# National Semiconductor is now part of Texas Instruments.

Search <a href="http://www.ti.com/">http://www.ti.com/</a> for the latest technical information and details on our current products and services.



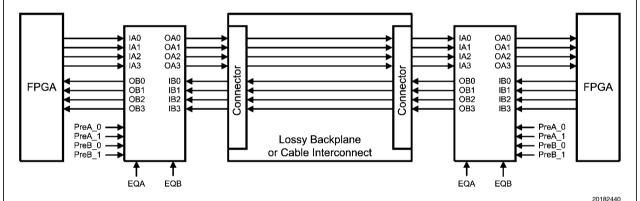
#### **DS42BR400**

# **Quad 4.25 Gbps CML Transceiver with Transmit De-Emphasis and Receive Equalization**

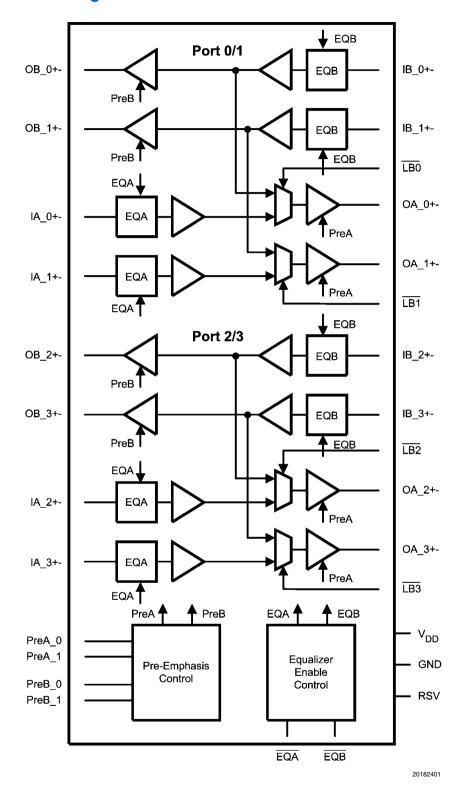
#### **General Description**

The DS42BR400 is a quad 250 Mbps – 4.25 Gbps CML transceiver, or 8-channel buffer, for use in backplane and cable applications. With operation down to 250 Mbps, the DS42BR400 can be used in applications requiring both low and high frequency data rates. Each input stage has a fixed equalizer to reduce ISI distortion from board traces. The equalizers are grouped in fours and are enabled through two control pins. These control pins provide customers flexibility where ISI distortion may vary from one direction to another.

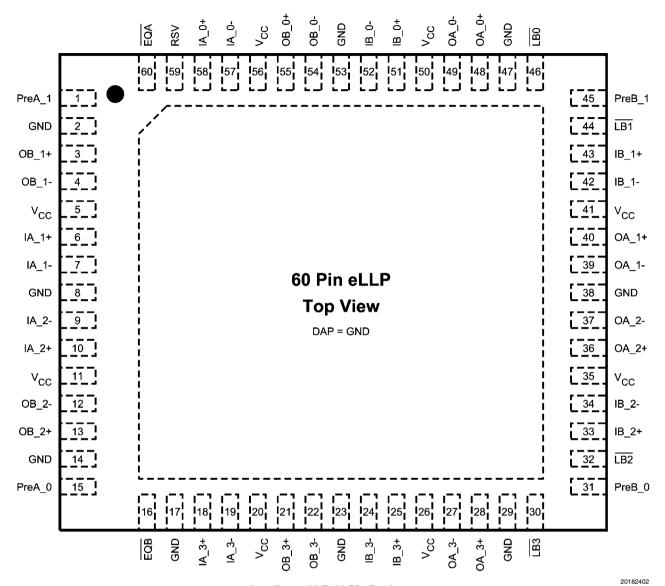
All output drivers have four selectable steps of de-emphasis to compensate against transmission loss across long FR4 backplanes. The de-emphasis blocks are also grouped in fours. In addition, the DS42BR400 also has loopback control capability on four channels. All CML drivers have  $50\Omega$  termination to  $V_{CC}.$  All receivers are internally terminated with differential  $100\Omega.$ 


#### **Features**

- 250 Mbps 4.25 Gbps Fully Differential Data Paths
- Optional Fixed Input Equalization
- Selectable Output De-emphasis
- Individual Loopback Controls
- On-chip Termination
- Lead-less eLLP-60 pin package (9 mm x 9 mm x 0.8 mm, 0.5 mm pitch)
- -40°C to +85°C Industrial Temperature Range
- 6 kV ESD Rating, HBM


#### **Applications**

- Backplane driver or cable driver
- Signal repeating, buffering and conditioning applications


#### Simplified Application Diagram



## **Functional Block Diagram**



#### **Connection Diagram**



Leadless eLLP-60 Pin Package (9 mm x 9 mm x 0.8 mm, 0.5 mm pitch) Order number DS42BR400TSQ See NS Package Number SQA060

3

# **Pin Descriptions**

| Pin Name         | Pin Number | I/O | Description                                                                                         |  |  |  |  |
|------------------|------------|-----|-----------------------------------------------------------------------------------------------------|--|--|--|--|
| DIFFERENTIAL I/O |            |     |                                                                                                     |  |  |  |  |
| IB_0+            | 51         | I   | Inverting and non-inverting differential inputs of port_0. IB_0+ and IB_0- are internally connected |  |  |  |  |
| IB_0-            | 52         |     | to a reference voltage through a $50\Omega$ resistor. Refer to Figure 7.                            |  |  |  |  |
| OA_0+            | 48         | 0   | Inverting and non-inverting differential outputs of port_0. OA_0+ and OA_0- are connected to        |  |  |  |  |
| OA_0-            | 49         |     | $V_{CC}$ through a $50\Omega$ resistor.                                                             |  |  |  |  |
| IB_1+            | 43         | ı   | Inverting and non-inverting differential inputs of port_1. IB_1+ and IB_1- are internally connected |  |  |  |  |
| IB_1-            | 42         |     | to a reference voltage through a $50\Omega$ resistor. Refer to Figure 7.                            |  |  |  |  |
| OA_1+            | 40         | 0   | Inverting and non-inverting differential outputs of port_1. OA_1+ and OA_1- are connected to        |  |  |  |  |
| OA_1-            | 39         |     | $V_{CC}$ through a $50\Omega$ resistor.                                                             |  |  |  |  |
| IB_2+            | 33         | I   | Inverting and non-inverting differential inputs of port_2. IB_2+ and IB_2- are internally connected |  |  |  |  |
| IB_2-            | 34         |     | to a reference voltage through a $50\Omega$ resistor. Refer to Figure 7.                            |  |  |  |  |
| OA_2+            | 36         | 0   | Inverting and non-inverting differential outputs of port_2. OA_2+ and OA_2- are connected to        |  |  |  |  |
| OA_2-            | 37         |     | $V_{CC}$ through a $50\Omega$ resistor.                                                             |  |  |  |  |
| IB_3+            | 25         | I   | Inverting and non-inverting differential inputs of port_3. IB_3+ and IB_3- are internally connected |  |  |  |  |
| IB_3-            | 24         |     | to a reference voltage through a $50\Omega$ resistor. Refer to Figure 7.                            |  |  |  |  |
| OA_3+            | 28         | 0   | Inverting and non-inverting differential outputs of port_3. OA_3+ and OA_3- are connected to        |  |  |  |  |
| OA_3-            | 27         |     | $V_{CC}$ through a $50\Omega$ resistor.                                                             |  |  |  |  |
| IA_0+            | 58         | I   | Inverting and non-inverting differential inputs of port_0. IA_0+ and IA_0- are internally connected |  |  |  |  |
| IA_0-            | 57         |     | to a reference voltage through a $50\Omega$ resistor. Refer to Figure 7.                            |  |  |  |  |
| OB_0+            | 55         | 0   | Inverting and non-inverting differential outputs of port_0. OB_0+ and OB_0- are connected to        |  |  |  |  |
| OB_0-            | 54         |     | $V_{CC}$ through a $50\Omega$ resistor.                                                             |  |  |  |  |
| IA_1+            | 6          | ı   | Inverting and non-inverting differential inputs of port_1. IA_1+ and IA_1- are internally connected |  |  |  |  |
| IA_1-            | 7          |     | to a reference voltage through a $50\Omega$ resistor. Refer to Figure 7.                            |  |  |  |  |
| OB_1+            | 3          | 0   | Inverting and non-inverting differential outputs of port_1. OB_1+ and OB_1- are connected to        |  |  |  |  |
| OB_1-            | 4          |     | $V_{CC}$ through a $50\Omega$ resistor.                                                             |  |  |  |  |
| IA_2+            | 10         | ı   | Inverting and non-inverting differential inputs of port_2. IA_2+ and IA_2- are internally connected |  |  |  |  |
| IA_2-            | 9          |     | to a reference voltage through a $50\Omega$ resistor. Refer to Figure 7.                            |  |  |  |  |
| OB_2+            | 13         | 0   | Inverting and non-inverting differential outputs of port_2. OB_2+ and OB_2- are connected to        |  |  |  |  |
| OB_2-            | 12         |     | $V_{CC}$ through a $50\Omega$ resistor.                                                             |  |  |  |  |
| IA_3+            | 18         | ı   | Inverting and non-inverting differential inputs of port_3. IA_3+ and IA_3- are internally connected |  |  |  |  |
| IA_3-            | 19         |     | to a reference voltage through a $50\Omega$ resistor. Refer to Figure 7.                            |  |  |  |  |
| OB_3+            | 21         | 0   | Inverting and non-inverting differential outputs of port_3. OB_3+ and OB_3- are connected to        |  |  |  |  |
| OB_3-            | 22         |     | $V_{CC}$ through a $50\Omega$ resistor.                                                             |  |  |  |  |

| Pin Name        | Pin Number            | I/O | Description                                                                                                                                                                                                  |  |  |  |  |  |
|-----------------|-----------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| CONTROL (3      | CONTROL (3.3V LVCMOS) |     |                                                                                                                                                                                                              |  |  |  |  |  |
| EQA             | 60                    | ı   | This pin is active LOW. A logic LOW at EQA enables equalization for input channels IA_0±, IA_1±,                                                                                                             |  |  |  |  |  |
|                 |                       |     | IA_2±, and IA_3±. By default, this pin is internally pulled high and equalization is disabled.                                                                                                               |  |  |  |  |  |
| EQB             | 16                    | - 1 | This pin is active LOW. A logic LOW at EQB enables equalization for input channels IB_0±, IB_1±,                                                                                                             |  |  |  |  |  |
|                 |                       |     | IB_2±, and IB_3±. By default, this pin is internally pulled high and equalization is disabled.                                                                                                               |  |  |  |  |  |
| PreA_0          | 15                    | - 1 | A_0 and PreA_1 select the output de-emphasis levels (OA_0±, OA_1±, OA_2±, and OA_3±).                                                                                                                        |  |  |  |  |  |
| PreA_1          | 1                     |     | PreA_0 and PreA_1 are internally pulled high. Please see <i>Table 2</i> for de-emphasis levels.                                                                                                              |  |  |  |  |  |
| PreB_0          | 31                    | ı   | PreB_0 and PreB_1 select the output de-emphasis levels (OB_0±, OB_1±, OB_2±, and OB_3±).                                                                                                                     |  |  |  |  |  |
| PreB_1          | 45                    |     | PreB_0 and PreB_1 are internally pulled high. Please see <i>Table 2</i> for de-emphasis levels.                                                                                                              |  |  |  |  |  |
| LB0             | 46                    | I   | This pin is active LOW. A logic LOW at $\overline{LB0}$ enables the internal loopback path from IB_0± to OA_0 ±. $\overline{LB0}$ is internally pulled high. Please see <i>Table 1</i> for more information. |  |  |  |  |  |
| ĪB1             | 44                    | I   | This pin is active LOW. A logic LOW at $\overline{LB1}$ enables the internal loopback path from IB_1± to OA_1 ±. $\overline{LB1}$ is internally pulled high. Please see <i>Table 1</i> for more information. |  |  |  |  |  |
| LB2             | 32                    | I   | This pin is active LOW. A logic LOW at LB2 enables the internal loopback path from IB_2± to OA_2 ±. LB2 is internally pulled high. Please see <i>Table 1</i> for more information.                           |  |  |  |  |  |
| LB3             | 30                    | I   | This pin is active LOW. A logic LOW at LB3 enables the internal loopback path from IB_3± to OA_3                                                                                                             |  |  |  |  |  |
|                 |                       |     | ±. LB3 is internally pulled high. Please see Table 1 for more information.                                                                                                                                   |  |  |  |  |  |
| RSV             | 59                    | ı   | Reserve pin to support factory testing. This pin can be left open, tied to GND, or tied to GND through                                                                                                       |  |  |  |  |  |
|                 |                       |     | an external pull-down resistor.                                                                                                                                                                              |  |  |  |  |  |
| POWER           |                       |     |                                                                                                                                                                                                              |  |  |  |  |  |
| V <sub>CC</sub> | 5, 11, 20, 26,        | Р   | $V_{CC} = 3.3V \pm 5\%$ .                                                                                                                                                                                    |  |  |  |  |  |
|                 | 35, 41, 50,           |     | Each $V_{CC}$ pin should be connected to the $V_{CC}$ plane through a low inductance path, typically with a                                                                                                  |  |  |  |  |  |
|                 | 56                    |     | via located as close as possible to the landing pad of the $V_{\text{CC}}$ pin.                                                                                                                              |  |  |  |  |  |
|                 |                       |     | It is recommended to have a 0.01 $\mu F$ or 0.1 $\mu F$ , X7R, size-0402 bypass capacitor from each $V_{CC}$                                                                                                 |  |  |  |  |  |
|                 |                       |     | pin to ground plane.                                                                                                                                                                                         |  |  |  |  |  |
| GND             | 2, 8, 14, 17,         | Р   | Ground reference. Each ground pin should be connected to the ground plane through a low                                                                                                                      |  |  |  |  |  |
|                 | 23, 29, 38,<br>47, 53 |     | inductance path, typically with a via located as close as possible to the landing pad of the GND pin.                                                                                                        |  |  |  |  |  |
| GND             | DAP                   | Р   | DAP is the metal contact at the bottom side, located at the center of the eLLP-60 pin package. It                                                                                                            |  |  |  |  |  |
|                 |                       |     | should be connected to the GND plane with at least 4 via to lower the ground impedance and                                                                                                                   |  |  |  |  |  |
|                 |                       |     | improve the thermal performance of the package.                                                                                                                                                              |  |  |  |  |  |

5

Note: I = Input, O = Output, P = Power

#### **Functional Description**

**TABLE 1. Logic Table for Loopback Controls** 

| LB0         | Loopback Function                    |
|-------------|--------------------------------------|
| 0           | Enable loopback from IB_0± to OA_0±. |
| 1 (default) | Normal mode. Loopback disabled.      |
| LB1         | Loopback Function                    |
| 0           | Enable loopback from IB_1± to OA_1±. |
| 1 (default) | Normal mode. Loopback disabled.      |
| LB2         | Loopback Function                    |
| 0           | Enable loopback from IB_2± to OA_2±. |
| 1 (default) | Normal mode. Loopback disabled.      |
| LB3         | Loopback Function                    |
| 0           | Enable loopback from IB_3± to OA_3±. |
| 1 (default) | Normal mode. Loopback disabled.      |

**TABLE 2. De-Emphasis Controls** 

| PreA_[1:0]    | Default VOD Level in mV <sub>PP</sub> (VODB)    | De-Emphasis Level in mV <sub>PP</sub> (VODPE) | De-Emphasis in dB (VODPE/<br>VODB) |
|---------------|-------------------------------------------------|-----------------------------------------------|------------------------------------|
| 0 0           | 1200                                            | 1200                                          | 0                                  |
| 0 1           | 1200                                            | 850                                           | -3                                 |
| 1 0           | 1200                                            | 600                                           | -6                                 |
| 1 1 (Default) | 1200                                            | 426                                           | -9                                 |
|               | Default VOD Lavel in mV                         | Do Emphasia Laval in mV                       | De Emphasia in dD (VODDE/          |
| PreB_[1:0]    | Default VOD Level in mV <sub>PP</sub><br>(VODB) | De-Emphasis Level in mV <sub>PP</sub> (VODPE) | De-Emphasis in dB (VODPE/<br>VODB) |
| PreB_[1:0]    | • • • • • • • • • • • • • • • • • • • •         |                                               | ' '                                |
|               | (VODB)                                          | (VODPE)                                       | VODB)                              |
| 0 0           | (VODB)<br>1200                                  | (VODPE)<br>1200                               | VODB)                              |

De-emphasis is the primary signal conditioning function for use in compensating against backplane transmission loss. The DS42BR400 provides four steps of de-emphasis ranging from 0, -3, -6 and -9 dB, user-selectable dependent on the loss profile of the backplane. *Figure 1* shows a driver de-emphasis waveform. The de-emphasis duration is nominal 200 ps, corresponding to 85% bit-width at 4.25 Gbps.

The high speed inputs are self-biased to about 1.3V and are designed for AC coupling allowing the DS42BR400 to be directly inserted into the datapath without any limitation. The

ideal AC coupling capacitor value is often based on the lowest frequency component embedded within the serial link. A typical AC coupling capacitor value rages between 100 and 1000nF, some specifications with scrambled data may require a larger coupling capacitor for optimal performance. To reduce unwanted parasitics around and within the AC coupling capacitor, a body size of 0402 is recommended. *Figure 6* shows the AC coupling capacitor placement in an AC test circuit.

#### **Input Equalization**

Each differential input of the DS42BR400 has a fixed equalizer front-end stage. It is designed to provide fixed equalization for short board traces with transmission losses of approximately 5 dB between 375 MHz to 1.875 GHz. Programmable de-emphasis together with input equalization ensures an acceptable eye opening for a 40-inch FR-4 backplane.

The differential input equalizer for inputs on Channel A and inputs on Channel B can be bypassed by using  $\overline{\text{EQA}}$  and  $\overline{\text{EQB}}$ , respectively. By default, the equalizers are internally pulled high and disabled. Therefore,  $\overline{\text{EQA}}$  and  $\overline{\text{EQB}}$  must be asserted LOW to enable equalization.

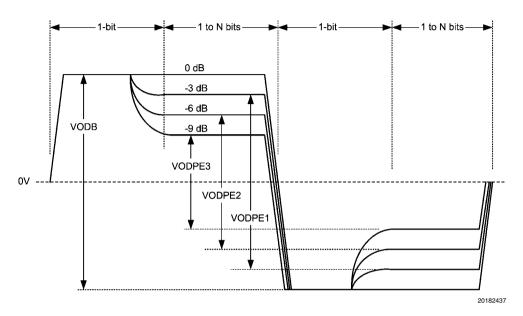



FIGURE 1. Driver De-Emphasis Differential Waveform (showing all 4 de-emphasis steps)

#### **Absolute Maximum Ratings** (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

 $\begin{array}{lll} \text{Supply Voltage (V}_{\text{CC}}) & -0.3 \text{V to 4V} \\ \text{CMOS/TTL Input Voltage} & -0.3 \text{V to} \\ & & (\text{V}_{\text{CC}} + 0.3 \text{V}) \\ \text{CML Input/Output Voltage} & -0.3 \text{V to} \\ & & (\text{V}_{\text{CC}} + 0.3 \text{V}) \end{array}$ 

Junction Temperature +150°C Storage Temperature -65°C to +150°C Lead Temperature

Soldering, 4 sec +260°C Thermal Resistance,  $\theta_{JA}$  22.3°C/W

Thermal Resistance,  $\theta_{JC}$  3.2°C/W

Thermal Resistance,  $\Phi_{JB}$  10.3°C/W ESD Ratings (Note 9) HBM 6kV CDM 1kV MM 350V

#### **Recommended Operating Ratings**

|                                          | •     | _   |       |         |  |
|------------------------------------------|-------|-----|-------|---------|--|
|                                          | Min   | Тур | Max   | Units   |  |
| Supply Voltage (V <sub>CC</sub> -GND)    | 3.135 | 3.3 | 3.465 | V       |  |
| Supply Noise Amplitude<br>10 Hz to 2 GHz |       |     | 100   | $mV_PP$ |  |
| Ambient Temperature                      | -40   |     | +85   | °C      |  |
| Case Temperature                         |       |     | 100   | °C      |  |
|                                          |       |     |       |         |  |

#### **Electrical Characteristics**

Over recommended operating supply and temperature ranges unless otherwise specified.

| Symbol                   | Parameter                              | Conditions                                                                                                                        | Min               | Typ<br>(Note 2) | Max                  | Units                                                       |  |  |
|--------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|----------------------|-------------------------------------------------------------|--|--|
| LVCMOS DC SPECIFICATIONS |                                        |                                                                                                                                   |                   |                 |                      |                                                             |  |  |
| V <sub>IH</sub>          | High Level Input<br>Voltage            |                                                                                                                                   | 2.0               |                 | V <sub>CC</sub> +0.3 | V                                                           |  |  |
| V <sub>IL</sub>          | Low Level Input<br>Voltage             |                                                                                                                                   | -0.3              |                 | 0.8                  | V                                                           |  |  |
| I <sub>IH</sub>          | High Level Input<br>Current            | $V_{IN} = V_{CC}$                                                                                                                 | -10               |                 | 10                   | μΑ                                                          |  |  |
| I <sub>IL</sub>          | Low Level Input Current                | V <sub>IN</sub> = GND                                                                                                             | 75                | 94              | 124                  | μΑ                                                          |  |  |
| R <sub>PU</sub>          | Pull-High Resistance                   |                                                                                                                                   |                   | 35              |                      | kΩ                                                          |  |  |
| RECEIVER                 | SPECIFICATIONS                         |                                                                                                                                   |                   |                 |                      |                                                             |  |  |
| V <sub>ID</sub>          | Differential Input<br>Voltage Range    | AC Coupled Differential Signal. Below 1.25 Gb/s At 1.25 Gbps—3.125 Gbps Above 3.125 Gbps This parameter is not production tested. | 100<br>100<br>100 |                 | 1750<br>1560<br>1200 | mV <sub>P-P</sub><br>mV <sub>P-P</sub><br>mV <sub>P-P</sub> |  |  |
| V <sub>ICM</sub>         | Common Mode Voltage at Receiver Inputs | Measured at receiver inputs reference to ground.                                                                                  |                   | 1.3             |                      | V                                                           |  |  |
| R <sub>ITD</sub>         | Input Differential<br>Termination      | On-chip differential termination between IN+ or IN <i>Figure 7</i>                                                                | 84                | 100             | 116                  | Ω                                                           |  |  |

| Symbol             | Parameter                                                   | Conditions                                                                                                                                                                                                                                                           | Min  | Typ<br>(Note 2)     | Max  | Units                |
|--------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------|------|----------------------|
| DRIVER SI          | PECIFICATIONS                                               |                                                                                                                                                                                                                                                                      |      |                     |      |                      |
| VODB               | Output Differential<br>Voltage Swing without<br>De-Emphasis | $R_L = 100\Omega \pm 1\%$<br>$PreA_1 = 0$ ; $PreA_0 = 0$<br>$PreB_1 = 0$ ; $PreB_0 = 0$<br>$PreB_1 = 0$ ; $PreB_0 = 0$<br>$PreB_1 = 0$ ; $PreB_1 = 0$<br>$PreB_1 = 0$ ; $PreB_1 = 0$<br>$PreB_1 = 0$ ; $PreB_1 = 0$                                                  | 1000 | 1200                | 1400 | mV <sub>P-P</sub>    |
| V <sub>PE</sub>    | Output De-Emphasis<br>Voltage Ratio<br>20*log(VODPE/VODB)   | $R_L$ = 100 $\Omega$ ±1%<br>Running K28.7 pattern at 4.25 Gbps<br>$PreX_{1}[0] = 00$<br>$PreX_{1}[0] = 01$<br>$PreX_{1}[0] = 10$<br>$PreX_{1}[0] = 11$<br>$PreX_{1}[0] = 11$<br>$PreX_{1}[0] = 11$<br>$PreX_{1}[0] = 11$<br>$PreX_{1}[0] = 11$<br>$PreX_{1}[0] = 11$ |      | 0<br>-3<br>-6<br>-9 |      | dB<br>dB<br>dB<br>dB |
| t <sub>PE</sub>    | De-Emphasis Width                                           | Tested at –9 dB de-emphasis level, PreX[1:0] = 11 X = A/B channel de-emphasis drivers See <i>Figure 5</i> on measurement condition.                                                                                                                                  | 125  | 200                 | 250  | ps                   |
| R <sub>OTSE</sub>  | Output Termination                                          | On-chip termination from OUT+ or OUT- to V <sub>CC</sub>                                                                                                                                                                                                             | 42   | 50                  | 58   | Ω                    |
| R <sub>OTD</sub>   | Output Differential<br>Termination                          | On-chip differential termination between OUT+ and OUT-                                                                                                                                                                                                               |      | 100                 |      | Ω                    |
| ΔR <sub>OTSE</sub> | Mis-Match in Output<br>Termination Resistors                | Mis-match in output termination resistors                                                                                                                                                                                                                            |      |                     | 5    | %                    |
| V <sub>OCM</sub>   | Output Common Mode<br>Voltage                               |                                                                                                                                                                                                                                                                      |      | 2.7                 |      | V                    |
| POWER D            | ISSIPATION                                                  |                                                                                                                                                                                                                                                                      |      |                     |      |                      |
| P <sub>D</sub>     | Power Dissipation                                           | $V_{DD}=3.465V$<br>All outputs terminated by $100\Omega \pm 1\%$ .<br>$PreB_[1:0]=0$ , $PreA_[1:0]=0$<br>Running PRBS $2^7$ -1 pattern at 4.25 Gbps                                                                                                                  |      |                     | 1.3  | W                    |
| AC CHARA           | ACTERISTICS                                                 |                                                                                                                                                                                                                                                                      |      |                     |      |                      |
| t <sub>R</sub>     | Differential Low to High<br>Transition Time                 | Measured with a clock-like pattern at 4.25 Gbps, between 20% and 80% of the differential output                                                                                                                                                                      |      | 80                  |      | ps                   |
| t <sub>F</sub>     | Differential High to Low<br>Transition Time                 | voltage. De-emphasis disabled. Transition time is measured with the fixture shown in <i>Figure 6</i> adjusted to reflect the transition time at the output pins.                                                                                                     |      | 80                  |      | ps                   |
| t <sub>PLH</sub>   | Differential Low to High Propagation Delay                  | Measured at 50% differential voltage from input to output.                                                                                                                                                                                                           |      |                     | 1    | ns                   |
| t <sub>PHL</sub>   | Differential High to Low<br>Propagation Delay               |                                                                                                                                                                                                                                                                      |      |                     | 1    | ns                   |
| t <sub>SKP</sub>   | Pulse Skew                                                  | It <sub>PHL</sub> -t <sub>PLH</sub> I                                                                                                                                                                                                                                |      |                     | 20   | ps                   |
| t <sub>sko</sub>   | Output Skew<br>(Note 7)                                     | Difference in propagation delay between channels<br>on the same part<br>(Channel-to-Channel Skew)(Note 7)                                                                                                                                                            |      |                     | 100  | ps                   |
| t <sub>SKPP</sub>  | Part-to-Part Skew<br>(Note 7)                               | Difference in propagation delay between devices across all channels operating under identical conditions                                                                                                                                                             |      |                     | 165  | ps                   |
| t <sub>LB</sub>    | Loopback Delay Time                                         | Delay from enabling loopback mode to signals appearing at the differential outputs  Figure 4                                                                                                                                                                         |      |                     | 4    | ns                   |

| Symbol | Parameter            | Conditions                  | Min  | Typ<br>(Note 2) | Max  | Units  |
|--------|----------------------|-----------------------------|------|-----------------|------|--------|
| RJ     | Device Random Jitter | At 0.25 Gbps                |      |                 | 2    | ps rms |
|        | (Note 5)             | At 1.5 Gbps                 |      |                 | 2    | ps rms |
|        |                      | At 4.25 Gbps                |      |                 | 2    | ps rms |
|        |                      | Alternating-10 pattern.     |      |                 |      |        |
|        |                      | De-emphasis disabled.       |      |                 |      |        |
|        |                      | (Figure 6)                  |      |                 |      |        |
| DJ     | Device Deterministic | At 0.25 Mbps, PRBS7 pattern |      |                 | 25   | ps pp  |
|        | Jitter (Note 6)      | At 1.5 Gbps, K28.5 pattern  |      |                 | 25   | ps pp  |
|        |                      | At 4.25 Gbps, K28.5 pattern |      |                 | 25   | ps pp  |
|        |                      | At 4.25 Gbps, PRBS7 pattern |      |                 | 25   | ps pp  |
|        |                      | De-emphasis disabled.       |      |                 |      |        |
|        |                      | (Figure 6)                  |      |                 |      |        |
| DR     | Data Rate            | Alternating-10 pattern      | 0.25 |                 | 4.25 | Chno   |
|        | (Note 8)             |                             | 0.25 |                 | 4.25 | Gbps   |

**Note 1:** "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional. For guaranteed specifications and the test conditions, see the Electrical Characteristics Tables. Operation of the device beyond the maximum Operating Ratings is not recommended.

Note 2: Typical specifications are at TA=25 C, and represent most likely parametric norms at the time of product characterization. The typical specifications are not guaranteed.

Note 3: IN+ and IN- are generic names that refer to one of the many pairs of complementary inputs of the DS42BR400. OUT+ and OUT- are generic names that refer to one of the many pairs of the complementary outputs of the DS42BR400. Differential input voltage  $V_{ID}$  is defined as IIN+ - IN-I. Differential output voltage  $V_{OD}$  is defined as IOUT+ - OUT-I.

Note 4: K28.7 pattern is a 10-bit repeating pattern of K28.7 code group {001111 1000}

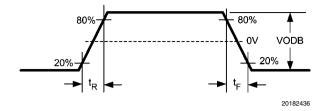
K28.5 pattern is a 20-bit repeating pattern of +K28.5 and -K28.5 code groups {110000 0101 001111 1010}

**Note 5:** Device output random jitter is a measurement of random jitter contributed by the device. It is derived by the equation  $SQRT[(RJ_{OUT})^2 - (RJ_{IN})^2]$ , where  $RJ_{OUT}$  is the total random jitter measured at the output of the device in ps(rms),  $RJ_{IN}$  is the random jitter of the pattern generator driving the device. Below 400 Mbps, system jitter and device jitter could not be separated. The 250 Mbps specification includes system random jitter. Please see *Figure 6* for the AC test circuit.

Note 6: Device output deterministic jitter is a measurement of the deterministic jitter contribution from the device. It is derived by the equation (DJ<sub>OUT</sub> - DJ<sub>IN</sub>), where DJ<sub>OUT</sub> is the total peak-to-peak deterministic jitter measured at the output of the device in ps(p-p). DJ<sub>IN</sub> is the peak-to-peak deterministic jitter at the input of the test board. Please see *Figure 6* for the AC test circuit.

Note 7:  $t_{SKO}$  is the magnitude difference in propagation delays between all data paths on one device. This is channel-to-channel skew.  $t_{SKPP}$  is the worst case difference in propagation delay across multiple devices on all channels and operating under identical conditions. For example, for two devices operating under the same conditions,  $t_{SKPP}$  is the magnitude difference between the shortest propagation delay measurement on one device to the longest propagation delay measurement on another device.

Note 8: This parameter is guaranteed by design and/or characterization and is not tested in production.


Note 9: ESD tests conform to the following standards:

Human Body Model (HBM) applicable standard: MIL-STD-883, Method 3015.7

Machine Model (MM) applicable standard: JESD22-A115-A (ESD MM std. of JEDEC)

Field -Induced Charge Device Model (CDM) applicable standard: JESD22-C101-C (ESD FICDM std. of JEDEC)

## **Timing Diagrams**



**FIGURE 2. Driver Output Transition Time** 

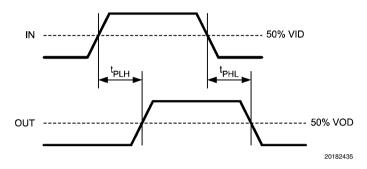



FIGURE 3. Propagation Delay

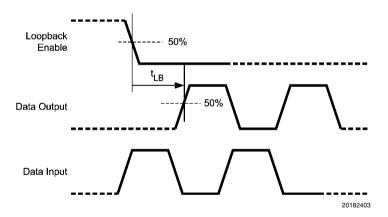



FIGURE 4. Loopback Delay Timing

11

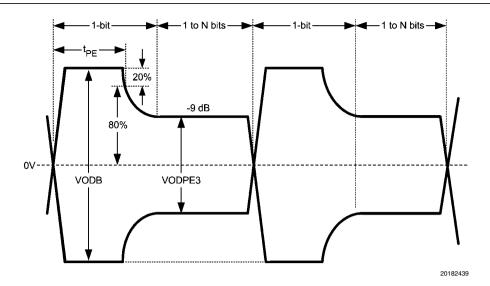



FIGURE 5. Output De-Emphasis Duration

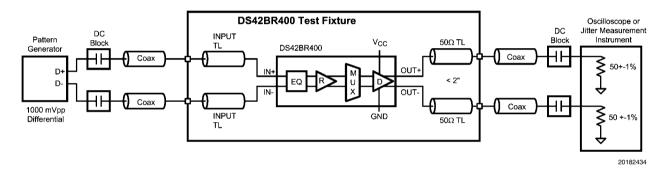



FIGURE 6. AC Test Circuit

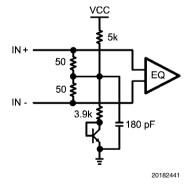
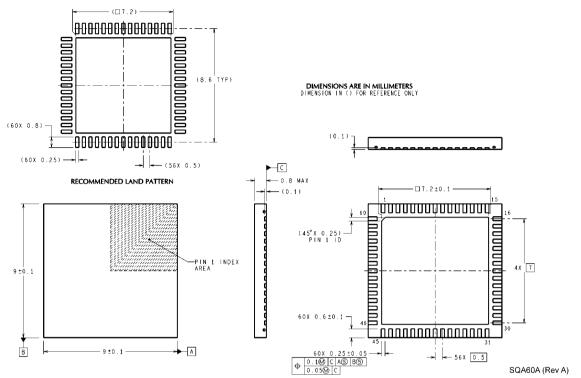




FIGURE 7. Receiver Input Termination

## Physical Dimensions inches (millimeters) unless otherwise noted



eLLP-60 Package Order Number DS42BR400TSQ NS Package Number SQA060

#### **Notes**

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

| Pr                             | oducts                       | Design Support          |                                |  |
|--------------------------------|------------------------------|-------------------------|--------------------------------|--|
| Amplifiers                     | www.national.com/amplifiers  | WEBENCH® Tools          | www.national.com/webench       |  |
| Audio                          | www.national.com/audio       | App Notes               | www.national.com/appnotes      |  |
| Clock and Timing               | www.national.com/timing      | Reference Designs       | www.national.com/refdesigns    |  |
| Data Converters                | www.national.com/adc         | Samples                 | www.national.com/samples       |  |
| Interface                      | www.national.com/interface   | Eval Boards             | www.national.com/evalboards    |  |
| LVDS                           | www.national.com/lvds        | Packaging               | www.national.com/packaging     |  |
| Power Management               | www.national.com/power       | Green Compliance        | www.national.com/quality/green |  |
| Switching Regulators           | www.national.com/switchers   | Distributors            | www.national.com/contacts      |  |
| LDOs                           | www.national.com/ldo         | Quality and Reliability | www.national.com/quality       |  |
| LED Lighting                   | www.national.com/led         | Feedback/Support        | www.national.com/feedback      |  |
| Voltage Reference              | www.national.com/vref        | Design Made Easy        | www.national.com/easy          |  |
| PowerWise® Solutions           | www.national.com/powerwise   | Solutions               | www.national.com/solutions     |  |
| Serial Digital Interface (SDI) | www.national.com/sdi         | Mil/Aero                | www.national.com/milaero       |  |
| Temperature Sensors            | www.national.com/tempsensors | SolarMagic™             | www.national.com/solarmagic    |  |
| Wireless (PLL/VCO)             | www.national.com/wireless    | Analog University®      | www.national.com/AU            |  |

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2009 National Semiconductor Corporation

For the most current product information visit us at www.national.com



National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com