PT4120 Series

20-W 48-V Input Isolated DC/DC Converter

SLTS092B

(Revised 2/26/2002)

Features

- Input Voltage Range:
- 36V to 75V
- 20W Rated
- 82% Efficiency
- 1500 VDC Isolation
- Low Profile (8.5 mm)
- Small Footprint: 1.52in x 1.73in
- Remote On/Off

- Short Circuit Protection
- Over Temperature Shutdown
- Under-Voltage Lockout
- UL1950 Recognized
- CSA 22.2 950 Certified
- EN60950 Approved
- 4×106 Hrs MTBF

Description

The PT4120 power modules are a series of isolated DC/DC converters housed a lowprofile package. Rated for 20 watts or 5A, the series includes standard output voltages ranging from as low as 1.5VDC to 15VDC. The output may be adjusted $\pm 10\%$ of nominal. These converters are ideal for Telecom, Industrial, Computer, and other distributed power applications that require input-tooutput isolation.

Using multiple PT4120 modules, system designers can implement a complete custom power supply solution. The flexibility of full isolation also allows the input or output to be configured for negative voltage operation.

The PT4120 series requires no additional components for proper operation.

PT4121 = 3.3V/5A (16.5W) **PT4122**□ = 5.0V/4A **PT4123**□ = 12.0V/1.6A **PT4124**□ = 15.0V/1·3A **PT4125**□ = 5.2V/3.8A **PT4126** = 1.5V/5A (7.5W) **PT4127** = 1.8V/5A (9W) **PT4128** = 2.5V/5A (12.5W) **PT4129**□ = 1.65V/5A (8.25W)

PT Series Suffix (PT1234x)

* Previously known as package style 710.

(Reference the applicable package code drawing for the dimensions and PC board layout)

Order

Suffix

A

С

Package

Code

(EGD)

(EGE)

Case/Pin

Horizontal

SMD

Configuration

Ordering Information

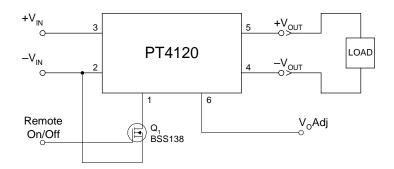
$\frac{2}{3}$ +Vin

Pin

1

4 –Vout 5 +Vout

Pin-Out Information


Function

Remote On/Off †

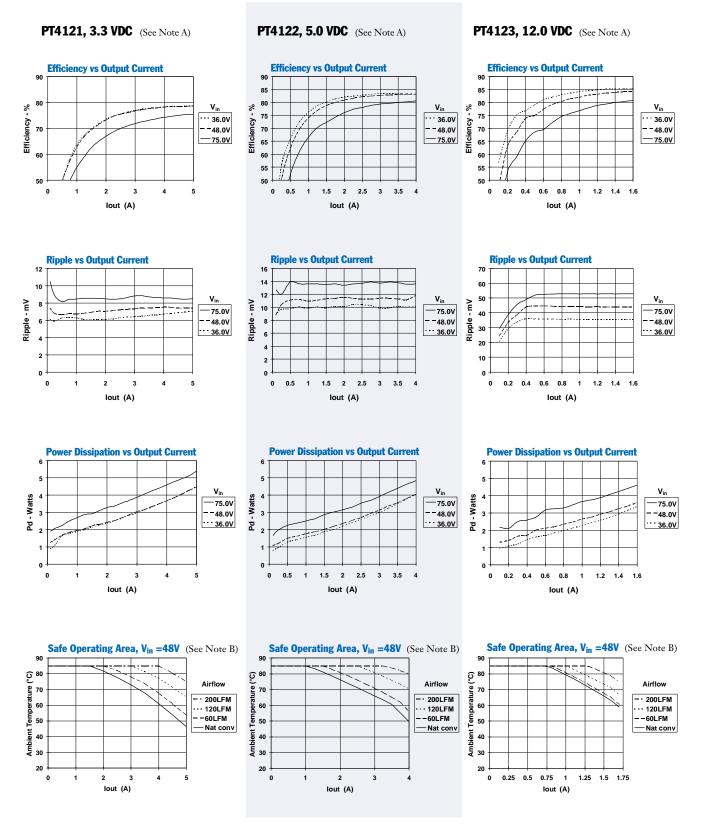
6 Vout Adjust †

† For further information, see application notes.

Standard Application

20-W 48-V Input Isolated DC/DC Converter

				-			
Characteristic	Symbol	Conditions	Min	Тур	Max	Units	
Output Current	Io	Over V _{in} range	$V_{o} = 15V$ $V_{o} = 12V$ $V_{o} = 5.0V$ $V_{o} \le 3.3V$	0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1)		1.3 1.6 4.0 5.0	А
Input Voltage Range	Vin	Over I _o Range	v0=5.5 v	36.0	48.0	75.0	VDC
Set Point Voltage Tolerance	Votol	e ver 10 runge	V₀≥5.0V	_	±1	±1.5	%V ₀
over onic voltage folorance	10:00		$\frac{V_0 \leq 3.3V}{V_0 \leq 3.3V}$	_	_	±50	mV
Temperature Variation	Reg _{temp}	-40° ≤T _a ≤+85°C	.0	_	±0.5		%Vo
Line Regulation	Regline	Over V _{in} range	V₀≥5.0V	_	±0.2	±1.0	%Vo
0	June			_	±7	±33	mV
Load Regulation	Regload	Over I _o range	Vo≥5.0V	_	±0.4	±1.0	%Vo
-	-	-	V₀≤3.3V		±13	±33	mV
Total Output Voltage Variation	ΔV_{o} tot	Includes set-point, line load,	V₀≥5.0V	_	±2	_	%Vo
		$-40^{\circ} \le T_a \le +85^{\circ}C$	V₀≤3.3V	_	±67	_	mV
Efficiency	η		$V_0 = 15V$	_	86	_	
			$V_0 = 12V$ $V_0 = 50V$	_	83 82	_	%
			$V_0 = 5.0V$ $V_0 = 3.3V$	_	78	_	70
			V _o =1.8V	_	67	_	
V _o Ripple (pk-pk)	V_r	20MHz bandwidth	$V_{o} \ge 5.0V$	—	0.5	_	%V _o
			$V_0 \le 3.3V$	—	15	_	mV _{pp}
Transient Response	t _{tr}	0.1A/µs, load step 50% to 100%		—	100	_	μs
	ΔV_{tr}	Vo over/undershoot	$V_0 \ge 5.0V$	—	±3.0		%Vo
			$V_0 \le 3.3V$	_	±150	_	mV
Short Circuit Current	I _{sc}				2xI _o max	_	A
Switching Frequency	f_{s}	Over V _{in} range	$\begin{array}{l} V_o \ge 12.0V \\ V_o \le 5.2V \end{array}$	600 800	650 850	700 900	kHz
Under-Voltage Lockout	UVLO			_	31	_	V
Remote On/Off (Pin 1) Input High Voltage	V_{IH}	Referenced to -Vin (pin 2)		2.5	_	7.0(2)	v
Input Low Voltage	VIL			-0.2	—	+0.8	v
Input Low Current	I_{IL}			_	-10	-	μA
Standby Input Current	I _{in} standby	pins 1 & 2 connected		_	7	50	mA
Internal Input Capacitance	Cin			_	0.5	_	μF
External Output Capacitance	Cout	Between + V_o and – V_o		0	-	200	μF
Isolation Voltage		Input to output		1500		_	V
Capacitance Resistance				$\frac{10}{10}$	1100	_	pF MΩ
Operating Temperature Range	Ta	Over Vin range		-40	-	+85 (3)	°C
Storage Temperature	Ts			-40	_	+125	°Č
Reliability	MTBF	Per Bellcore TR-332 50% stress, $T_a = 40^{\circ}$ C, ground be	nign	4.0	-	_	106 Hr
Mechanical Shock	—	Per Mil-Std-883D, method 2002 1mS, half-sine, mounted to a fixt	.3,	_	500	_	G's
Mechanical Vibration	-	Per Mil-Std-883D, method 2007 20-2000Hz, soldered in a PC box	.2,	-	15	_	G's
Weight	_	_		_	23	_	grams
Flammability	_	Materials meet UL 94V-0					


Specifications (Unless otherwise stated, $T_a = 25^{\circ}C$, $V_{in} = 48V$, $C_{out} = 0\mu F$, and $I_o = I_o max$)

Notes: (1) The DC/DC converter will operate at no load with reduced specifications.
(2) The Remote On/Off (pin 1) has an internal pull-up, and if it is left open circuit the PT4120 will operate when input power is applied. Refer to the application notes for interface considerations.
(3) See Safe Operating Area curves or contact the factory for the appropriate derating.

Typical Characteristics

20-W 48-V Input Isolated DC/DC Converter

Note A: Characteristic data has been developed from actual products tested at 25°C. This data is considered typical data for the Converter. **Note B:** SOA curves represent the conditions at which internal components are at or below the manufacturer's maximum operating temperatures

Using the Remote On/Off Function on the PT4120/ PT4140 Series of Isolated DC/DC Converters

For applications requiring output voltage on/off control, the PT4120/4140 series of DC/DC converters incorporate a remote on/off function. This function may be used in applications that require battery conservation, power-up/ shutdown sequencing, and/or to co-ordinate the powerup of the regulator for active in-rush current control. (See the related application note, AN21).

This function is provided by the *Remote On/Off* control, pin1. If pin 1 is left open-circuit, the converter provides a regulated output whenever a valid source voltage³ is applied between $+V_{in}(pin 3)$, and $-V_{in}(pin 2)$. Applying a low-level ground signal ¹ to pin 1 will disable the regulator output ⁵.

Table 1 provides details of the threshold requirements for the *Remote On/Off* pin. Figure 1 shows how a discrete MOSFET $(Q_1)^4$, may be referenced to the negative input voltage rail and used with this control input.

Parameter	min	max	
Enable (VIH)	2.5V	(Open Circuit) ^{2,4}	
Disable (VIL)	-0.3V	0.8V	

Notes:

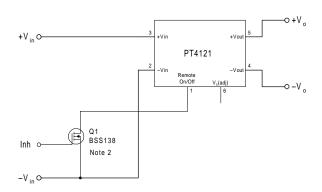
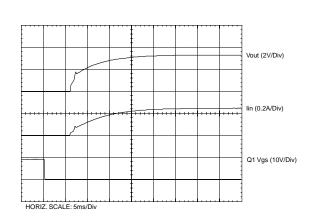

- 1. The on/off control uses $-V_{in}$ (pin 2), the primary side of the converter as its ground reference. All voltages specified are with respect to $-V_{in}$.
- 2. The on/off control internal circuitry is a high impedance 10μ A current source. The open-circuit voltage may be as high as 8.3Vdc.
- 3. The PT4120/40 series incorporates an "Under Voltage Lockout" (UVLO) function. This function automatically inhibits the converter output until there is sufficient input voltage for the converter to produce a regulated output. Table 2 gives the applicable UVLO thresholds.

Table 2 UVLO Thresholds						
Series	UVLO Threshold	V _{in} Range				
PT4120	31V Typical	36-75V				
PT4140	15V Typical	18-40V				

- The *Remote On/Off* input of the PT4120/40 series regulators must be controlled with an open-collector (or open-drain) discrete transistor or MOSFET. <u>Do not</u> use a pull-up resistor.
- 5. When the converter output is disabled, the current drawn from the input supply is typically reduced to 8mA (16mA maximum).


6. Keep the on/off transition to less than 1ms. This prevents erratic operation of the ISR, whereby the output voltage may drift un-regulated between 0V and the rated output during power-up.

Turn-On Time: The converter typically produces a fully regulated output voltage within 50ms after the application of power, or the removal of the low voltage signal ⁶ from the *Remote On/Off* pin. The actual turn-on time will vary with the input voltage, output load, and the total amount of capacitance connected to the output. Using the circuit of Figure 1, Figure 2 shows the output voltage and input current waveforms of a PT4121 after Q_1 is turned off. The turn off of Q_1 corresponds to the drop in $Q_1 V_{gs}$ voltage. The waveforms were measured with a 48Vdc input voltage, and 2.75-A resistive load.

Figure 2

Adjusting the Output Voltage of the PT4120/ PT4140 Series of Isolated DC/DC Converters

The factory pre-set output voltage of Power Trends' PT4120 and PT4140 series of isolated DC/DC converters may be adjusted within $\pm 10\%$ of nominal. Adjustment is made from the secondary side of the regulator¹ with a single external resistor. For the input voltage range specified in the data sheet Table 1 gives the allowable adjustment range for each model, as V_o (min) and V_o (max).

Adjust Up: An increase in the output voltage is obtained by adding a resistor, R_2 between pin 6 (V_o adjust), and pin 4 (-V_{out}).

Adjust Down: Add a resistor (R_1) , between pin 6 (V_o adjust) and pin 5 (+V_{out}).

Refer to Figure 1 and Table 2 for both the placement and value of the required resistor, (R_1) or R_2 .

Notes:

- 1. The PT4120 and PT4140 series of DC/DC converters incorporate isolation between the V_{in} and V_o terminals. Adjustment of the output voltage is made to the regulation circuit on the secondary or output side of the converter.
- 2. The maximum rated output power for this series is 20W. An increase in the output voltage may therefore require a corresponding reduction in the maximum output current (*see Table 1*). The revised maximum output current must be determined as follows:-

$$I_o(max) = \frac{20}{V_a} A$$
, or 5A, whichever is less.

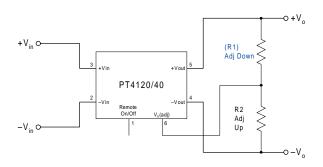
Where V_a is the adjusted ouput voltage.

3. Use only a single 1% resistor in either the (R_1) or R_2 location. Place the resistor as close to the ISR as possible.

lá	able	2	
D	C/DO	C CO	NVERTER ADJUSTMENT RANGE AND FORMULA PARAMETERS
~	•	D1 /	

4. Never connect capacitors to $V_{\rm o}$ adjust. Any capacitance added to the $V_{\rm o}$ adjust control pin will affect the stability of the ISR.

The values of (R_1) [adjust down], and R_2 [adjust up], can also be calculated using the following formulas.


$$(\mathbf{R}_{1}) = \frac{\mathbf{K}_{o} (\mathbf{V}_{a} - \mathbf{V}_{r})}{\mathbf{V}_{r} (\mathbf{V}_{o} - \mathbf{V}_{a})} - \mathbf{R}_{s} \qquad k\Omega$$

$$R_2 = \frac{K_o}{(V_a - V_o)} - R_s \quad k\Omega$$

Where Vo = Original output voltage

- V_a = Adjusted output voltage
- V_r = Reference voltage (Table 1)
- K_0 = Multiplier constant (Table 1)
- R_s = Internal series resistance (Table 1)

Figure 1

Series Pt #									
48V Bus	PT4126	PT4129	PT4127	PT4128	PT4121	PT4122	PT4125	PT4123	PT4124
24V Bus	PT4146		PT4147	PT4148	PT4141	PT4142		PT4143	PT4144
Max Current ²	5A	5A	5A	5A	5A	4A	3.8A	1.6A	1.3A
V _o (nom)	1.5	1.65	1.8	2.5	3.3	5.0	5.2V	12.0	15.0
Va(min)	1.35	1.49	1.62	2.25	2.95	4.5	4.75	10.8	13.5
Va(max)	1.65	1.81	1.98	2.75	3.65	5.5	5.75	13.2	16.5
Vr	1.225	1.225	1.225	1.225	1.225	2.5	2.5	2.5	2.5
K₀ (V·kΩ)	67.07	63.9	69.7	64.2	69.3	125.2	134.7	139.8	137.6
R _s (kΩ)	43.2	66.5	110.0	187.0	187.0	187.0	243.0	110.0	90.9

PT4120/4140 Series

Table 2

Series Pt #									
48V Bus	PT4126	PT4127	PT4128	PT4121		PT4122		PT4123	PT4124
24V Bus	PT4146	PT4147	PT4148	PT4141		PT4142		PT4143	PT4144
Vo(nom)	1.5Vdc	1.8Vdc	2.5Vdc	3.3Vdc		5.0Vdc		12.0Vdc	15.0Vdc
V _a (req'd)					V _a (req'd)		V _a (req'd)		
1.35	(2.8)kΩ				4.5	(12.6)kΩ	10.8	(276.0)kΩ	
1.4	(53.2)kΩ				4.55	(40.3)kΩ	11.0	(365.0)kΩ	
1.45	(204.0)kΩ				4.6	(75.0)kΩ	11.2	(497.0)kΩ	
1.5					4.65	(120.0)kΩ	11.4	(719.0)kΩ	
1.55	1.3MΩ				4.7	(179.0)kΩ	11.6	(1.16)MΩ	
1.6	627.0kΩ				4.75	(262.0)kΩ	11.8		
1.65	404.0kΩ	(51.7)kΩ			4.8	(387.0)kΩ	12.0		
1.7		(161.0)kΩ			4.85	(595.0)kΩ	12.2	588.0kΩ	
1.75		(489.0)kΩ			4.9	(1.01)MΩ	12.4	239.0kΩ	
1.8					4.95		12.6	123.0kΩ	
1.85		1.28MΩ			5.0		12.8	64.6kΩ	
1.9		587.0kΩ			5.05		13.0	29.7kΩ	
1.95		355.0kΩ			5.1	$1.06M\Omega$	13.2	6.4kΩ	
2.25			(26.5)kΩ		5.15	645.0kΩ	13.5		(312.0)kΩ
2.3			(92.9)kΩ		5.2	437.0kΩ	13.6		(345.0)kΩ
2.35			(203.0)kΩ		5.25	312.0kΩ	13.8		(427.0)kΩ
2.4			(425.0)kΩ		5.3	229.0kΩ	14.0		(542.0)kΩ
2.45			(1.09)MΩ		5.35	169.0kΩ	14.2		(713.0)kΩ
2.5					5.4	125.0kΩ	14.4		(1.0)MΩ
2.55			1.09MΩ		5.45	90.2kΩ	14.6		(1.57)M
2.6			450.0kΩ		5.5	62.4kΩ	14.8		
2.65			237.0kΩ				15.0		
2.7			131.0kΩ				15.2		597.0kΩ
2.75			67.7kΩ				15.4		253.0kΩ
2.95				(90.7)kΩ			15.6		138.0kΩ
3.0				(146.0)kΩ			15.8		81.0kΩ
3.05				(224.0)kΩ			16.0		46.6kΩ
3.1				(341.0)kΩ			16.5		$0.8 \text{k}\Omega$
3.15				(536.0)kΩ					
3.2				(926.0)kΩ					
3.25				(2.09)MΩ					
3.3									
3.35				1.19MΩ					
3.4				502.0kΩ					
3.45				272.0kΩ					
3.5				158.0kΩ					
3.55				88.7kΩ					
3.6 3.65				42.7kΩ					

 $R_1 = (Blue)$ $R_2 = Black$

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated