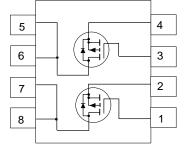

NDH8502P Dual P-Channel Enhancement Mode Field Effect Transistor

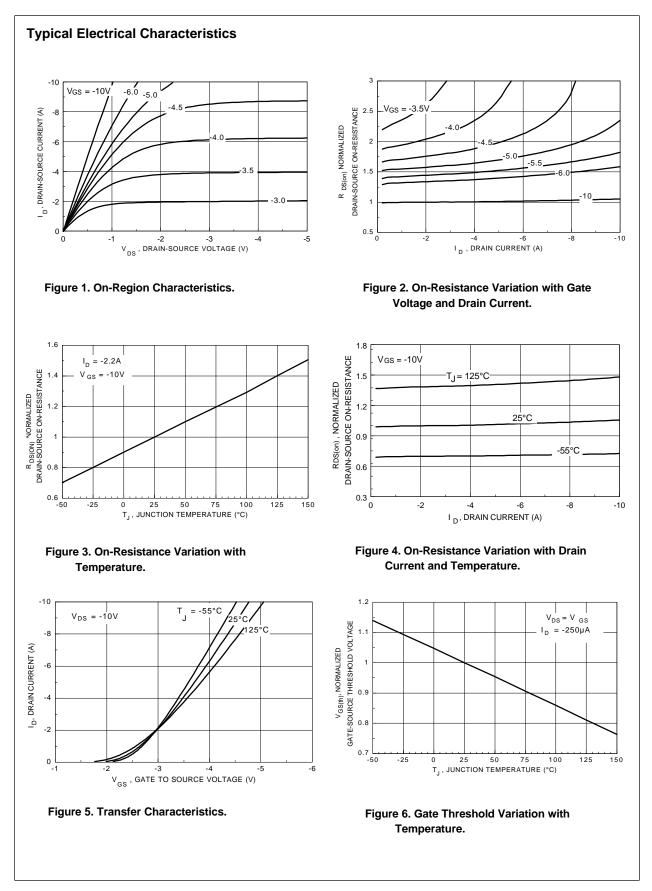

General Description

SuperSOT[™]-8 P-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications such as notebook computer power management and other battery powered circuits where fast high-side switching, and low in-line power loss are needed in a very small outline surface mount package.

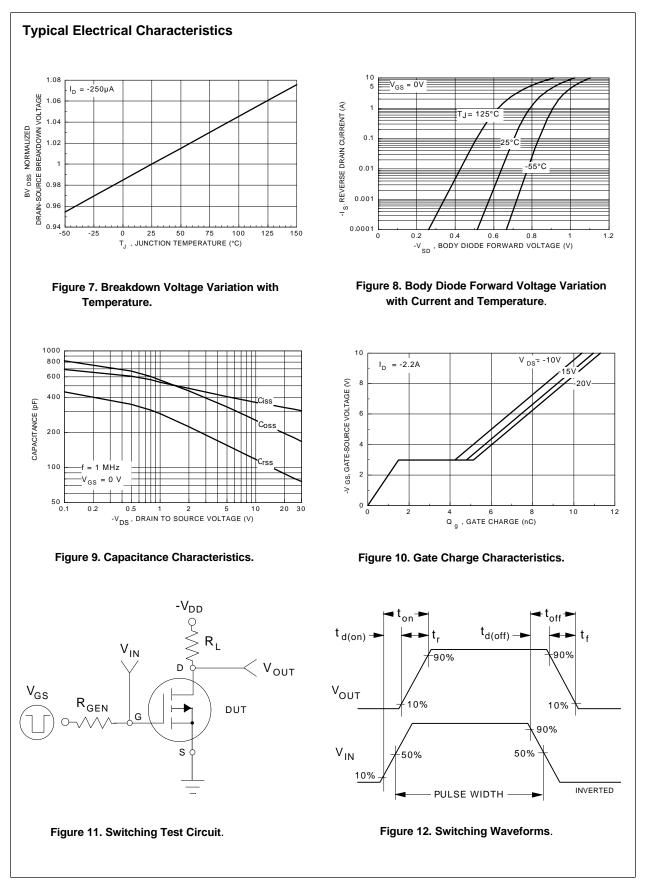
Features

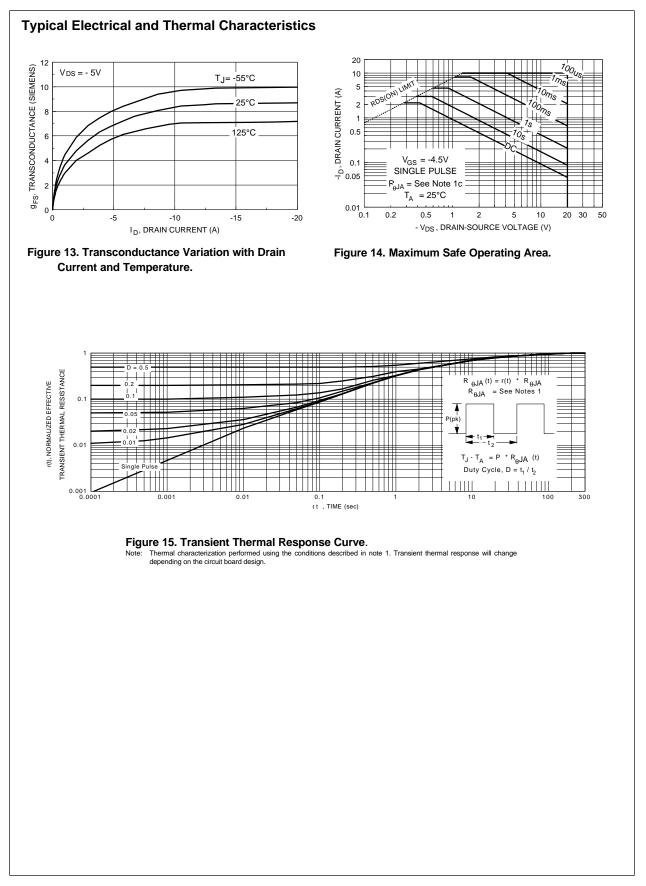
- -2.2 A, -30 V. $R_{DS(ON)} = 0.11 \Omega @ V_{GS} = -10 V$ $R_{DS(ON)} = 0.18 \Omega @ V_{GS} = -4.5 V.$
- Proprietary SuperSOT[™]-8 package design using copper lead frame for superior thermal and electrical capabilities.
- High density cell design for extremely low R_{DS(ON)}.
- Exceptional on-resistance and maximum DC current capability.

Absolute M	laximum Ratings	$T_A = 25^{\circ}C$ unless otherwise noted	
-	_		


Symbol	Parameter		NDH8502P	Units
V _{DSS}	Drain-Source Voltage		-30	V
V _{GSS}	Gate-Source Voltage		±20	V
I _D	Drain Current - Continuous	(Note 1)	-2.2	А
	- Pulsed		-10	
P _D	Maximum Power Dissipation	(Note 1)	0.8	W
T_,T _{STG}	Operating and Storage Temperature Range		-55 to 150	°C
THERMA	L CHARACTERISTICS	·		
R _{θJA}	Thermal Resistance, Junction-to-Ambient	(Note 1)	156	°C/W
R _{θJC}	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

© 1997 Fairchild Semiconductor Corporation


December 1996


Symbol	Parameter	Conditions		Min	Тур	Max	Units
OFF CHA	RACTERISTICS				•	•	
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \mu\text{A}$		-30			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}$				-1	μA
			T_= 55°C			-10	μΑ
GSSF	Gate - Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$	·			100	nA
	Gate - Body Leakage, Reverse	V _{GS} = -20 V, V _{DS} = 0 V				-100	nA
	ACTERISTICS (Note 2)						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$		-1	-1.5	-3	V
			T_= 125°C	-0.8	-1.2	-2.2	
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -10 \text{ V}, I_{D} = -2.2 \text{ A}$			0.1	0.11	Ω
			T_= 125°C		0.14	0.2	
		$V_{GS} = -4.5 \text{ V}, \ I_{D} = -1.7 \text{ A}$			0.17	0.18	
D(on)	On-State Drain Current	$V_{GS} = -10 \text{ V}, \text{ V}_{DS} = -5 \text{ V}$		-10			Α
		$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$		-4			
9 _{FS}	Forward Transconductance	$V_{\rm DS}$ = -10 V, $I_{\rm D}$ = -2.2 A			3.8		S
DYNAMIC	CHARACTERISTICS						
C _{iss}	Input Capacitance	$V_{DS} = -15 V, V_{GS} = 0 V,$			340		pF
C _{oss}	Output Capacitance	f = 1.0 MHz			218		pF
C _{rss}	Reverse Transfer Capacitance				100		pF
SWITCHIN	G CHARACTERISTICS (Note 2)						
t _{D(on)}	Turn - On Delay Time	$V_{DD} = -10 \text{ V}, \text{ I}_{D} = -1 \text{ A},$			8	15	ns
t,	Turn - On Rise Time	V_{GS} = -10 V, R_{GEN} = 6 Ω			18	35	ns
t _{D(off)}	Turn - Off Delay Time				28	50	ns
t _f	Turn - Off Fall Time				20	35	ns
Q _g	Total Gate Charge	$V_{DS} = -15 V,$ $I_{D} = -2.2 A, V_{GS} = -10 V$			10.9	14.5	nC
Q _{gs}	Gate-Source Charge				1.4		nC
Q_{gd}	Gate-Drain Charge				3.6		nC

RAIN-SO	Parameter	Conditions	Min	Тур	Max	Units
	URCE DIODE CHARACTERISTICS AND	MAXIMUM RATINGS	I			
	Maximum Continuous Drain-Source Diode				-0.67	Α
SD	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = -0.67 A$ (Note 2)		-0.76	-1.2	V
				0.1.0		
tes: $R_{\mu\lambda}$ is the s design while $P_D(t) = \frac{1}{r}$ Typical $R_{\mu\nu}$ 1: Γ	um of the junction-to-case and case-to-ambient thermal resista a R _{gen} is determined by the user's board design. $\frac{T_{D}T_{A}}{R_{BU}(1)} = \frac{T_{D}T_{A}}{R_{BU}(2+R_{D}G(1)} = I_{D}^{2}(1) \times R_{DS(ON)} \otimes T_{J}$, using the board layouts shown below on 4.5"x5" FR-4 PCB in 56°C/W when mounted on a 0.0025 in ² pad of 2oz copper. $\frac{2}{2} \prod_{i=1}^{D} \frac{1}{i} \prod$	nce where the case thermal reference is defined as the solde	r mounting surface of t	he drain pins	6. R _e .c is guara	Inteed by

NDH8502P Rev.C

NDH8502P Rev.C

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ **EcoSPARK™** E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series™ FAST ® FASTr™ FRFET™ GlobalOptoisolator[™] POP[™] GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™

OPTOLOGIC™ OPTOPLANAR™ PACMAN™ Power247™ PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER®

SMART START™ VCX™ STAR*POWER™ Stealth™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ TruTranslation[™] UHC™ UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY. FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	In Design First Production Full Production