National Semiconductor is now part of

Texas Instruments.

Search <u>http://www.ti.com/</u> for the latest technical

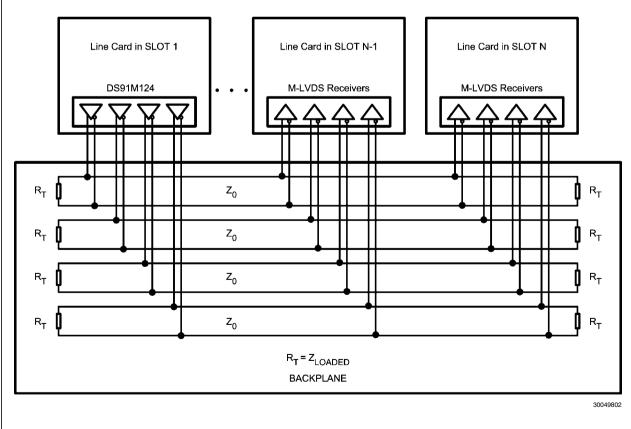
information and details on our current products and services.

125 MHz 1:4 M-LVDS Repeater with LVCMOS Input

General Description

The DS91M124 is a 1:4 M-LVDS repeater for driving and distributing clock or data signals to up to four multipoint networks. M-LVDS (Multipoint LVDS) is a new family of bus interface devices based on LVDS technology specifically designed for multipoint and multidrop cable and backplane applications. It differs from standard LVDS in providing increased drive current to handle double terminations that are required in multipoint applications. Controlled transition times minimize reflections that are common in multipoint configurations due to unterminated stubs.

A single DS91M124 channel is a 1:4 repeater that accepts LVTTL/LVCMOS signals at the driver inputs and converts them to differential M-LVDS signal levels. It features independent driver enable pins for each driver output.

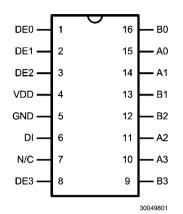

The DS91M124 has a flow-through pinout for easy PCB layout. It provides a new alternative for high speed multipoint interface applications. It is packaged in a space saving SOIC-16 package.

Features

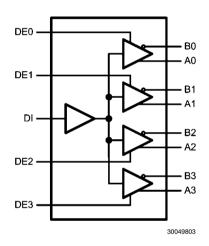
- DC 125 MHz / 250 Mbps low jitter, low skew, low power operation
- Independent Driver Enable pins
- Conforms to TIA/EIA-899 M-LVDS Standard
- Controlled transition times minimize reflections
- 8 kV ESD on M-LVDS I/O pins protects adjoining components
- Flow-through pinout simplifies PCB layout
- Industrial operating temperature range (-40°C to +85°C)
- Available in a space saving SOIC-16 package

Applications

- Multidrop / Multipoint clock and data distribution
- High-Speed, Low Power, Short-Reach alternative to TIA/ EIA-485/422
- Clock distribution in AdvancedTCA (ATCA) and MicroTCA (µTCA) backplanes



Typical Application


Ordering Information

Order Number	Function	Package Type		
DS91M124TMA	1:4 Repeater	SOIC-16		

Pin Diagram

Logic Diagram

Pin Descriptions

Number	Name	I/O, Type	Description	
1, 2, 3, 8	DE	I, LVCMOS	Driver enable pin: When a DE pin is low, the corresponding driver output is disabled. When a DE pin is high, the corresponding driver output is enabled. There is a 300 k Ω pulldown resistor on each DE pin.	
6	DI	I, LVCMOS	Driver input pin.	
5	GND	Power	Ground pin.	
10, 11, 14, 15	А	O, M-LVDS	Non-inverting driver output pins.	
9, 12, 13, 16	В	O, M-LVDS	Inverting driver output pins.	
4	V _{DD}	Power	Power supply pin, +3.3V ± 0.3V	
7	N/C	N/A	NO CONNECT pin.	

Absolute Maximum Ratings (Note 4)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Supply Voltage	–0.3V to +4V
LVCMOS Input Voltage	–0.3V to (V _{DD} + 0.3V)
M-LVDS Output Voltage	-1.9V to +5.5V
M-LVDS Output Short Circuit Current Duration	Continuous
Junction Temperature	+140°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature Range	
Soldering (4 sec.)	+260°C
Maximum Package Power Diss	ipation @ +25°C
MA Package	2.21W
Derate MA Package	19.2 mW/°C above +25°C
Package Thermal Resistance (4	-Layer, 2 oz. Cu, JEDEC)
θ_{JA}	+52°C/W
θ_{JC}	+19°C/W

ESD Susceptibility	
HBM (<i>Note 1</i>)	≥8 kV
MM (<i>Note 2</i>)	≥250V
CDM (<i>Note 3</i>)	≥1250V

Note 1: Human Body Model, applicable std. JESD22-A114C Note 2: Machine Model, applicable std. JESD22-A115-A Note 3: Field Induced Charge Device Model, applicable std. JESD22-C101-C

Recommended Operating Conditions

	Min	Тур	Max	Units
Supply Voltage, V _{DD}	3.0	3.3	3.6	V
Voltage at Any Bus Terminal	-1.4		+3.8	V
(Separate or Common-Mode)				
LVTTL Input Voltage High V _{IH}	2.0		V_{DD}	V
LVTTL Input Voltage Low V _{IL}	0		0.8	V
Operating Free Air				
Temperature T _A	-40	+25	+85	°C

DC Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified. (Note 5, Note 6, Note 7, Note 10)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	C Specifications					
V _{IH}	High-Level Input Voltage		2.0		V _{DD}	V
/ _{IL}	Low-Level Input Voltage		GND		0.8	V
н	High-Level Input Current	V _{IH} = 3.6V	-15	±1	15	μA
L	Low-Level Input Current	$V_{IL} = 0V$	-15	±1	15	μA
/ _{CL}	Input Clamp Voltage	I _{IN} = -18 mA	-1.5			V
	C Specifications		•		•	
V _{AB} I	Differential Output Voltage Magnitude		480		650	mV
V _{AB}	Change in Differential Output Voltage Magnitude Between Logic States	$R_L = 50\Omega$, $C_L = 5 pF$ Figures 1, 3	-50		50	mV
/ _{OS(SS)}	Steady-State Common-Mode Output Voltage	- Figures 1, 2	0.30	1.6	2.10	V
ΔV _{OS(SS)}	Change in Steady-State Common-Mode Output Voltage Between Logic States	$R_L = 50\Omega$	0		50	mV
/ _{A(OC)}	Maximum Steady-State Open-Circuit Output Voltage	Einung (0		2.4	V
/ _{B(OC)}	Maximum Steady-State Open-Circuit Output Voltage	Figure 4	0		2.4	V
/ _{P(H)}	Voltage Overshoot, Low-to-High Level Output (Note 8)	$R_L = 50\Omega, C_L = 5 pF$ $C_D = 0.5 pF$			1.2V _{SS}	V
/ _{P(L)}	Voltage Overshoot, High-to-Low Level Output (Note 8)	Figures 6, 7	-0.2V _{SS}			V
OS	Output Short-Circuit Current (Note 9)	Figure 5	-43		43	mA
		V _A = 3.8V, V _B = 1.2V	0		32	μA
Ą	Driver High-Impedance Output Current	$V_{\rm A} = 0V \text{ or } 2.4V, V_{\rm B} = 1.2V$	-20		20	μA
		$V_{\rm A} = -1.4$ V, $V_{\rm B} = 1.2$ V	-32		0	μA
		V _A = 3.8V, V _B = 1.2V	0		32	μA
3	Driver High-Impedance Output Current	$V_{A} = 0V \text{ or } 2.4V, V_{B} = 1.2V$	-20		20	μA
		$V_{A} = -1.4V, V_{B} = 1.2V$	-32		0	μA
AB	Driver High-Impedance Output Differential Curent $(I_A - I_B)$	$V_{A} = V_{B}, -1.4V \le V \le 3.8V$	-4		4	μA

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{A(OFF)}	Driver High-Impedance Output Power-Off Current	V _A = 3.8V, V _B = 1.2V				μA
		DE _n = 0V	0		32	
		$0V \le V_{DD} \le 1.5V$				
		$V_{A} = 0V \text{ or } 2.4V, V_{B} = 1.2V$				μA
		DE _n = 0V	-20		20	
		$0V \le V_{DD} \le 1.5V$				
		$V_A = -1.4V, V_B = 1.2V$				μA
		DE _n = 0V	-32		0	
		$0V \le V_{DD} \le 1.5V$				
I _{B(OFF)}	Driver High-Impedance Output Power-Off Current	V _A = 3.8V, V _B = 1.2V				μA
		DE _n = 0V	0		32	
		$0V \le V_{DD} \le 1.5V$				
		$V_{A} = 0V \text{ or } 2.4V, V_{B} = 1.2V$				μA
		DE _n = 0V	-20		20	
		$0V \le V_{DD} \le 1.5V$				
		$V_{A} = -1.4V, V_{B} = 1.2V$				μA
		$DE_n = 0V$	-32		0	
		$0V \le V_{DD} \le 1.5V$				
I _{AB(OFF)}	Driver High-Impedance Output Power-Off Current	$V_{A} = V_{B}, -1.4V \le V \le 3.8V$				μA
	$(I_{A(OFF)} - I_{B(OFF)})$	$DE_n = 0V$	-4		4	
		$0V \le V_{DD} \le 1.5V$				
C _A	Driver Output Capacitance			7.8		pF
C _B	Driver Output Capacitance			7.8		pF
C _{AB}	Driver Output Differential Capacitance	$-V_{DD} = 0V$		3		pF
C _{A/B}	Driver Output Capacitance Balance (C _A /C _B)			1		
I _{CCL}	Loaded Supply Current Enabled	$R_{L} = 50\Omega$ (All Outputs)				
		$DI = V_{DD}$ or GND		65	75	mA
		$DE_n = V_{DD}$ or GND (All			/3	
		Outputs)				
I _{CCZ}	No Load Supply Current Disabled	$DI = V_{DD}$ or GND,		19	24	mA
		DE _n = GND (All Outputs)			<u> </u>	

Note 4: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions.

Note 5: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

Note 6: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except V_{OD} and ΔV_{OD} .

Note 7: Typical values represent most likely parametric norms for V_{DD} = +3.3V and T_A = +25°C, and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed.

Note 8: Specification is guaranteed by characterization and is not tested in production.

Note 9: Output short circuit current (I_{OS}) is specified as magnitude only, minus sign indicates direction only.

Note 10: C_L includes fixture capacitance and C_D includes probe capacitance.

Switching Characteristics

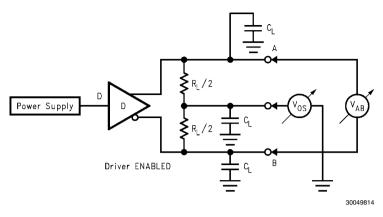
Over supply voltage and operating temperature ranges, unless otherwise specified. (Note 11, Note 12, Note 18)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL}	Differential Propagation Delay High to Low		1.8	3.9	6.5	ns
t _{PLH}	Differential Propagation Delay Low to High		1.8	3.9	6.5	ns
t _{SKD1}	Differential Pulse Skew It _{PHL} - t _{PLH} I (Note 13, Note 14)		0	25	100	ps
t _{SKD2}	Channel-to-Channel Skew (Note 13, Note 15)	$R_{L} = 50\Omega$	0	70	250	ps
t _{SKD3}	Differential Part-to-Part Skew (<i>Note 13, Note 16</i>) (Constant T_A and VDD)	- C _L = 5 pF, C _D = 0.5 pF - Figures 6, 7	0	1.5	2	ns
t _{SKD4}	Differential Part-to-Part Skew (Note 13, Note 17)		0		4.7	ns
t _{TLH}	Rise Time (<i>Note 13</i>)		1.1	2.0	3.0	ns
t _{THL}	Fall Time (<i>Note 13</i>)		1.1	2.0	3.0	ns
t _{PHZ}	Disable Time High to Z	R _I = 50Ω		6	11	ns
t _{PLZ}	Disable Time Low to Z	$C_{L} = 5 \text{ pF},$		6	11	ns
t _{PZH}	Enable Time Z to High	$C_{\rm D} = 0.5 \rm pF$		6	11	ns
t _{PZL}	Enable Time Z to Low	Figures 8, 9		6	11	ns
f _{MAX}	Maximum Operating Frequency (Note 13)		125			MHz

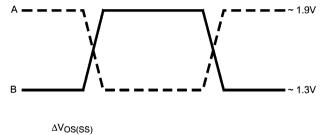
Note 11: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

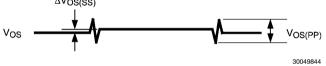
Note 12: Typical values represent most likely parametric norms for V_{DD} = +3.3V and T_A = +25°C, and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed.

Note 13: Specification is guaranteed by characterization and is not tested in production.


Note 14: t_{SKD1} , $|t_{PLHD} - t_{PHLD}|$, Pulse Skew, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel.

Note 15: t_{SKD2} , Channel-to-Channel Skew, is the difference in propagation delay (t_{PLHD} or t_{PHLD}) among all output channels.


Note 16: t_{SKD3}, Part-to-Part Skew, is defined as the difference between the minimum and maximum differential propagation delays. This specification applies to devices at the same V_{DD} and within 5°C of each other within the operating temperature range.


Note 17: t_{SKD4} , Part-to-Part Skew, is the differential channel-to-channel skew of any event between devices. This specification applies to devices over recommended operating temperature and voltage ranges, and across process distribution. t_{SKD4} is defined as IMax – Minl differential propagation delay. **Note 18:** C_1 includes fixture capacitance and C_n includes probe capacitance.

Test Circuits and Waveforms



FIGURE 3. Differential Driver Full Load Test Circuit

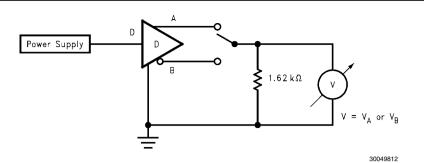
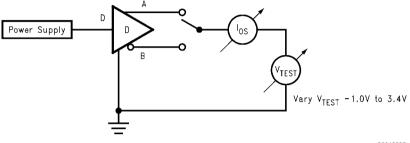



FIGURE 4. Differential Driver DC Open Test Circuit

30049825

FIGURE 5. Differential Driver Short-Circuit Test Circuit

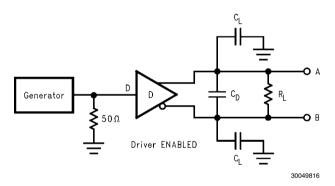


FIGURE 6. Driver Propagation Delay and Transition Time Test Circuit

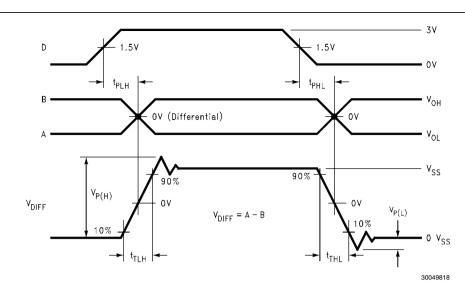
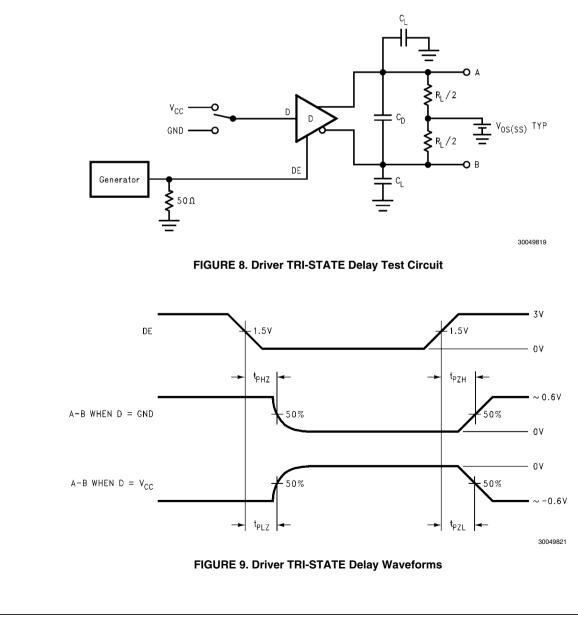



FIGURE 7. Driver Propagation Delays and Transition Time Waveforms

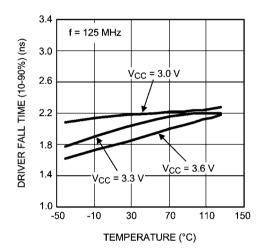
Typical Performance Characteristics 3.4 f = 125 MHz $V_{CC} = 3.0$ V $V_{CC} = 3.0$ V $V_{CC} = 3.6$ V $V_{CC} = 3.6$ V

TEMPERATURE (°C)

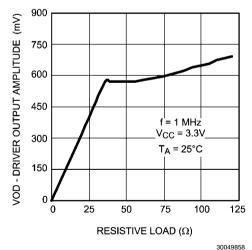
70

110

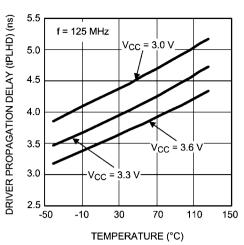
150

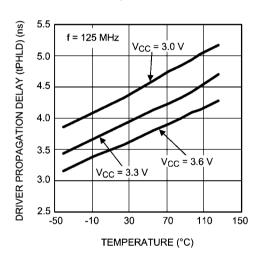

Driver Rise Time as a Function of Temperature

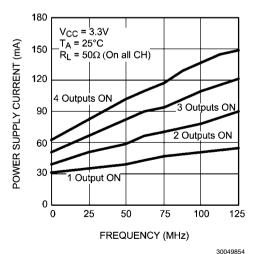
30

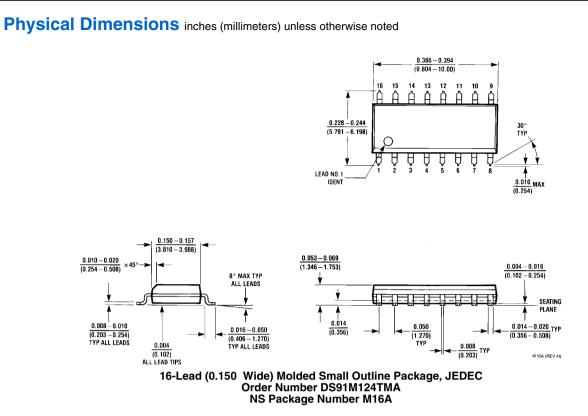

1.0

-50


-10


Driver Fall Time as a Function of Temperature




Driver Propagation Delay (tPLHD) as a Function of Temperature

Driver Propagation Delay (tPHLD) as a Function of Temperature

Driver Power Supply Current as a Function of Frequency

Notes

DS91M124

Notes

Pro	oducts	Design Support			
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench		
Audio	www.national.com/audio	App Notes	www.national.com/appnotes		
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns		
Data Converters	www.national.com/adc	Samples	www.national.com/samples		
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards		
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging		
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/gree		
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts		
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality		
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback		
Voltage Reference	www.national.com/vref	Design Made Easy	www.national.com/easy		
PowerWise® Solutions	www.national.com/powerwise	Solutions	www.national.com/solutions		
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero		
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic		
Wireless (PLL/VCO)	www.national.com/wireless	PowerWise® Design University	www.national.com/training		

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2009 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959

National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com