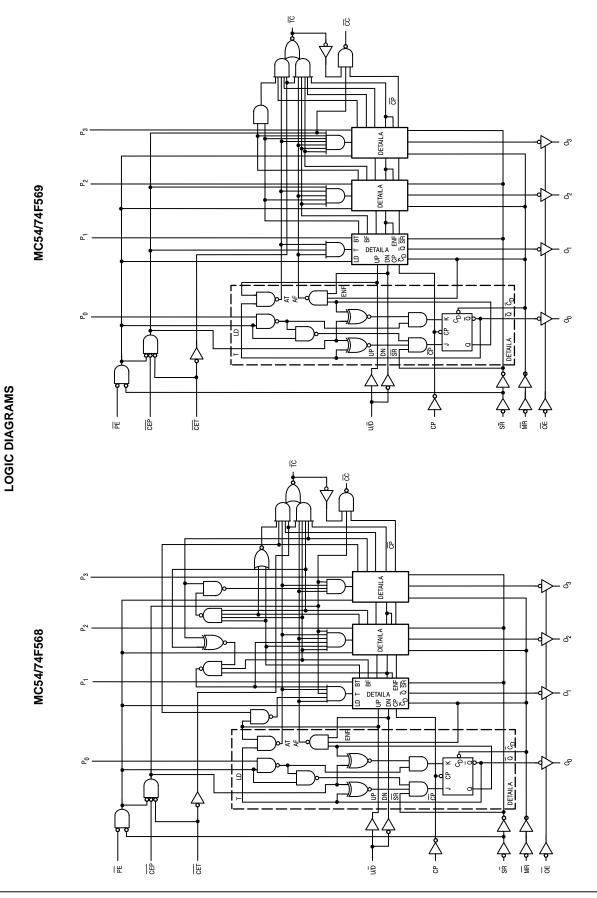
X = Don't Care

L = LOW Voltage Level H = HIGH Voltage Level

FUNCTION TABLE

			Operating Mode				
MR	SR	PE	CEP	CET	U/D	СР	
L	Х	Х	Х	Х	Х	Х	Asynchronous reset
h	Ι	Х	Х	Х	Х	\uparrow	Synchronous reset
h	h	Ι	Х	Х	Х	\uparrow	Parallel load
h	h	h	Ι	Ι	h	¢	Count up (increment)
h	h	h	-	-	-	¢	Count down (decrement)
h	Н	Н	Н	Х	Х	Х	Hold (do nothing)
h	Н	Н	Х	Н	Х	Х	riola (ao riotriing)

H = HIGH voltage level

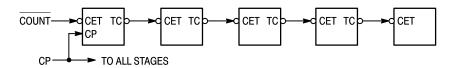

h = HIGH voltage level one setup prior to the Low-to-High Clock transition L = LOW voltage level

_ = LOW Voltage level

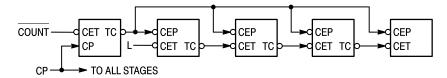
I = LOW voltage level one setup prior to the Low-to-High clock transition

X = Don't care

 \uparrow = Low-to-High clock transition



Please note that these diagrams are provided only for the understanding of logic operations and should not be used to estimate propagation delays.


FAST AND LS TTL DATA

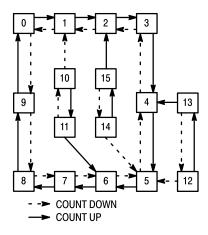
MC54/74F568 • MC54/74F569

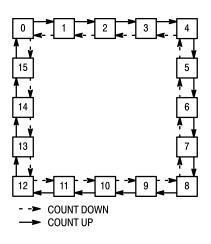
Figure A. Multistage Counter with Ripple Carry

Figure B. Multistage Counter with Lookahead Carry

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Cumhal	Denomotor	Deremeter		Limits			To at Oan ditions		
Symbol	Parameter		Min	Тур	Max	Unit	Test Conditions		
VIH	Input HIGH Voltage		2.0			v	Guaranteed Input All Inputs	HIGH Voltage for	
VIL	Input LOW Voltage				0.8	v	Guaranteed Input All Inputs	LOW Voltage for	
VIK	Input Clamp Diode Voltage				-1.2	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$		
Maria		54, 74	2.4	3.3		V	I _{OH} = -3.0 mA	V _{CC} = 4.5 V	
VOH	Output HIGH Voltage	74	2.7	3.3		V	I _{OH} = -3.0 mA	V _{CC} = 4.75 V	
VOL	Output LOW Voltage			0.3	0.5	V	I _{OL} = 24 mA	$V_{CC} = MIN$	
IOZH	Output OFF Current — HIGH				50	μΑ	V _{OUT} = 2.7 V	$V_{CC} = MAX$	
I _{OZL}	Output OFF Current — LOW				-50	μΑ	V _{OUT} = 0.5 V V _{CC} = MAX		
					20		V _{IN} = 2.7 V		
lΉ	Input HIGH Current				100	μΑ	V _{IN} = 7.0 V	V _{CC} = MAX	
۱ _{IL}	In <u>put</u> L <u>OW</u> Current PE, CET Others				-1.2 -0.6	mA	V _{CC} = MAX, V _{IN} = 0.5 V		
los	Output Short Circuit Current	(Note 2)	-60		-150	mA	V _{OUT} = 0 V	V _{CC} = MAX	
ICC	Power Supply Current (ALL Outputs OFF)				67	mA	V _{CC} = MAX		


NOTES:


1. For conditions such as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

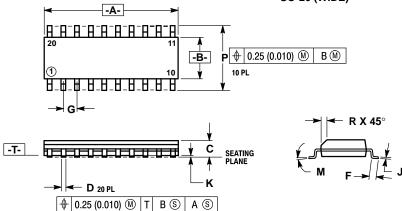
2. Not more than one output should be shorted at a time, nor for more than 1 second.

STATE DIAGRAMS

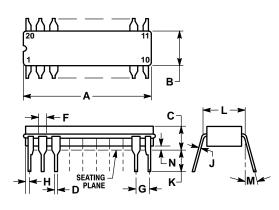
MC54/74F568

MC54/74F569

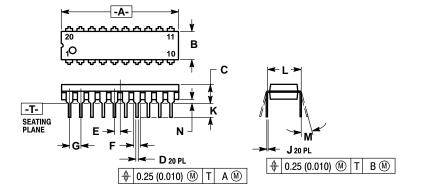
AC CHARACTERISTICS


	54/74F		74F	54	ŀF	74	1F	
		$ \begin{array}{r} T_{A} \; = \; +25^{\circ}C \\ V_{CC} \; = \; +5.0 \; V \\ C_{L} \; = \; 50 \; pF \end{array} $		$\begin{array}{rl} T_{A} &= -55 \ to \ +125^{\circ}C \\ V_{CC} &= \ 5.0 \ V \ \pm 10\% \\ C_{L} &= \ 50 \ pF \end{array}$		T _A = 0 to +70°C V _{CC} = 5.0 V ±10% C _L = 50 pF		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
f _{max}	Maximum Clock Frequency	100		60		85		MHz
^t PLH	Propagatio <u>n D</u> elay	3.0	8.5	3.0	10.5	3.0	9.5	ns
^t PHL	CP to O _N (PE HIGH or LOW)	4.0	11.5	4.0	14	4.0	13	
^t PLH	Propag <u>at</u> ion Delay	5.5	15.5	5.5	18.5	5.5	17.5	ns
^t PHL	CP to TC	4.0	11	4.0	13.5	4.0	12.5	
^t PLH	<u>Prop</u> ag <u>atio</u> n Delay	2.5	6.0	2.5	8.0	2.5	7.0	ns
^t PHL	CET to TC	2.5	8.0	2.5	10	2.5	9.0	
^t PLH	Pr <u>o</u> pag <u>ati</u> on Delay	3.5	11	3.5	13.5	3.5	12.5	ns
^t PHL	U/D to TC (′F568)	4.0	16	4.0	19	4.0	18	
^t PLH	Pr <u>o</u> pag <u>ati</u> on Delay	3.5	11	3.5	13.5	3.5	12.5	ns
^t PHL	U/D to TC (′F569)	4.0	10.5	4.0	13	4.0	12	
^t PLH	Propag <u>ati</u> on Delay	2.5	7.0	2.5	9.0	2.5	8.0	ns
^t PHL	CP to CC	2.0	6.0	2.0	8.0	2.0	7.0	
^t PLH	<u>Propagation Delay</u>	2.5	6.5	2.5	8.5	2.5	7.5	ns
^t PHL	CEP, CET to CC	4.0	11	4.0	13.5	4.0	12.5	
^t PHL	<u>Pro</u> pagation Delay MR to O _n	5.0	13	5.0	15.5	5.0	14.5	ns
^t PZH	<u>Ou</u> tput Enable Time	2.5	7.0	2.5	9.0	2.5	8.0	ns
^t PZL	OE to O _n	3.0	8.0	3.0	10	3.0	9.0	
^t PHZ	<u>Ou</u> tput Disable Time	1.5	6.5	1.5	8.5	1.5	7.5	ns
^t PLZ	OE to O _n	2.0	6.0	2.0	8.0	2.0	7.0	

MC54/74F568 • MC54/74F569


AC OPERATING REQUIREMENTS

		54/	74F	54	1F	74			
			$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0 V$		$T_A = -55^{\circ}C \text{ to } +125^{\circ}C V_{CC} = 5.0 \text{ V} \pm 10\%$		$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = 5.0 \text{ V} \pm 10\%$		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit	
t _S (H) t _S (L)	Setup Time, HIGH or LOW P _n to CP	4.0 4.0		5.5 5.5		4.5 4.5		20	
t _h (H) t _h (L)	Hold Time, HIGH or LOW P _n to CP	3.0 3.0		3.5 3.5		3.5 3.5		ns	
t _S (H) t _S (L)	<u>Setu</u> p T <u>ime,</u> HIGH or LOW CEP or CET to CP	5.0 5.0		7.0 7.0		6.0 6.0			
t _h (H) t _h (L)	Hold Time, HIGH or LOW CEP or CET to CP	0 0		0 0		0 0		ns	
t _S (H) t _S (L)	<u>Set</u> up Time, HIGH or LOW PE to CP	8.0 8.0		10 10		9.0 9.0			
t _h (H) t _h (L)	Hold Time, HIGH or LOW PE to CP	0 0		0 0		0 0		ns	
t _S (H) t _S (L)	Se <u>t</u> up Time, HIGH or LOW U/D to CP (F568)	11 16.5		13.5 18.5		12.5 17.5		ns	
t _S (H) t _S (L)	Se <u>t</u> up Time, HIGH or LOW U/D to CP (F569)	11 7.0		13.5 10		12.5 8.0		ns	
t _h (H) t _h (L)	H <u>old</u> Time, HIGH or LOW U/D to CP	0 0		0 0		0 0		ns	
t _S (H) t _S (L)	<u>Set</u> up Time, HIGH or LOW SR to CP	10 8.0		12 10.5		11 9.5			
t _h (H) t _h (L)	Hold Time, HIGH or LOW SR to CP	0 0		0 0		0 0		ns	
t _W (H) t _W (L)	CP Pulse Width HIGH or LOW	4.0 6.0		6.0 8.0		4.5 6.5		ns	
t _W (L)	MR Pulse Width, LOW	4.5		6.0		5.0		ns	
t _{rec}	MR Recovery Time	6.0		8.0		7.0		ns	


Case 751D-03 DW Suffix **20-Pin Plastic** SO-20 (WIDE)

Case 732-03 J Suffix 20-Pin Ceramic Dual In-Line

Case 738-03 N Suffix 20-Pin Plastic

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. 2. 3. DIMENSION A AND B DO NOT INCLUDE MOLD

- PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER 4. SIDE.
- 5. 751D-01, AND -02 OBSOLETE, NEW STANDARD 751D-03.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	12.65	12.95	0.499	0.510	
В	7.40	7.60	0.292	0.299	
С	2.35	2.65	0.093	0.104	
D	0.35	0.49	0.014	0.019	
F	0.50	0.90	0.020	0.035	
G	1.27	BSC	0.050 BSC		
J	0.25	0.32	0.010	0.012	
к	0.10	0.25	0.004	0.009	
М	0°	7 °	0°	7°	
Р	10.05	10.55	0.395	0.415	
R	0.25	0.75	0.010	0.029	

- NOTES: 1. LEADS WITHIN 0.25 mm (0.010) DIA., TRUE POSITION AT SEATING PLANE, AT MAXIMUM
- MATERIAL CONDITION. 2. DIM L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIM A AND B INCLUDES MENISCUS.

	MILLIM	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	23.88	25.15	0.940	0.990	
В	6.60	7.49	0.260	0.295	
С	3.81	5.08	0.150	0.200	
D	0.38	0.56	0.015	0.022	
F	1.40	1.65	0.055	0.065	
G	2.54	BSC	0.100 BSC		
Н	0.51	1.27	0.020	0.050	
J	0.20	0.30	0.008	0.012	
K	3.18	4.06	0.125	0.160	
L	7.62 BSC		0.300 BSC		
М	0°	15°	0°	15°	
N	0.25	1.02	0.010	0.040	

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Dimensional and Proceedings of the Provided Ferrary Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION "L" TO CENTER OF LEAD WHEN

- FORMED PARALLEL. DIMENSION "B" DOES NOT INCLUDE MOLD 4.
- FLASH. 5. 738-02 OBSOLETE, NEW STANDARD 738-03.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MIN MAX		MAX	
Α	25.66	27.17	1.010	1.070	
В	6.10	6.60	0.240	0.260	
С	3.81	4.57	0.150	0.180	
D	0.39	0.55	0.015	0.022	
E	1.27	BSC	0.050 BSC		
F	1.27	1.77	0.050	0.070	
G	2.54	BSC	0.100 BSC		
J	0.21	0.38	0.008	0.015	
ĸ	2.80	3.55	0.110	0.140	
L	7.62 BSC		0.300	BSC	
М	0°	15°	0°	15°	
N	0.51	1.01	0.020	0.040	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and **if** are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

 \Diamond