

High-Gain Instrumentation Operational Amplifier

OP-06

FEATURES

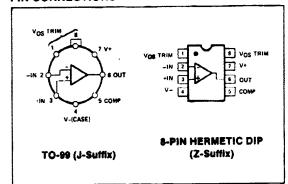
 Very High Volta 	ge Gain 1,000V/mV Min
. Low Offset Volt	age and Offset Current
. Low Drift vs. To	
(TCV _{OS})	0.8 _{\(\psi\)} V/°C Max
 Low Input Volte 	age and Current Noise
. Low Offset Volt	age Drift with Time
. High Common-	Mode Rejection 120dB Typ
. High Power Su	pply Rejection 2µV/V Max
. Wide Supply R	enge ±3.0V to ±22V
	Processing Available
. Siew Rate to	

ORDERING INFORMATION 1

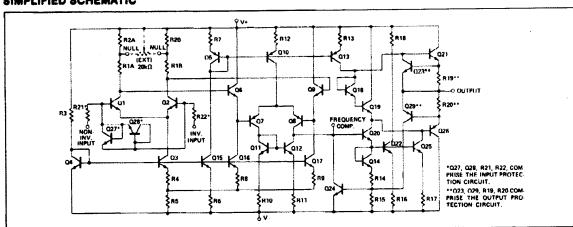
Available in Die Form

T_ = 25°C	PACH	OPERATING	
V _{OS} MAX (mV)	TO-99 8-PIN	CERDIP 8-PIN	TEMPERATURE RANGE
0.2	OP06AJ*	_	MIL
0.5	OP06FJ	_	COM
0.5	OP06BJ	_	MIL
1.3	OP06GJ	OP06GZ	COM

- For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet.
- Burn-in is available on commercial and industrial temperature range parts in cerdip, plastic dip, and TO-can packages.


GENERAL DESCRIPTION

The OP-06 monolithic instrumentation operational amplifier is designed for accurate high-gain amplification of low level signals. High common-mode rejection reduces signal degradation when large common-mode voltages are present.


Superior DC input characteristics include very low offset voltage and current, extremely high open-loop gain, low 1/f and wideband noise, and low "popcorn" noise. Low offset voltage drift is improved by a nulling technique that optimizes TCV_{OS} performance when V_{OS} is nulled to zero. Very high common-mode and power supply rejection enable accurate performance in noisy environments.

Flexible external compensation provides wide-bandwidth and high slew rate operation in high closed-loop gain applications. Excellent long-term stability, and compatibility with MIL-STD-883 processing, make the OP-06 an excellent choice for high-reliability applications. For example, process control and aerospace applications; including strain gauge and thermocouple amplifiers, low-noise audio amplifiers, and instrumentation amplifiers. The OP-06 is a direct replacement for all 725 types providing superior DC and noise performance plus the unique feature of complete input differential voltage and output short-circuit protection.

PIN CONNECTIONS

SIMPLIFIED SCHEMATIC

OP-06

ABSOLUTE MAXIMUM RATINGS (Note 3) Supply Voltage±22V Differential Input Voltage±30V Input Voltage (Note 1) _____±22V Output Short-Circuit Duration......Indefinite Storage Temperature Range-65°C to +150°C Operating Temperature Range OP-06A, OP-06B-55°C to +125°C OP-08F, OP-06G0°C to +70°C Lead Temperature Range (Soldering, 60 sec)+300°C

Junction Temperature-65°C to +150°C

PACKAGE TYPE	Θ _{jA} (NOTE 2)	elc	UNITS
TO-99 (J)	150	18	*C/W
8-Pin Hermetic DIP (Z)	148	16	*C/W

NOTES:

- 1. For supply voltages less than ±22V, the absolute maximum input voltage is equal to the supply voltage.
- equal to the supply volusing.
 Θ_{|A} is specified for worst case mounting conditions, i.e., Θ_{|A} is specified for device in socket for TO and CerDIP packages.
 3. Absolute ratings apply to both DICE and packaged parts, unless otherwise
- noted.

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $T_A = 25^{\circ}C$, unless otherwise noted.

				P-06A		OP-06B/F			C			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	Vos	R _S ≤ 20kΩ (Note 2)	_	0.06	0.2	_	0.2	0.5		0.4	1.3	mV
input Offset Current	1 _{OS}			0.3	2.0		0.75	5.0		2	13	nA
Input Bies Current	lg .		_	30	70	_	30	90		40	110	nA
		fo = 10Hz (Note 1)	_	9.0	15.0	_	9.0	15.0	_	9.0	15.0	
Input Noise Voltage	•0	fo = 100Hz (Note 1)		8.0	9.0	_	8.0	9.0	_	8.0	9.0	nV/√Hz
Density	••	f _O = 1000Hz (Note 1)		7.0	7.5		7.0	7.5		7.0	7.5	
		fo = 10Hz (Note 1)	_	0.5	1.2	-	0.5	1.2	_	0.6	1.4	r
Input Noise Current	in	f _O = 100Hz (Note 1)	-	0.25	0.6	-	0.25	0.6	-	0.3	0.7	pA√√Hz
Density	.,	f _O = 1000Hz (Note 1)		0.15	0.25		0.15	0.25		0.2	0.3	
Input Resistance	R _{IN}	(Note 3)	0.8	1.8		0.7	1.8		0.6	1.5		MC
Large-Signal Voltage Gain	Avo	$R_L \ge 2k\Omega$, $V_O = \pm 10V$	1,000	3,000		1,000	3,000	_	500	3,000	-	V/m\
		R _L ≥ 10kΩ	± 12.5	± 13.0	-	± 12.5	± 13.0	-	±12.0	±18.0	_	
Output Voltage	V _O	R _L ≥ 2kΩ	±12.0	±12.8	_	±12.0	± 12.8	-	±11.5	±12.8	-	•
Swing	•	A _L ≥1kΩ	±11.0	± 12.5		±11.0	± 12.5			± 12.0		
Input Voltage Range	IVR		± 13.5	±14.0		± 13.5	±14.0		± 13.5	± 14.0		
Common-Mode Rejection Ratio	CMRR	V _{CM} = ± 13.5V R _S ≤ 20kΩ	114	120		114	120		110	115	_	d£
Power Supply Rejection Ratio	PSRR	V _S = ±3V to ±18V R _S ≤ 20kΩ	_	0.5	2.0	-	1.0	5.0		2.0	10	μΥ/\
Power Consumption	Pa		_	90	120		90	120		110	150	m¥
Lerge-Signal Voltage Gain	Avo	A _L ≥ 500Ω, (Note 3) V _O = ±0.5V V _S = ±3V	100	600	_	100	600	-	60	800	_	V/m\
Power Consumption	Pd	V ₂ = ±3V	_	4	6	_	4	6	_	4	8	mV

NOTES:

- 1. Sample tested.
- 2. Thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can degrade drift performance. Both sides of the contacts should be kept at approximately the same temperature. All temperature gradients should be minimized.
- 3. Guaranteed by design.

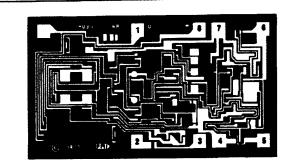
ELECTRICAL CHARACTERISTICS at $V_S = \pm\,15V$, $-55^{\circ}C \le T_A \le +\,125^{\circ}C$, unless otherwise noted.

			OP-06A			OP-06B			
PARAMETER	SYMBOL	CONDITIONS	MiN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage (Without external trim)	Vos	R _S ≤ 20k(1 (Note 2)	-	0.08	0.28		0.3	0.7	mV
Average Input Offset Voltage Drift (With- out external trim)	TCV _{OS}	R _S = 50{} (Notes 1, 2)	_	0.3	0.8		0.7	2.0	μV/°C
Average Input Offset Voltage Drift (With external trim)	TCV _{OSri}	R ₈ = 50Ω (Notes 2, 3) R _P = 20kΩ		0.2	0.6	_	0.28	1.0	μV/°C
Input Offset Current	los	T _A MAX T _A MIN	-	0.25 0.8	1.0 4.0		0.6 2.0	4,0 18.0	пА
Average Input Offset Current Drift	TCIOS	(Note 1)	-	3	20		8	90	pA/°C
Input Bias Current	l _e	T _A MAX T _A MIN	_	22 40	60 120	-	25 45	70 180	nA
Common-Mode Rejection Ratio	CMRR	V _{CM} = + 13.5V R _S ≤ 20kΩ	109	112	_	109	112	_	48
Power Supply Rejection Ratio	PSRR	V _S = ±3V to ±18V R _S ≤ 20kΩ	-	1	5	_	,	8	۷/۷پر
Large-Signal Voltage Gain	A _{VO}	$V_0 = \pm 10V$: $R_L \ge 2k\Omega$ $T_A MAX$ $T_A MIN$	1.000 700	3,500 2,000	-	1,000	3,500 1,800	-	V/mV
Output Voltage Swing	v _o	R _L ≥ 2kΩ	± 12.0	±12.6	_	± 12.0	± 12.6	_	v

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $0^{\circ}C \le T_A \le 70^{\circ}C$, unless otherwise noted.

		OP-06F				3		
SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Vos	R _S ≤ 20kΩ (Note 2)	_	0.25	0.6	_	0.5	1.6	m∨
TCVos	R _S = 50Ω (Notes 1, 2)	_	0.7	2.0	_	1,4	4.5	V/°Cب
TCV _{OSn}	R _S = 50Ω (Notes 2, 3) R _P = 20kΩ	-	0.28	1.0	_	0.5	1.5	µV/°C
los	T _A MAX T _A MIN		0.65 2.0	5.0 18.0	_	2.0 3.0	15 25	An
TCIOS	(Note 1)	_	8	90	_	14	150	pA/°C
18	T _A MAX T _A MIN	_	30 45	80 180	-	35 45	110 160	. nA
CMRR	V _{CM} = ±13.5V R _S ≤ 20kΩ	109	112	_	95	110	_	dB
PSRR	V _S = ±3V to ±18V R _S ≤ 20kΩ	-	1.5	7.0		3.0	15	μV/V
Avo	V _O = ±10V; R _L ≥ 2kΩ T _A MAX T _A MIN	1,000	3.500 1,800		400 300	3,200 1,700	-	V/mv
v _o	R _L ≥ 2kΩ	±12.0	±12.6	-	±11.0	±12.6	_	v
	Vos TCVosn Ios TCIOS Ia CMRR PSRR	$\begin{split} &V_{OS} & R_S \leq 20 k\Omega \; (\text{Note 2}) \\ &TCV_{OS} & R_S = 50\Omega \; (\text{Notes 1, 2}) \\ &TCV_{OSn} & R_S = 50\Omega \; (\text{Notes 2, 3}) \\ &R_p \approx 20 k\Omega \\ &I_{OS} & T_A \; \text{MAX} \\ &T_A \; \text{MIN} \\ &TCI_{OS} & (\text{Note 1}) \\ &I_B & T_A \; \text{MAX} \\ &T_A \; \text{MIN} \\ &CMRR & V_{CM} = \pm 13.5 V \\ &R_S \leq 20 k\Omega \\ &V_S = \pm 3V \; \text{Io} \pm 18V \\ &R_S \leq 20 k\Omega \\ &V_O = \pm 10V; \; R_L \geq 2k\Omega \\ &T_A \; \text{MAX} \\ &T_A \; \text{MIN} \\ &V_O = \pm 10V; \; R_L \geq 2k\Omega \\ &T_A \; \text{MAX} \\ &T_A \; \text{MIN} \\ \end{split}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

NOTES:


contacts should be kept at approximately the same temperature. All temperature gradients should be minimized.

3. Guaranteed by input bias current.

Sample tested.
 Thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can degrade drift performance. Both sides of the

OP-06

DICE CHARACTERISTICS

DIE SIZE 0.095 \times 0.051 inch, 4845 sq. mils (2.41 × 1.30 mm, 3.13 sq. mm)

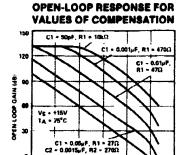
- 1. NULL
- 2. INVERTING INPUT
- 3. NONINVERTING INPUT
- 4. V-
- 5. COMPENSATION
- 6. OUTPUT
- 7. V+
- 8. NULL

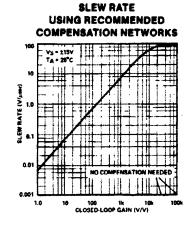
WAFER TEST LIMITS at $V_S = \pm$ 15V, $T_A = 25^{\circ}$ C for OP-06N, OP-06G and OP-06GR devices; $T_A = 125^{\circ}$ C for OP-06NT and OP-06GT devices, unless otherwise noted. (Note 2)

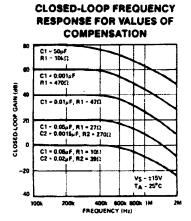
PARAMETER	SYMBOL	CONDITIONS	OP-06NT	OP-06N LIMIT	OP-06GT LIMIT	OP-06G LIMIT	OP-06GR LIMIT	UNITS
Input Offset Voltage	Vos	R _s ≤ 20kΩ	0.3	0.2	0.7	0.5	1.3	mV MAX
Input Offset Current	105		1	2	4	5	13	nA MAX
Input Bias Current	18		60	70	70	80	110	nA MAX
Input Resistance Differential Mode	R _{IN}	(Note 1)	_	0.8		0.7	0.5	MO MIN
Input Voltage Range	IVA		±13.0	± 13.5	± 13.0	± 13.5	± 13.5	V MIN
Common-Mode Rejection Ratio	CMAR	$V_{CM} = \pm 13.5$ $R_3 \le 20k\Omega$	108	114	108	114	110	dB MIN
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3V$ to $\pm 18V$ $R_S \le 20k\Omega$	6	2	8	5	10	μV/V MAX
Output Voltage Swing	v _o	$R_L \ge 10k\Omega$ $R_L \ge 2k\Omega$ $R_L \ge 1k\Omega$	± 12.0	± 12.5 ± 12.0 ± 11.0	± 12.0	± 12.5 ± 12.0 ± 11.0	±12.0 ±11.5	V MIN
Large-Signal Voltage Gain	A _{VO}	$R_L \ge 2k\Omega$ $V_0 = \pm 10V$	1000	1000	800	1000	500	V/mV MIN
Differential Input Voltage			±30	±30	±30	±30	±30	V MAX
Power Consumption (V _{OUT} = 0V)	Pd		_	120		120	150	mW MAX

NOTE:

Electrical tests are performed at water probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

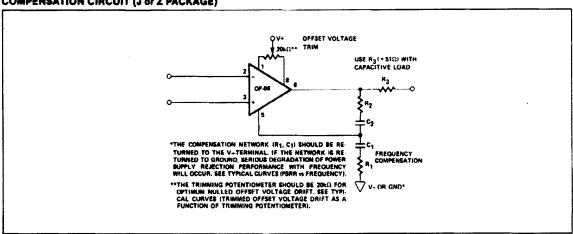

TYPICAL ELECTRICAL CHARACTERISTICS at $V_S=\pm\,15V$, $T_A=+\,25^{\circ}$ C, unless otherwise noted.


PARAMETER	SYMBOL	CONDITIONS	OP-06NT TYPICAL	OP-06N TYPICAL	OP-06GT TYPICAL	OP-06G TYPICAL	OP-06GR TYPICAL	UNITS
Average Input Offset Voltage Drift	TCVos	R _S ≤ 60Ω	0.3	0.3	0.7	0.7	1,4	μV/°C
Nulled Input Offset Voltage Drift	TCV _{Osin}	R _S ≤ 50kΩ R _P = 20kΩ	0.2	0.2	0.28	0.28	0.5	μV/°C
Average input Offset Current Drift	TCIOS		3	3	8	8	14	pA/°C


NOTES:

- Guaranteed by input bias current.
 For +25°C specifications of OP-06NT and OP-06GT, see OP-06N and OP-06G respectively.

TYPICAL PERFORMANCE CHARACTERISTICS


FREQUENCY COMPENSATION

PRECUENCY INS

COMPENSATION VALUES

Avel	R ₁ (Ω)	C ₁ (μ F)	R ₂ (Ω)	C ₂ (μ F)
10000	10k	50pF		
1000	470	0.001		_
100	47	0.01		
10	27	0.05	270	0.0015
1	10	0.05	39	0.02

COMPENSATION CIRCUIT (J or Z PACKAGE)

