

MX2604 Triple-band VCO for GSM900/DCS1800/PCS1900

Triple-band VCO for GSM900/DCS1800/PCS1900

General Description

The LMX2604 is a fully integrated VCO (Voltage-Controlled Oscillator) IC designed for GSM900/DCS1800/PCS1900 triple-band application. The IC is ideal for use in the transmitter modulation loop by providing extremely small form factor and low phase noise. The IC has two VCOs, one for GSM and a second for DCS/PCS. The IC has two separate buffer amplifiers to drive an external high power amplifier, one for GSM900 band and the other one for DCS1800/PCS1900 bands. The IC also has a differential buffer amplifier to drive a mixer for the offset PLL.

The resonant circuits of the VCOs are fully integrated in the chip to ease the application of the IC. The high quality factor of the embedded tank circuit achieves very low phase noise characteristics at the VCO output. The only required external components are a couple of supply bypass capacitors and matching components.

A control pin for controlling the oscillation frequency is shared by the two VCOs.

The LMX2604 IC is provided in a 20-pin 4x4 LLP (Leadless Leadframe package).

Features

On-chip Triple-band RF VCOs GSM: 880 MHz to 915 MHz DCS: 1710 MHz to 1785 MHz PCS: 1850 MHz to 1910 MHz On-chip tank circuit

Low phase noise

- -167 dBc/Hz @ 20 MHz offset in GSM band
- -163 dBc/Hz @ 20 MHz offset in DCS band
- -162 dBc/Hz @ 20 MHz offset in PCS band
- High output power
 - +6 dBm in GSM mode
 - +6 dBm in DCS and PCS mode

Low current consumption

- 18 mA in GSM mode
- 15 mA in DCS and PCS mode
- +2.6 V to +3.0 V supply voltage

0.25 µm RF CMOS process

Small 20-pin 4x4 LLP package

Applications

- Transmit VCO for GSM, DCS, and PCS
- Closed loop modulation systems

Functional Block Diagram

FastLock™ is a trademark of National Semiconductor Corporation. TRI-STATE® is a registered trademark of National Semiconductor Corporation.

© 2011 National Semiconductor Corporation 200661

www.national.com

Connection Diagram

Pin Descriptions

Pin Number	Name	1/0	Description
1	CE	I	Chip enable input pin. High=enable, Low=disable
2,4,15	GND (<i>Note 1</i>)		Ground pins
3	MIXout	0	Mixer output pin (RF output)
5	BSW		Band switch input pin. High=DCS/PCS, Low=GSM
11,19	VDD	/ -	Supply voltage pins
12	GSMout	0	RF output pin for VCO in GSM band
13	DCSPCSout	0	RF output pin for VCO in DCS and PCS band
16	CPin	I	Charge pump input pin
6,7,8,9,10,14,17,18,20	NC	_	No Connection, These pins must be left open

Note 1: The exposed die attach pad is grounded.

Ordering Information

Package	Part Number	Package Marking	Media Transport	NSC Drawing
20-Pin LLP	LMX2604LQ	LMX2604LQ	1000 Unit Tape and Reel	LQA20A
20-Pin LLP	LMX2604LQX	LMX2604LQ	4500 Unit Tape and Reel	LQA20A

Absolute Maximum Ratings (Note 3, Note 4, Note 5)

Parameter	Symbol	Ratings	Unit
Supply Voltage	V _{DD}	-0.3 to 3.6	V
Input Voltage	V _{IN}	-0.3 to V _{DD} +0.3	V
Input Current (Note 2)	I _{IN}	10	mA
Storage Temperature Range	T _{STG}	-65 to 150	°C

Note 2: Maximum input current is for a logic pin, not the power pins.

Recommended Operating Conditions

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Ambient Temperature	T _A	V _{DD} =3V	-30	25	85	°C
Supply Voltage (to GND)	V _{DD}		2.6	2.8	3.0	V

Note 3: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Note 4: This Device is a high performance RF integrated circuit with an ESD rating < 2 kV and is ESD sensitive. Handling and assembly of this device should only be done at ESD-free workstations.

Note 5: Stresses in excess of the absolute maximum ratings can cause permanent or latent damage to the device. These are absolute stress ratings only. Functional operation of the device is only implied at these or any other conditions in excess of those given in the operation sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability

AC Electrical Characteristics

(V_{DD}=2.8V, T_A=25°C; unless otherwise noted)

Symbol	Parameter	Remarks	Min	Тур	Max	Units	
		GSM Band	880		915	MHz	
f	Frequency Range	DCS Band	1710		1785		
		PCS Band	1850		1910		
	T . O	GSM Band	10	15	20		
K _{vco}	I uning Sensitivity	DCS Band	15	20	25	MHz/V	
		PCS Band	20	25	30	7	
Dout	Output Dower	GSM Band	4	6	8	dBm	
Poul	Oulpul Power	DCS & PCS Band	4	6	8		
DMIXout	Output power of	GSM Band	-5.5	-3.5	-1.5	al Dura	
PMIXOU	MIXout pin	DCS & PCS Band	-4.5	-2.5	-0.5	a a a a a a a a a a a a a a a a a a a	
	L(f) Phase Noise (GSM Band)	at 100 kHz offset		-120		dBc/Hz	
1 (6)		at 400 kHz offset		-136	-128		
L(I)		at 3 MHz offset (Note 7)		-152			
		at 20 MHz offset (Note 7)		-167		1	
		at 100 kHz offset		-112			
1 (6)	Phase Noise	at 400 kHz offset		-130	-124	1 "	
L(I)	(DCS Band)	at 3 MHz offset (Note 7)		-146			
		at 20 MHz offset (Note 7)		-163		1	
		at 100 kHz offset		-110			
1 (6)	L(f) Phase Noise (PCS Band)	at 400 kHz offset		-129	-124	1	
L(I)		at 3 MHz offset (Note 7)		-145		- abc/Hz	
		at 20 MHz offset (Note 7)		-162			
	Second Harmonic Suppression	All Bands at RF output port.		-20	-15	dBc	

Note 6: Tuning Sensitivity is measured after coarse lock. Minimum and maximum limits are supported by characterization.

Note 7: Supported by characterization

DC Electrical Characteristics

(V _{DD} =2.8V, T _A =25°C	; unless otherwise noted)
--	---------------------------

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{IH}	Logical Input High Voltage		0.8V _{DD}		V _{DD} +0.3	v
V _{IL}	Logical Input Low Voltage		-0.3		$0.2V_{DD}$	V
I _{IH}	Logical Input High Current		-2.5		2.5	μA
I _{IL}	Logical Input Low Current		-2.5		2.5	μA
	Input Capacitance			5		pF
I _{DD,GSM}	Supply Current (<i>Note 8</i>)			18	21	mA
I _{DD,DCS/PCS}	Supply Current (<i>Note 8</i>)			15	18	mA
I _{std}	Standby Current				2.5	μA

Note 8: The current consumption in VCO and driver amplifier is all included

Note 9: For CE, BSW, and CPin pins

<figure>

	GSMout				
Frequency (MHz)	Real (Ohms)	Imaginary (Ohms)	Absolute (Ohms)		
800	126	-72	146		
850	126	-74	146		
900	126	-75	146		
950	126	-77	147		
1000	125	-80	149		

Typical Performance Characteristic : MIXout Impedance, GSM

MIXout, GSM				
Frequency (MHz)	Real (Ohms)	Imaginary (Ohms)	Absolute (Ohms)	
800	141	-256	292	
850	133	-249	282	
900	126	-243	274	
950	120	-237	266	
1000	115	-232	259	

Typical Performance Characteristic : DCSPCSout Impedance Marker 1: 1750 MHz Marker 2: 1880 MHz Start 1600 MHz Start 1600 MHz

	DCSPCSout				
Frequency (MHz)	Real (Ohms)	Imaginary (Ohms)	Absolute (Ohms)		
1600	80	-54	96		
1650	78	-53	94		
1700	77	-51	93		
1750	76	-50	91		
1800	73	-49	88		
1850	71	-48	85		
1900	68	-48	83		
1950	64	-48	80		
2000	57	-51	77		

20066132

Typical Performance Characteristic : MIXout Impedance, DCS/PCS

	MIXout, DCSPCS				
Frequency (MHz)	Real (Ohms)	Imaginary (Ohms)	Absolute (Ohms)		
1600	66	-164	177		
1650	65	-162	175		
1700	64	-160	172		
1750	66	-157	171		
1800	64	-157	169		
1850	63	-153	166		
1900	62	-150	162		
1950	61	-146	159		
2000	59	-143	155		

Functional Description

PRODUCT DESCRIPTION

The LMX2604 IC has two VCOs, which are configured as an LC resonant oscillator. The active components and tank elements are all integrated on the IC. The oscillator core and the tank circuit are designed to be immune to external noise such as supply and load variation. The IC is easy-to-use and occupies extremely small area in the board.

Two output amplifiers are also integrated to deliver high output power of +6 dBm in GSM/DCS/PCS applications. The amplifiers isolate the oscillator cores from the external load, and drive the external 50 ohm load. The output driver is designed to have low noise floor and to reduce pulling by load variation. An additional amplifier to drive the mixer in the transmit PLL is also provided. Only an attenuator composed of a few passive elements is necessary to meet the power level of the mixer input of the transmit PLL.

The frequency of the oscillator is controlled by the CPin pin, which is internally connected to the varactor. This control pin is connected to the loop filter of the modulation loop in the transmit path. Any additional noise on this tuning input is directly translated into FM noise, which can degrade the phase noise characteristics of the oscillator. Typically, the loop filter of the PLL provides an appropriately low impedance source at its output and thus proper additional filtering stage is often required to reduce the high frequency noise and spurious signals.

FREQUENCY SELECTION AND POWER DOWN CONTROL

The BSW pin selects the operating frequency band. The table below shows the appropriate settings with the CE pin.

CE	BSW	Output
Low	Low	Х
Low	High	Х
High	Low	Low Band (GSM)
High	High	High Band (DCS/PCS)

In real implementation, the component values of the tank circuit vary from the nominal value. The IC has built-in circuit to track the variation and compensate that kind of the variation during normal operation. This self-correction algorithm does not require any external control signal and elements. The figure below shows an application circuit of the LMX2604. The LMX2604 is developed for the use in a GSM handset as part of the transmitter PLL. To complete the offset PLL in the transmit path, several passive elements for the external loop filter should be also provided. The charge pump output port of the external transceiver IC is fed to the CPin pin.

The locking process of the LMX2604 is composed of two stages. First, the internal control circuitry of the LMX2604 controls the fast frequency acquisition behavior of the LMX2604. After the frequency acquisition, the whole loop enters in its normal operating mode.

FREQUENCY ACQUISITION

On the rising edge of CE the VCO goes through a frequency acquisition mode which coarse locks the PLL to the approximate final frequency. This portion of the lock digitally sets the frequency such that the final tuning voltage on the CPin line of the VCO is approximately Vdd/2. Benefits of this system is the maximum required charge pump voltage is reduced as large frequency ranges may be tuned with a small tuning voltage. This makes the digitally tuned VCO different from conventional analog VCOs.

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Products		Design Support	
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench
Audio	www.national.com/audio	App Notes	www.national.com/appnotes
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns
Data Converters	www.national.com/adc	Samples	www.national.com/samples
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED. ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS, PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS. NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com ww.national.com Tel: 1-800-272-9959

National Semiconductor Europe **Technical Support Center** Email: europe.support@nsc.com

National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan **Technical Support Center** Email: ipn.feedback@nsc.com