Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

4286 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

REJ03B0251-0100 Rev.1.00 Aug 06, 2008

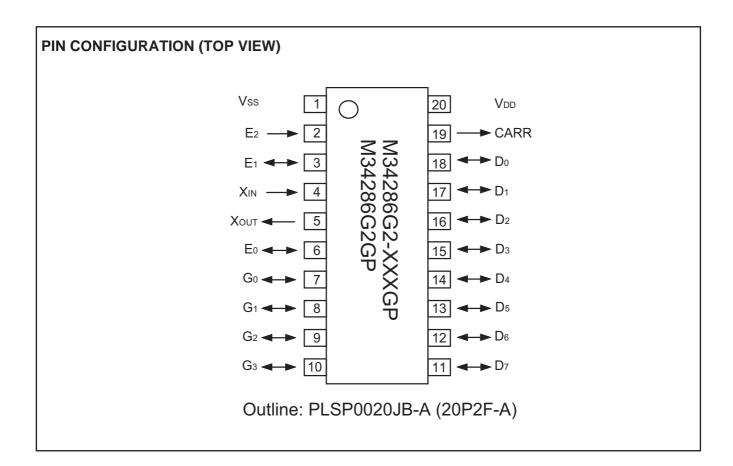
DESCRIPTION

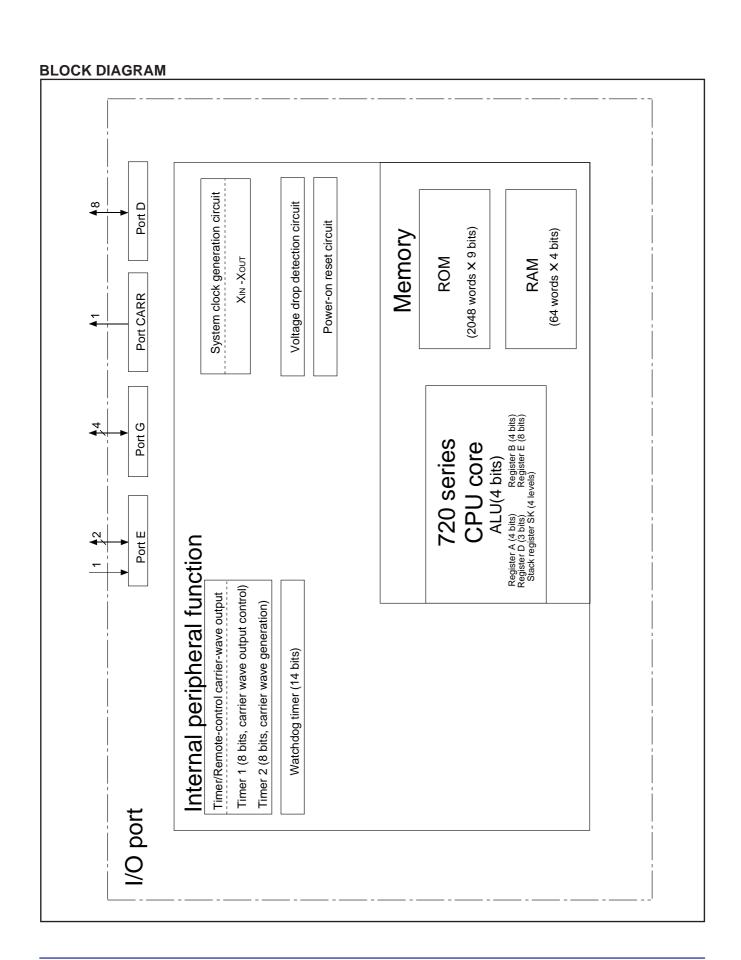
The 4286 Group is a 4-bit single-chip microcomputer designed with CMOS technology for single-function remote control transmitters. The computer is equipped with an 8-bit timer (has two reload registers) can be set various carrier wave and an 8-bit timer (has a reload register) can be control the carrier wave output automatically.

The various microcomputers in the 4286 Group include variations of type as shown in the table below.

FEATURES

Number of basic instructions	72
• Minimum instruction execution time 2.0 μ	ıs
(at $f(XIN) = 4.0 \text{ MHz}$, system clock = $f(XIN)/2$)	
• Supply voltage 1.8 V to 3.6	V
Subroutine nesting 4 leve	ls


Timer
Timer 1 8-bit timer
(This has a reload register and carrier wave output auto-control
function)
Timer 2 8-bit timer
(This has two reload registers and carrier wave output function)
 Logic operation function (XOR, OR, AND)
RAM back-up function
• Key-on wakeup function (ports D0–D7, E0–E2, G0–G3) 15
• I/O port (ports D, E, G, CARR)
Oscillation circuit Ceramic resonance
Watchdog timer
Power-on reset circuit
Voltage drop detection circuit
Before CLVD instruction execution
Reset occurrence 1.5 V (Ta=25 °C)
Reset release 1.7 V (Ta=25 °C)
After CLVD instruction execution


Reset occurrence/Reset release 1.7 V (Ta=25 °C)

APPLICATION

Consumer remote control transmitters

Part number	ROM size (× 9 bits)	RAM size (x 4 bits)	Package	ROM type
M34286G2-XXXGP	2048 words	64 words	PLSP0020JB-A (20P2F-A)	QzROM
M34286G2GP	2048 words	64 words	PLSP0020JB-A (20P2F-A)	QzROM (blank)

PERFORMANCE OVERVIEW

Parameter			Function			
Number of basic instructions		ctions	72			
Minimum instru	uction ex	ecution time	2.0 μ s (f(XIN) = 4.0 MHz, system clock = f(XIN)/2, VDD = 3.0 V)			
Memory sizes	ROM		2048 words X 9 bits			
	RAM		64 words X 4 bits			
Input/Output	D0-D7	I/O	Eight 1-bit I/O ports with the pull-down function and key-on wakeup function			
ports	E0-E2	I/O	3-bit I/O port with the pull-down function and key-on wakeup function			
	G0–G3	I/O	4-bit I/O port with the pull-down function and key-on wakeup function			
	CARR	Output	1-bit output port; CMOS output			
Timer	Timer 1		8-bit timer with a reload register			
	Timer 2		8-bit timer with two reload registers			
Subroutine nes	sting		4 levels (However, only 3 levels can be used when the TABP p instruction is executed)			
Device structur	re		CMOS silicon gate			
Package			20-pin plastic molded LSSOP (PLSP0020JB-A (20P2F-A))			
Operating temp	oerature	range	-40 to 85 °C			
Supply voltage			1.8 V to 3.6 V			
Power dissipation	Active r	mode	400 μ A (VDD = 3 V, STCK=f(XIN)/8, f(XIN) = 4 MHz)			
(typical value)	RAM back-up mode		0.1 μ A (Ta = 25 °C, VDD = 3 V)			

PIN DESCRIPTION

Pin	Name	Input/Output	Function
VDD	Power supply	_	Connected to a plus power supply.
Vss	Ground	_	Connected to a 0 V power supply.
XIN	System clock input	Input	I/O pins of the system clock generating circuit. Connect a ceramic resonator
Хоит	System clock output	Output	between pins XIN and XOUT. The feedback resistor is built-in between pins XIN and XOUT.
D0-D7	I/O port D	I/O	1-bit I/O port. For input use, set the latch of the specified bit to "0." When the built-in pull-down transistor is turned on, the key-on wakeup function using "H" level sense and the pull-down transistor become valid. The output structure is P-channel open-drain.
E0-E2	I/O port E	Output Input	2-bit (E0, E1) output port. The output structure is P-channel open-drain. 3-bit input port. For input use (E0, E1), set the latch of the specified bit to "0." When the built-in pull-down transistor is turned on, the key-on wakeup function using "H" level sense and the pull-down transistor become valid. Port E2 has an input-only port and has a key-on wakeup function using "H" level sense and pull-down transistor.
G0-G3	I/O port G	I/O	4-bit I/O port. For input use, set the latch of the specified bit to "0." The output structure is P-channel open-drain. When the built-in pull-down transistor is turned on, the keyon wakeup function using "H" level sense and pull-down transistor become valid.
CARR	Carrier wave output for remote control	Output	Carrier wave output pin for remote control. The output structure is CMOS circuit.

CONNECTIONS OF UNUSED PINS

Pin	Connection	Usage condition
D0-D7	Open (Set the output latch to "1").	Pull-down transistor OFF.
	Open (Set the output latch to "0").	
	Connect to VDD.	Pull-down transistor OFF.
E0, E1	Open (Set the output latch to "1").	Pull-down transistor OFF.
	Open (Set the output latch to "0").	
	Connect to VDD.	Pull-down transistor OFF.
E ₂	Open.	
	Connect to Vss.	
G0-G3	Open (Set the output latch to "1").	Pull-down transistor OFF.
	Open (Set the output latch to "0").	
	Connect to VDD.	Pull-down transistor OFF.
CARR	Open.	

(Note when connecting to Vss and VDD)

• Connect the unused pins to Vss or Vpp at the shortest distance and use the thick wire against noise.

PORT FUNCTION

Port	Pin	Input/ Output	Output structure	Control	Control	Control	Remark
		Output		bits instructions registers			
Port D	D0-D7	I/O	P-channel open-drain	1 bit	SD	PU1, PU2	Pull-down function and
		(8)			RD		key-on wakeup function
					CLD		(programmable)
					SZD		
Port E	Eo	I/O	P-channel open-drain	Output:	OEA	PU0	Pull-down function and
	E ₁	(2)		2 bits	IAE		key-on wakeup function
				Input:			(programmable)
	E ₂	Input		3 bits	IAE		
		(1)					
Port G	G0-G3	I/O	P-channel open-drain	4 bits	OGA	PU0	Pull-down function and
		(4)			IAG		key-on wakeup function
							(programmable)
Port CARR	CARR	Output	CMOS	1 bit	SCAR		
		(1)			RCAR		

DEFINITION OF CLOCK AND CYCLE

System clock (STCK)

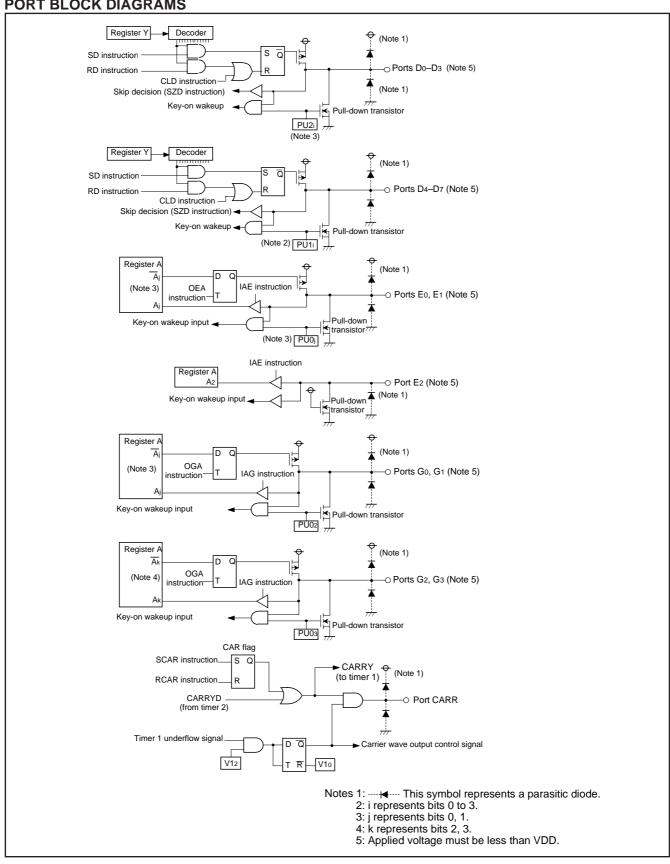
The system clock is the source clock for controlling this product. It can be selected as shown below whether to use the Oscillation dividing instruction.

CCK, CCK2, or CCK4 instruction can be executed only once. After one of their instruction is executed once, the operation is same as the NOP instruction though the same or another frequency dividing instruction is executed.

The system clock returns to its initial state (f(XIN)/8) when system is returnd from RAM back-up mode.

Oscillation dividing instruction	System clock	Instruction clock
No use	f(XIN)/8	f(XIN)/32
CCK used	f(XIN)	f(XIN)/4
CCK2 used	f(XIN)/2	f(XIN)/8
CCK4 used	f(XIN)/4	f(XIN)/16

• Instruction clock (INSTCK)


The instruction clock is a signal derived by dividing the system clock by 4, and is the basic clock for controlling CPU. The one instruction clock cycle is equivalent to one machine cycle.

Machine cycle

The machine cycle is the cycle required to execute the instruction.

PORT BLOCK DIAGRAMS

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of A_0 is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

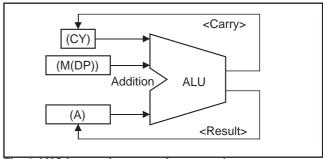


Fig. 1 AMC instruction execution example

Fig. 2 RAR instruction execution example

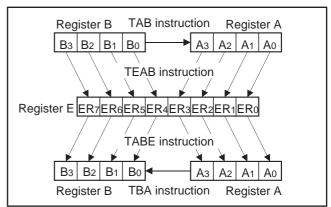


Fig. 3 Registers A, B and register E

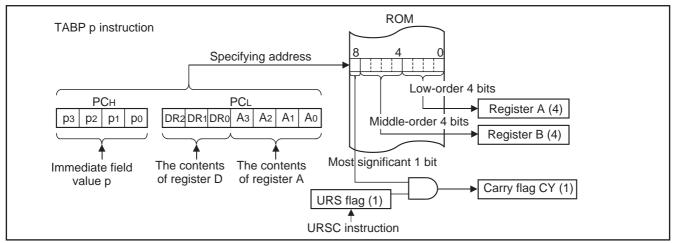


Fig. 4 TABP p instruction execution example

(5) Most significant ROM code reference enable flag (URS)

URS flag controls whether to refer to the contents of the most significant 1 bit (bit 8) of ROM code when executing the TABP p instruction. If URS flag is "0," the contents of the most significant 1 bit of ROM code is not referred even when executing the TABP p instruction. However, if URS flag is "1," the contents of the most significant 1 bit of ROM code is set to flag CY when executing the TABP p instruction (Figure 4). URS flag is "0" after system is released from reset and returned from RAM back-up mode. It can be set to "1" with the URSC instruction, but cannot be cleared to "0."

(6) Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are four identical registers, so that subroutines can be nested up to 4 levels. However, one of stack registers is used when executing a table reference instruction. Accordingly, be careful not to over the stack. The contents of registers SKs are destroyed when 4 levels are exceeded.

The register SK nesting level is pointed automatically by 2-bit stack pointer (SP).

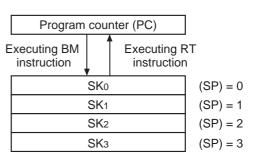

Figure 5 shows the stack registers (SKs) structure.

Figure 6 shows the example of operation at subroutine call.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions.

Note: The 4286 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

Stack pointer (SP) points "3" at reset or returning from RAM back-up mode. It points "0" by executing the first BM instruction, and the contents of program counter is stored in SKo. When the BM instruction is executed after four stack registers are used ((SP) = 3), (SP) = 0 and the contents of SKo is destroyed.

Fig. 5 Stack registers (SKs) structure

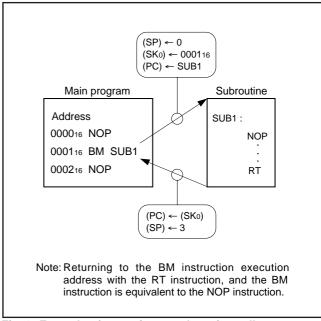


Fig. 6 Example of operation at subroutine call

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PC_H (most significant bit to bit 7) which specifies to a ROM page and PC_L (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PC ${\rm H}$ does not exceed after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers X and Y. Register X specifies a file and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

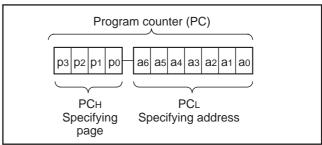


Fig. 7 Program counter (PC) structure

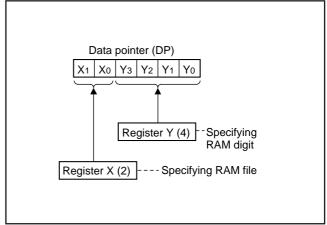


Fig. 8 Data pointer (DP) structure

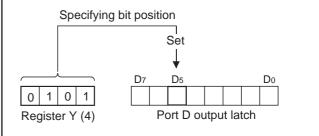


Fig. 9 SD instruction execution example

PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 9 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127).

Table 1 ROM size and pages

Part number	ROM size (X 9 bits)	Pages
M34286G2	2048 words	16 (0 to 15)

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern of all addresses can be used as data areas with the TABP \mbox{p} instruction.

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers X and Y. Set a value to the data pointer certainly when executing an instruction to access RAM.

Table 2 shows the RAM size. Figure 11 shows the RAM map.

Table 2 RAM size

Part number	RAM size
M34286G2	64 words X 4 bits (256 bits)

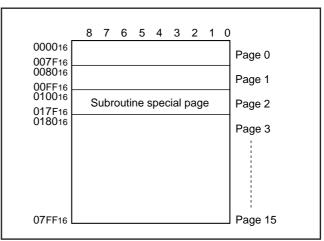


Fig. 10 ROM map of M34286G2

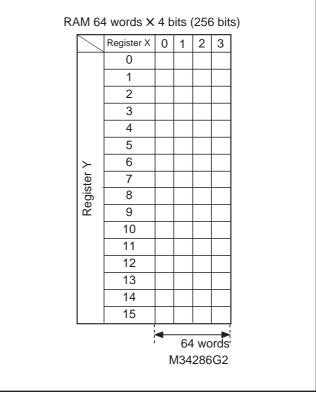


Fig. 11 RAM map

TIMERS

The 4286 Group has the programmable timer.

· Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n+1), a timer 1 underflow flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

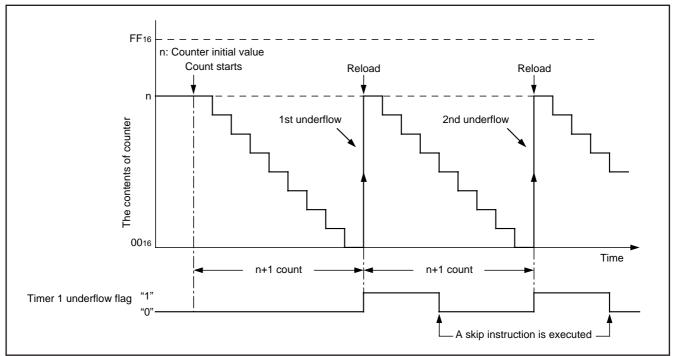


Fig. 12 Auto-reload function

The 4286 Group timer consists of the following circuit.

- Timer 1: 8-bit programmable timer
- Timer 2 : 8-bit programmable timer

These timers can be controlled with the timer control registers V1 and V2.

Each timer function is described below.

Table 3 Function related timer

Circuit	Structure	Count source	Frequency	Use of output signal	Control
Circuit	Structure	Count source	dividing ratio	Ose of output signal	register
Timer 1	8-bit programmable	Carrier wave output (CARRY)	1 to 256	Carrier wave output control	V1
	binary down counter	Bit 5 of watchdog timer			
Timer 2	r 2 8-bit programmable • f(XIN)		1 to 256	Carrier wave output	V2
	binary down counter	• f(XIN)/2			
14-bit timer	14-bit fixed frequency	Instruction clock	16384	Watchdog timer	
				Timer 1 count source	

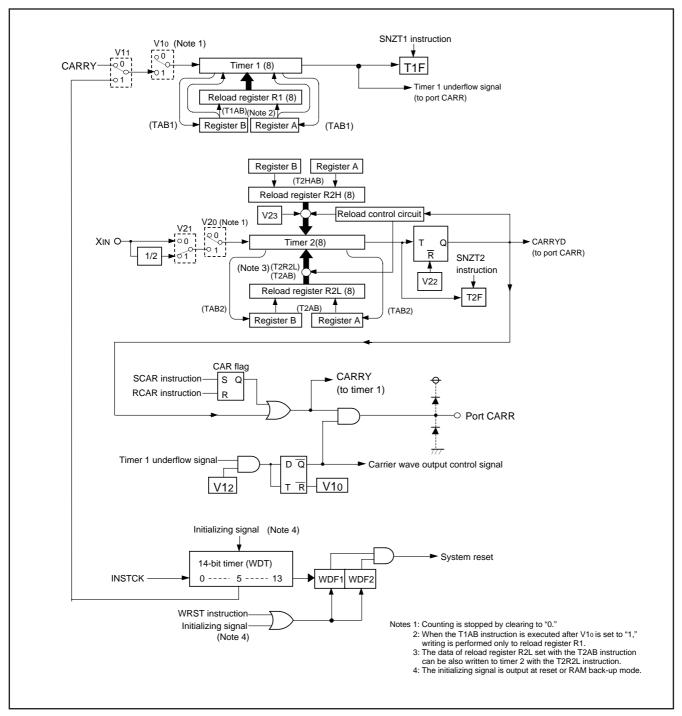


Fig. 13 Timers structure

Table 4 Control registers related to timer

Timer control register V1		at reset : 0002		at RAM back-up : 0002	W		
V12 Carrier wave output auto-control bit		0	Auto-control output	by timer 1 is invalid			
		1	Auto-control output	t by timer 1 is valid			
7/4		0	Carrier wave outpu	it (CARRY)			
V 11	V11 Timer 1 count source selection bit		Timer i count source selection bit	1	Bit 5 of watchdog to	imer (WDT)	
\/4-	Timer 1 control bit	0	Stop (Timer 1 state	e retained)			
V10		1	Operating				

Timer control register V2		at reset : 00002		at RAM back-up : 00002	W		
V23	\(\(\text{O}\) \(\text{O}\) \(\		To expand "H" inte	rval is invalid			
V Z3	Carrier wave "H" interval expansion bit	1	To expand "H" inte	rval is valid (when V2 ₂ =1 selected)			
\/O-			Carrier wave generation function invalid				
V22	Carrier wave generation function control bit	1	Carrier wave generation function valid				
1/0	Time and O account account and action hit	0	f(XIN)				
V Z1	V2 ₁ Timer 2 count source selection bit		f(Xin)/2				
V0 Time 0 m m m m		0	Stop (Timer 2 state retained)				
V20	Timer 2 control bit	1	Operating				

Note: "W" represents write enabled.

(1) Control registers related to timer

Timer control register V1

Register V1 controls the timer 1 count source and autocontrol function of carrier wave output from port CARR by timer 1. Set the contents of this register through register A with the TV1A instruction.

Timer control register V2

Register V2 controls the timer 2 count source and the carrier wave generation function by timer. Set the contents of this register through register A with the TV2A instruction.

(2) Precautions

Note the following for the use of timers.

- Count source
 - Stop timer 1 or timer 2 counting to change its count source.
- Reading the count value
 - Stop timer 1 or 2 counting and then execute the data read instruction (TAB1, TAB2) to read its data.
- · Watchdog timer
 - Be sure that the timing to execute the WRST instruction in order to operate WDT efficiently.
- · Writing to reload register R1
 - When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.
- Timer 1 count operation
 - When the bit 5 of the watchdog timer (WDT) is selected as the timer 1 count source, the error of maximum \pm 64 μs (at the minimum instruction execution time : 2 μs) is generated from timer 1 start until timer 1 underflow. When programming, be careful about this error.
- · Stop of timer 2
 - Avoid a timing when timer 2 underflows to stop timer 2.
- Writing to reload register R2H
 - When writing data to reload register R2H while timer 2 is operating, avoid a timing when timer underflows.

- Timer 2 carrier wave output function
 When to expand "H" interval of carrier wave is valid, set "1" or more to reload register R2H.
- Timer 1 and timer 2 carrier wave output function
 Count starts from the rising edge ② in Fig. 14 after the first
 falling edge of the count source, after timer 1 and timer 2
 operations start ① in Fig. 14.

Time to first underflow ③ in Fig. 14 is different from time among next underflow ④ in Fig. 14 by the timing to start the timer and count source operations after count starts.

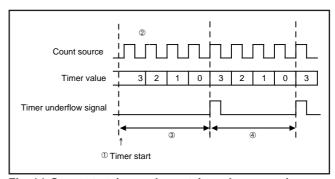


Fig. 14 Count start time and count time when operation starts (T1, T2)

(3) Timer 1

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1).

When timer is stopped, data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction.

When timer is operating, data can be set to only reload register R1 with the T1AB instruction.

When setting the next count data to reload register R1 at operating, set data before timer 1 underflows.

Timer 1 starts counting after the following process;

- ① set data in timer 1,
- $\ensuremath{@}$ select the count source with the bit 1 of register V1, and
- 3 set the bit 0 of register V1 to "1."

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 underflow flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function).

When a value set in reload register R1 is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

When the bit 2 of register V1 is set to "1," the carrier wave output enable/disable interval of port CARR is alternately generated each timer 1 underflows (Figure 15).

Data can be read from timer 1 to registers A and B. When reading the data, stop the counter and then execute the TAB1 instruction.

(4) Timer 2

Timer 2 is an 8-bit binary down counter with the timer 2 reload registers (R2H and R2L).

Data can be set simultaneously in timer 2 and the reload register (R2L) with the T2AB instruction.

The contents of reload register (R2L) set with the T2AB instruction can be set again to timer 2 with the T2R2L instruction. Data can be set to reload register (R2H) with the T2HAB instruction.

Timer 2 starts counting after the following process;

- ① set data in timer 2,
- 2 select the count source with the bit 1 of register V2, and
- ® select the valid/invalid of the carrier wave generation function by bit 2 of register V1 (when this function is valid, select the valid/invalid of the carrier wave "H" interval expansion by bit 3), and
- set the bit 0 of register V1 to "1."

When the carrier wave generation function is invalid (V22="0"), the following operation is performed;

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 underflow flag (T2F) is set to "1," new data is loaded from reload register R2L, and count continues (auto-reload function).

When a value set in reload register R2L is n, timer 2 divides the count source signal by n + 1 (n = 0 to 255).

When the carrier wave generation function is valid (V22="1"), the carrier wave which has the "L" interval set to the reload register R2L and "H" interval set to the reload register R2H can be output (Figure 16).

After the count of the "L" interval of carrier wave is started, timer 2 underflows and the timer 2 underflow flag (T2F) is set

to "1". Then, the "H" interval data of carrier wave is reloaded from the reload register R2H, and count continues.

When timer underflows again after auto-reload, the T2F flag is set to "1". And then, the "L" interval data of carrier wave is reloaded from the reload register R2L, and count continues. After that, each timer underflows, data is reloaded from reload register R2H and R2L alternately.

When a value set in reload register R2H is n, "H" interval of carrier wave is as follows;

- ① When to expand "H" interval is invalid (V23 = "0"), Count source X (n+1), n = 0 to 255
- When to expand "H" interval is valid (V23 = "1"), Count source X (n+1.5), n = 1 to 255

When a value set in reload register R2L is m, "L" interval of carrier wave is as follows:

Count source X (m+1), m = 0 to 255

Data can be read from timer 2 to registers A and B. When reading the data, stop the counter and then execute the TAB2 instruction.

(5) Timer underflow flags (T1F, T2F)

Timer 1 underflow flag or timer 2 underflow flag is set to "1" when the timer 1 or timer 2 underflows. The state of flags T1F and T2F can be examined with the skip instruction (SNZT1, SNZT2).

Flags T1F and T2F are cleared to "0" when the next instruction is skipped with a skip instruction.

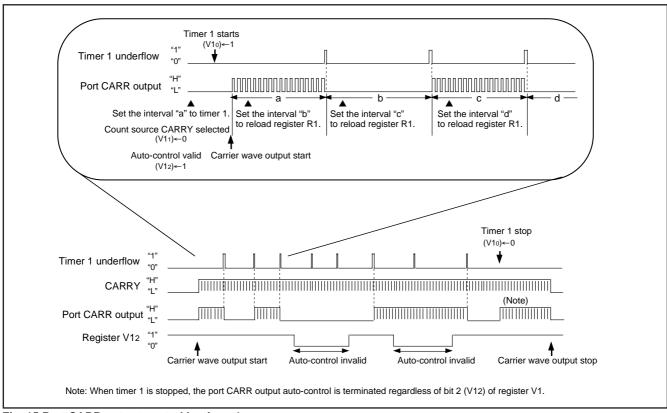


Fig. 15 Port CARR output control by timer 1

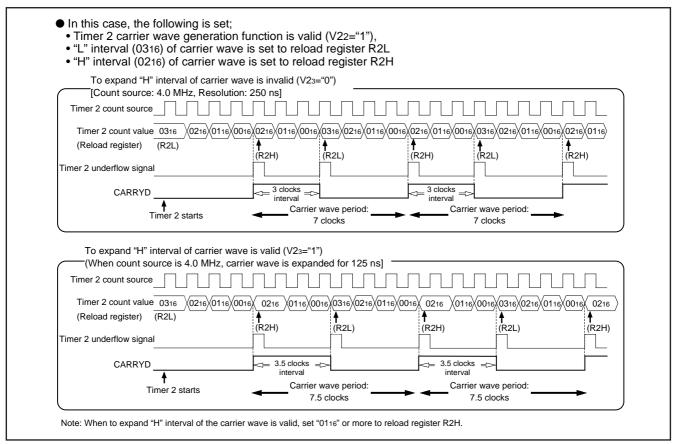
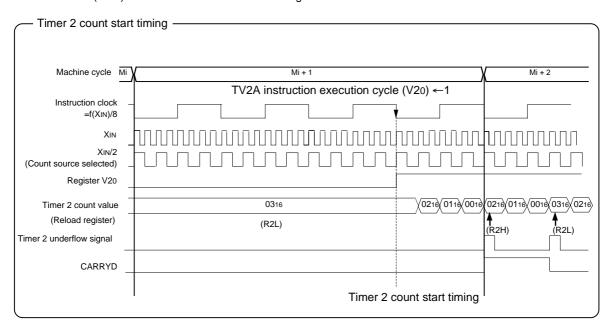
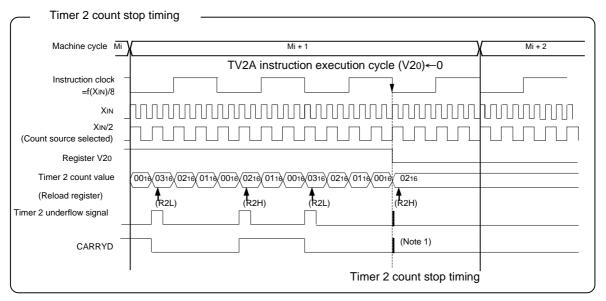




Fig. 16 Carrier wave generation example by timer 2

- In this case, the following is set;
 - To expand "H" interval of carrier wave is invalid (V23 = "0"),
 - Timer 2 carrier wave generation function is valid (V22="1"),
 - Count source XIN/2 selected (V21="1"),
 - "L" interval (0316) of carrier wave is set to reload register R2L
 - "H" interval (0216) of carrier wave is set to reload register R2H

- Notes 1: When the carrier wave generation function is valid (V22="1"), avoid a timing when timer 2 underflows to stop timer 2. When the timer 2 count stop occurs at the same timing with the timer 2 underflows, hazard may occur in the carrier wave output waveform.
 - 2: When the timer 2 is stopped during "H" output of carrier wave while the carrier wave generation function is valid, it is stopped after the "H" interval set by reload register R2H is output.

Fig. 17 Timer 2 count start/stop timing

WATCHDOG TIMER

Watchdog timer provides a method to reset and restart the system when a program runs wild. Watchdog timer consists of 14-bit timer (WDT) and watchdog timer flags (WDF1, WDF2).

Watchdog timer downcounts the instruction clock (INSTCK) as the count source immediately after system is released from reset. When the timer WDT count value becomes 0000_{16} and underflow occurs, the WDF1 flag is set to "1." Then, when the WRST instruction is not executed before the timer WDT counts 16383, WDF2 flag is set to "1" and internal reset signal is generated and system reset is performed.

Execute the WRST instruction at period of 16383 machine cycle or less to keep the microcomputer operation normal.

Timer WDT is also used for generation of oscillation stabilization time. When system is returned from reset and from RAM back-up mode by key-input, software starts after the stabilization oscillation time until timer WDT downcounts to 3E0016 elapses.

Watchdog timer

Be sure that the timing to execute the WRST instruction in order to operate WDT efficiently.

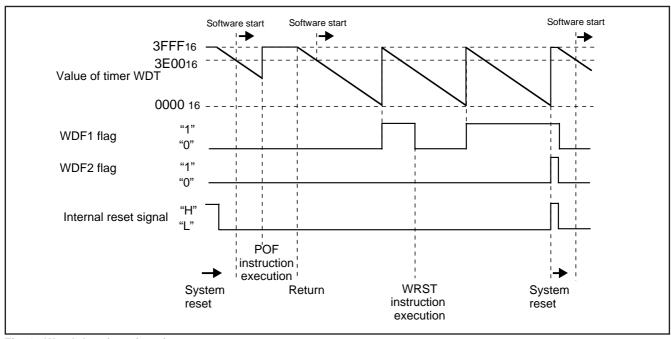


Fig. 18 Watchdog timer function

LOGIC OPERATION FUNCTION

The 4286 Group has the 4-bit logic operation function. The logic operation between the contents of register A and the low-order 4 bits of register E is performed and its result is stored in register A.

Each logic operation can be selected by setting logic operation selection register LO.

Set the contents of this register through register A with the TLOA instruction. The logic operation selected by register LO is executed with the LGOP instruction.

Table 5 shows the logic operation selection register LO.

Table 5 Logic operation selection register LO

- table 6 = 59.6 operation colorion regions = 5							
Logic operation selection register LO		at reset: 002		t reset : 002	at RAM back-up : 002	W	
		LO ₁	1 LO ₀ Logic operation function				
LO ₁		0	0	Exclusive logic OR operation (XOR)			
	Logic operation selection bits		1	OR operation (OR)			
LO ₀		1	0	AND operation (AND)			
		1	1	Not available			

Note: "W" represents write enabled.

RESET FUNCTION

The 4286 Group has the power-on reset circuit, though it does not have $\overline{\text{RESET}}$ pin. System reset is performed automatically at power-on, and software starts program from address 0 in page 0.

In order to make the built-in power-on reset circuit operate efficiently, set the voltage rising time until $V_{DD}=0$ to 2.2 V is obtained at power-on 1ms or less (Ta = -20 °C to 85 °C).

Note on Power-on reset

Under the following condition, the system reset occurs by the built-in the power-on reset circuit of this product;

- when the supply voltage (VDD) rises from 0 V to 2.2 V, within 1 ms (Ta = -20 °C to 85 °C).
 - Also, note that system reset does not occur under the following conditions;
- when the supply voltage (VDD) rises from the voltage higher than 0V, or
- when it takes more than 1 ms for the supply voltage (VDD) to rise from 0 V to 2.2 V (Ta = -20 °C to 85 °C).

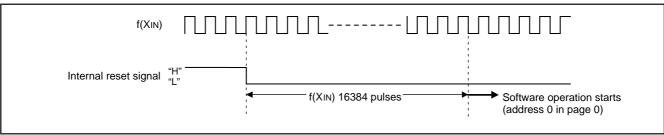


Fig. 19 Reset release timing

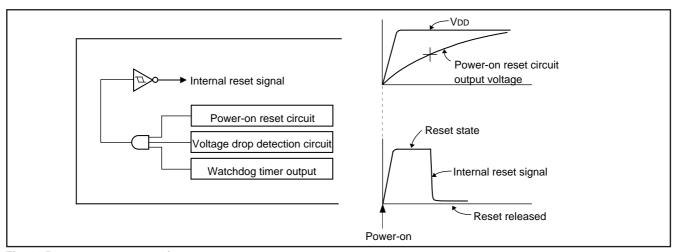


Fig. 20 Power-on reset operation

(1) Internal state at reset

Table 6 shows port state at reset, and Figure 21 shows internal state at reset (they are retained after system is released from reset).

The contents of timers, registers, flags and RAM except shown in Figure 21 are undefined, so set the initial value to them.

Table 6 Port state at reset

Name	State at reset				
Do-D7	High impedance state (Pull-down transistor OFF)				
G0–G3	High impedance state (Pull-down transistor OFF)				
Eo, E1	High impedance state (Pull-down transistor OFF)				
CARR	"L" output				

Note: The contents of all output latch is initialized to "0."

• Program counter (PC)	
Address 0 in page 0 is set to program counter.	
• Power down flag (P)	
• Timer 1 underflow flag (T1F)	
Timer 2 underflow flag (T2F)	
Timer control register V1	
Timer control register V2	
Port CARR output flag (CAR)	
Pull-down control register PU0	
Pull-down control register PU1	
Pull-down control register PU2	
Logic operation selection register LO	
Most significant ROM code reference enable flag (URS)	
• Carry flag (CY)	
• Register A	
• Register B	
Register XX X	
Register YX X X X	
Stack pointer (SP)	"X" represents undefined.

Fig. 21 Internal state at reset

VOLTAGE DROP DETECTION CIRCUIT

System reset is performed when the supply voltage goes the reset occurrence voltage or less.

When the supply voltage goes reset release voltage or more, the oscillation circuit goes to be in the operating enabled state and system reset is released.

The reset occurrence voltage value is selectable by the CLVD instruction execution.

Refer to the electrical characteristics for reset occurrence value and reset release voltage value.

The voltage drop detection circuit is stopped and power dissipation is reduced in the RAM back-up mode with the initialized CPU stopped.

Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

As the actual operating minimum voltage is lower than the reset generation voltage, the MCU will operate correctly unless oscillation stops before the supply voltage reaches the reset generation voltage during CPU operation.

When designing a system, test the operation thoroughly by confirming the oscillation stop voltage and frequency of the oscillator.

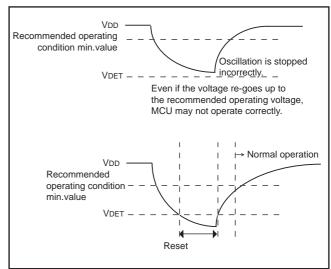


Fig. 23 VDD and VDET

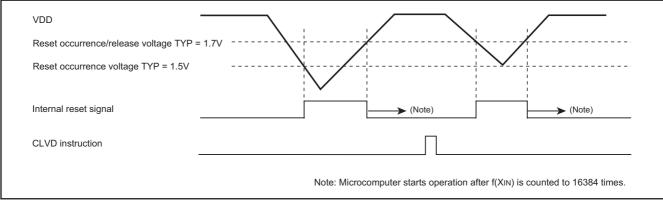


Fig. 22 Voltage drop detection circuit operation waveform

RAM BACK-UP MODE

The 4286 Group has the RAM back-up mode.

When the POF instruction is executed, system enters the RAM back-up state.

As oscillation stops retaining RAM, the functions and states of reset circuit at RAM back-up mode, power dissipation can be reduced without losing the contents of RAM. Table 7 shows the function and states retained at RAM back-up. Figure 24 shows the state transition.

(1) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the POF instruction, the CPU starts executing the software from address 0 in page 0. In this case, the P flag is "1."

(2) Cold start condition

The CPU starts executing the software from address 0 in page 0 when any of the following conditions is satisfied .

- · reset by power-on reset circuit is performed
- reset by watchdog timer is performed
- reset by voltage drop detection circuit is performed In this case, the P flag is "0."

(3) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the power down flag (P) with the SNZP instruction.

Table 7 Functions and states retained at RAM back-up

Function	RAM back-up
Program counter (PC), registers A, B,	×
carry flag (CY), stack pointer (SP) (Note 2)	^
Contents of RAM	0
Port CARR	×
Ports D ₀ –D ₇	0
Ports E ₀ , E ₁	0
Port G	0
Timer control registers V1, V2	×
Pull-down control registers PU0, PU1, PU2	0
Logic operation selection register LO	×
Timer 1 function, Timer 2 function	×
Timer underflow flags (T1F, T2F)	×
Watchdog timer (WDT)	×
Watchdog timer flags (WDF1, WDF2)	×
Most significant ROM code reference enable flag (URS)	×

Notes 1: "O" represents that the function can be retained, and "X" represents that the function is initialized.

Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.

2:The stack pointer (SP) points the level of the stack register and is initialized to "112" at RAM back-up.

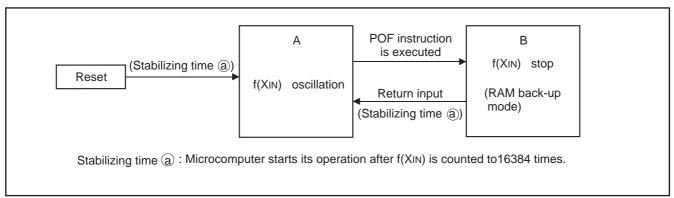


Fig. 24 State transition

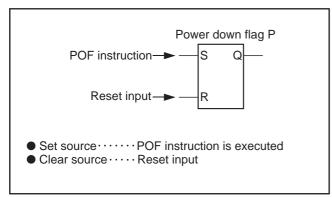


Fig. 25 Set source and clear source of the P flag

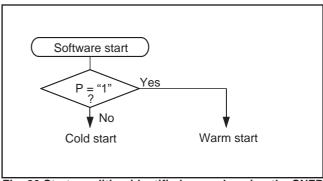


Fig. 26 Start condition identified example using the SNZP instruction

(4) Return signal

An external wakeup signal is used to return from the RAM back-up mode. Table 8 shows the return condition for each return source.

Table 8 Return source and return condition

. Return source	Return condition	Remarks
Ports D ₀ -D ₇	Return by an external "H" level	Only key-on wakeup function of the port whose pull-down transistor is
	input.	turned ON by register PU1 and PU2 are valid.
Ports E ₀ , E ₁ , G	Return by an external "H" level	Only key-on wakeup function of the port whose pull-down transistor is
	input.	turned ON by register PU0 is valid.
Port E ₂	Return by an external "H" level	Key-on wakeup function is always valid.
	input.	

(5) Pull-down control register

Registers PU0, PU1, and PU2 are 4-bit registers and control the ON/OFF of pull-down transistor and key-on wakeup function for ports E_0 , E_1 , G and ports D_0 – D_7 .

Set the contents of register PU0, PU1, or PU2 through register A with the TPU0A, TPU1A, or TPU2A instruction, respectively.

Table 9 Pull-down control registers

Pull-down control register PU0		at reset : 00002		at RAM back-up : state retained	W	
PU03	Ports G ₂ , G ₃ pull-down transistor control	0	Pull-down transisto	or OFF, key-on wakeup invalid		
PU03	bit	1 Pull-down transistor		or ON, key-on wakeup valid		
PU02	Ports G ₀ , G ₁ pull-down transistor control	0 Pull-down transistor OFF, key-on wakeup invalid				
PU02	bit [Pull-down transistor ON, key-on wakeup valid			
DI IO4	PU01 Port E1 pull-down transistor control bit		Pull-down transistor OFF, key-on wakeup invalid			
1001			Pull-down transistor ON, key-on wakeup valid			
PU00 Port Eo pull-down transistor control bit		0	Pull-down transistor OFF, key-on wakeup invalid			
F 000	Port E ₀ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid			

	Pull-down control register PU1	at reset : 00002		at RAM back-up : state retained	W			
DUIA	DIIA. Dest Described associated asociated associated associated associated associated associated as		Pull-down transisto	Pull-down transistor OFF, key-on wakeup invalid				
PU13 Port D ₇ pull-down transistor control	Port D ₇ pull-down transistor control bit	1	Pull-down transisto	Pull-down transistor ON, key-on wakeup valid				
PU12	DIA. Dest D. will deven transistant control bit	0	Pull-down transistor OFF, key-on wakeup invalid					
PU 12	Port D ₆ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid					
PU1 ₁	Port De pull down transister central hit	0	Pull-down transistor OFF, key-on wakeup invalid					
POIN	PU11 Port D ₅ pull-down transistor control bit		Pull-down transistor ON, key-on wakeup valid					
PU10	Port Dy null down transistor central hit	0	Pull-down transistor OFF, key-on wakeup invalid					
POID POIL	Port D ₄ pull-down transistor control bit	1	r ON, key-on wakeup valid					

	Pull-down control register PU2	at	reset: 00002	at RAM back-up : state retained	W			
DLID	DIIO		Pull-down transisto	Pull-down transistor OFF, key-on wakeup invalid				
PU23 Port D ₃ pull-down transistor control bit	1	Pull-down transisto	r ON, key-on wakeup valid					
PU2 ₂	DLI2s Port Do null down transister central hit	0	Pull-down transistor OFF, key-on wakeup invalid					
PU22	Port D ₂ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid					
PU2 ₁	Port Da pull down transistor central hit	0	Pull-down transistor OFF, key-on wakeup invalid					
P 021	PU21 Port D1 pull-down transistor control bit		Pull-down transistor ON, key-on wakeup valid					
PU20	DUO. Dest D. sell desse transistan control bit		Pull-down transisto	r OFF, key-on wakeup invalid				
Port Do pull-down tra	Port Do pull-down transistor control bit	down transistor control bit 1		Pull-down transistor ON, key-on wakeup valid				

Note: "W" represents write enabled.

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- · System clock generating circuit
- · Control circuit to stop the clock oscillation
- · Control circuit to return from the RAM back-up state

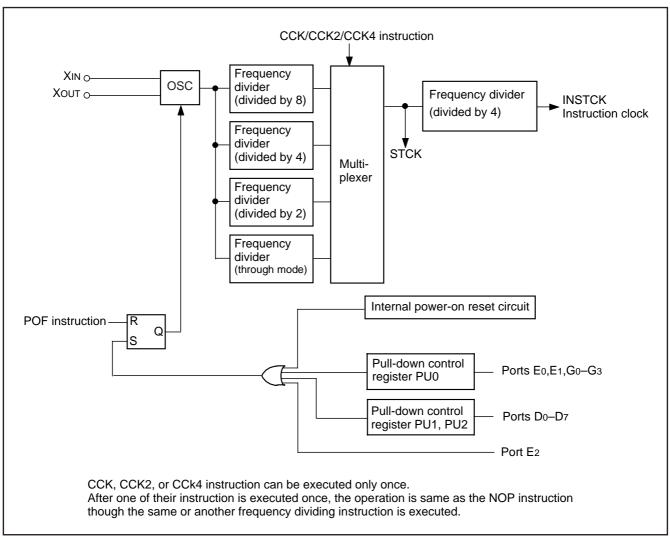


Fig. 27 Clock control circuit structure

System clock signal $f(X_{IN})$ is obtained by externally connecting a ceramic resonator. Connect this external circuit to pins X_{IN} and X_{OUT} at the shortest distance as shown Figure 28.

A feedback resistor is built-in between XIN pin and XOUT pin.

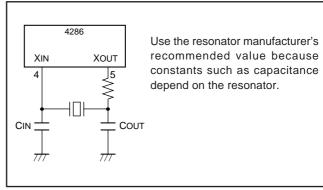


Fig. 28 Ceramic resonator external circuit

LIST OF PRECAUTIONS

① Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. 0.01 μF) between pins Vpb and Vss at the shortest distance,
- · equalize its wiring in width and length, and
- · use the thickest wire.
- Port E2 is also used as VPP pin. Connect this pin to Vss through the resistor about 5kΩ which is assigned to E2/VPP pin as close as possible at the shortest distance.

② Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register D (3 bits)
- Register E (8 bits)

3 Register initial values 2

The initial value of the following registers are undefined at RAM backup. After system is returned from RAM back-up, set initial values.

- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

4 Stack registers (SKs)

Stack registers (SK $_{\rm s}$) are four identical registers, so that subroutines can be nested up to 4 levels. However, one of stack registers is used when executing a table reference instruction. Accordingly, be careful not to over the stack. The contnts of registers SK $_{\rm s}$ are destroyed when 4 levels are exceeded.

⑤ Notes on unused pins

Pin	Connection	Usage condition
D ₀ –D ₇	Open (Set the output latch to "1").	Pull-down transistor OFF.
	Open (Set the output latch to "0").	
	Connect to VDD.	Pull-down transistor OFF.
E0, E1	Open (Set the output latch to "1").	Pull-down transistor OFF.
	Open (Set the output latch to "0").	
	Connect to VDD.	Pull-down transistor OFF.
E ₂	Open.	
	Connect to Vss.	
G0-G3	Open (Set the output latch to "1").	Pull-down transistor OFF.
	Open (Set the output latch to "0").	
	Connect to VDD.	Pull-down transistor OFF.
CARR	Open.	

(Note when connecting to Vss and VDD)

 Connect the unused pins to Vss and VDD at the shortest distance and use the thick wire against noise.

6 Timer

- Count source
 - Stop timer 1 or timer 2 counting to change its count source.
- Reading the count value
 Stop timer 1 or 2 counting and then execute the data read instruction (TAB1, TAB2) to read its data.
- Watchdog timer
 Be sure that the timing to execute the WRST instruction in order to operate WDT efficiently.
- Writing to reload register R1
 When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.
- Timer 1 count operation When the bit 5 of the watchdog timer (WDT) is selected as the timer 1 count source, the error of maximum \pm 64 μ s (at the minimum instruction execution time : 2 μ s) is generated from timer 1 start until timer 1 underflow. When programming, be careful about this error.
- Stop of timer 2
 Avoid a timing when timer 2 underflows to stop timer 2.
- Writing to reload register R2H
 When writing data to reload register R2H while timer 2 is operating, avoid a timing when timer underflows.
- Timer 2 carrier wave output function
 When to expand "H" interval of carrier wave is valid, set "1" or more to reload register R2H.
- Timer 1 and timer 2 carrier wave output function
 Count starts from the rising edge ② in Fig. 29 after the first
 falling edge of the count source, after timer 1 and timer 2
 operations start ① in Fig. 29.

Time to first underflow $\ \ \ \ \ \$ in Fig. 29 is different from time among next underflow $\ \ \ \ \$ in Fig. 29 by the timing to start the timer and count source operations after count starts.

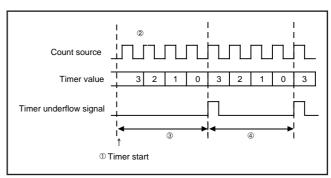


Fig. 29 Count start time and count time when operation starts (T1, T2)

Program counter

Make sure that the program counter does not specify after the last page of the built-in ROM.

® Power-on reset

Under the following condition, the system reset occurs by the built-in the power-on reset circuit of this product;

- when the supply voltage (VDD) rises from 0 V to 2.2 V, within 1 ms (Ta = -20 °C to 85 °C).
 - Also, note that system reset does not occur under the following conditions;
- when the supply voltage (VDD) rises from the voltage higher than 0V. or
- when it takes more than 1 ms for the supply voltage (VDD) to rise from 0 V to 2.2 V (Ta = -20 °C to 85 °C).

9 Voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

As the actual operating minimum voltage is lower than the reset generation voltage, the MCU will operate correctly unless oscillation stops before the supply voltage reaches the reset generation voltage during CPU operation.

When designing a system, test the operation thoroughly by confirming the oscillation stop voltage and frequency of the oscillator.

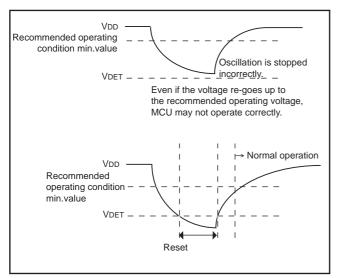


Fig. 30 VDD and VDET

Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.

In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

① QzROM

- (1) Be careful not to apply overvoltage to MCU. The contents of QzROM may be overwritten because of overvoltage. Take care especially at turning on the power.
- (2) As for the product shipped in blank, Renesas does not perform the writing test to user ROM area after the assembly process though the QzROM writing test is performed enough before the assembly process. Therefore, a writing error of approx.0.1 % may occur. Moreover, please note the contact of cables and foreign bodies on a socket, etc. because a writing environment may cause some writing errors.

Notes On ROM Code Protect

(QzROM product shipped after writing)

As for the QzROM product shipped after writing, the ROM code protect is specified according to the ROM option setup data in the mask file which is submitted at ordering.

The ROM option setup data in the mask file is "0016" for protect enabled or "FF16" for protect disabled.

Note that the mask file which has nothing at the ROM option data or has the data other than "0016" and "FF16" can not be accepted.

INSTRUCTIONS

The 4286 Group has the 72 instructions. Each instruction is described as follows;

- (1) List of instruction function
- (2) Machine instructions (index by alphabet)
- (3) Machine instructions (index by function)
- (4) Instruction code table

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
Α	Register A (4 bits)	D	Port D (8 bits)
В	Register B (4 bits)	E	Port E (3 bits)
DR	Register D (3 bits)	G	Port G (4 bits)
ER	Register E (8 bits)	CARR	Port CARR (1 bit)
V1	Timer control register V1 (3 bits)	CAR	CAR flag (1 bit)
V2	Timer control register V2 (4 bits)		
PU0	Pull-down control register PU0 (4 bits)	х	Hexadecimal variable
PU1	Pull-down control register PU1 (4 bits)	у	Hexadecimal variable
PU2	Pull-down control register PU2 (4 bits)		
LO	Logic operation selection register LO (2 bits)	р	Hexadecimal variable
		n	Hexadecimal constant which represents the
X	Register X (2 bits)		immediate value
Υ	Register Y (4 bits)	j	Hexadecimal constant which represents the
DP	Data pointer (6 bits)		immediate value
	(It consists of registers X and Y)	A3A2A1A0	Binary notation of hexadecimal variable A
PC	Program counter (11 bits)		(same for others)
РСн	High-order 4 bits of program counter		
PC∟	Low-order 7 bits of program counter	←	Direction of data movement
SK	Stack register (11 bits X 4)	\leftrightarrow	Data exchange between a register and memory
SP	Stack pointer (2 bits)	?	Decision of state shown before "?"
CY	Carry flag	()	Contents of registers and memories
R1	Timer 1 reload register	_	Negate, Flag unchanged after executing
T1	Timer 1		instruction
T1F	Timer 1 underflow flag	M(DP)	RAM address pointed by the data pointer
R2H	Timer 2 reload register	а	Label indicating address a6 a5 a4 a3 a2 a1 a0
R2L	Timer 2 reload register	p, a	Label indicating address a6 a5 a4 a3 a2 a1 a0
T2	Timer 2		in page p3 p2 p1 p0
T2F	Timer 2 underflow flag	С	Hex. number C + Hex. number x (also same for
WDT	Watchdog timer	+	others)
WDF1	Watchdog timer flag 1	х	
WDF2	Watchdog timer flag 2		
URS	Most significant ROM code reference enable flag		
Р	Power down flag		
STCK	System clock		
INSTCK	Instruction clock		

Note: The 4286 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

LIST OF INSTRUCTION FUNCTION

Grouping	Mnemonic	Function	Page	Grouping	Mnemonic	Function	Page
	TAB	(A) ← (B)	41		LA n	(A) ← n	34
	TBA	(B) ← (A)	43			n = 0 to 15	
ınsfer	TAY	(A) ← (Y)	43		TABP p	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p p=0 \text{ to } 15$	42
jister tra	TYA	(Y) ← (A)	45			$(PCL) \leftarrow (DR_2 - DR_0, A_3 - A_0)$ When URS=0	
Register to register transfer	TEAB	$(ER7-ER4) \leftarrow (B)$ $(ER3-ER0) \leftarrow (A)$	43			(B) ← (ROM(PC))7 to 4 (A) ← (ROM(PC))3 to 0 When URS=1	
Regis	TABE	(B) ← (ER7–ER4) (A) ← (ER3–ER0)	42			$(CY) \leftarrow (ROM(PC))8$ $(B) \leftarrow (ROM(PC))7 \text{ to } 4$	
	TDA	$(DR_2-DR_0) \leftarrow (A_2-A_0)$	43			(A) ← (ROM(PC))3 to 0 (PC) ← (SK(SP)) (SP) ← (SP) – 1	
	LXY x, y	$(X) \leftarrow x, x = 0 \text{ to } 3$	34				
sses		$(Y) \leftarrow y, y = 0 \text{ to } 15$		tion	AM	$(A) \leftarrow (A) + (M(DP))$	29
RAM addresses	INY	(Y) ← (Y) + 1	33	Arithmetic operation	AMC	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$	29
R A	DEY	(Y) ← (Y) − 1	33	rithme	A n	(A) ← (A) + n	29
	TAM j	$(A) \leftarrow (M(DP))$ $(X) \leftarrow (X) EXOR(j)$ j = 0 to 3	42	1	sc	$n = 0 \text{ to } 15$ $(CY) \leftarrow 1$	37
	XAM j	$(A) \longleftrightarrow (M(DP))$ $(X) \longleftrightarrow (X) \to (X) \to$	46		RC	(CY) ← 0	36
		j = 0 to 3			SZC	(CY) = 0 ?	40
	XAMD j	$(A) \longleftrightarrow (M(DP))$ $(X) \longleftrightarrow (X) \to (X) \to$	46		СМА	$(A) \leftarrow (\overline{A})$	32
transfe		j = 0 to 3 $(Y) \leftarrow (Y) - 1$			RAR	\rightarrow CY \rightarrow A3A2A1A0 \rightarrow	35
RAM to register transfer	XAMI j	$(A) \longleftrightarrow (M(DP))$ $(X) \longleftrightarrow (X) \to (X) \to$	46		LGOP	Logic operation instruction XOR, OR, AND	34
RAI		$(Y) \leftarrow (Y) + 1$			SB j	(Mj(DP)) ← 1 j = 0 to 3	37
				Bit operation	RB j	(Mj(DP)) ← 0 j = 0 to 3	36
				Bit op	SZB j	(Mj(DP)) = 0 ? j = 0 to 3	39

Grouping	Mnemonic	Function	Page		Groupina	Mnemonic	Function	Page
	SEAM	(A) = (M(DP)) ?	38		Оточриту	TV1A	$(V12-V10) \leftarrow (A2-A0)$	45
Comparison operation	SEA n	(A) = n? n = 0 to 15	38			TAB1	(B) \leftarrow (T17–T14) (A) \leftarrow (T13–T10)	41
	Ва	(PCL) ← a6-a0	29			T1AB	at timer 1 stop (V10=0):	40
Branch operation	BL p, a	(PCH) ← p (PCL) ← a6-a0	30				$(R17-R14) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$	
anch o	ВА а	(PCL) ← (a6–a4, A3–A0)	30				at timer 1 operating (V10=1): $(R17-R14) \leftarrow (B)$	
B	BLA p, a	$(PCH) \leftarrow p$ $(PCL) \leftarrow (a_6-a_4, A_3-A_0)$	30				(R13–R10) ← (A)	
	ВМа	(SP) ← (SP) + 1 (SK(SP)) ← (PC)	30	_		SNZT1	(T1F) = 1 ? $(T1F) \leftarrow 0$	39
		(PCH) ← 2 (PCL) ← a6–a0				TV2A	(V23−V20) ← (A3−A0)	45
eration	BML p, a	(SP) ← (SP) + 1 (SK(SP)) ← (PC)	31			TAB2	(B) ← (T27–T24) (A) ← (T23–T20)	42
Subroutine operation	DAM A	$(PCH) \leftarrow p p = 0 \text{ to } 15$ $(PCL) \leftarrow a_{6}-a_{0}$	24		Timer operation	T2AB	$(R2L_7-R2L_4) \leftarrow (B)$ $(T2_7-T2_4) \leftarrow (B)$ $(R2L_3-R2L_0) \leftarrow (A)$	40
	a	(SP) ← (SP) + 1 (SK(SP)) ← $(PC)(PCH)$ ← $p = 0$ to 15 (PCL) ← $(a6-a4, A3-A0)$	31		•	Т2НАВ	$(T23-T20) \leftarrow (A)$ $(R2H7-R2H4) \leftarrow (B)$ $(R2H3-R2H0) \leftarrow (A)$	41
operation	RT	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	37			T2R2L	(T27–T24) ← (R2L7–R2L4) (T23–T20) ← (R2L3–R2L0)	41
Return ope	RTS	(PC) ← (SK(SP)) (SP) ← (SP) – 1	37			SNZT2	(T2F) = 1 ? (T2F) ← 0	39

LIST OF INSTRUCTION FUNCTION (CONTINUED)

Grouping	1	Function (CC	Page
Cioquig	CLD	(D) ← 0	32
	RD	$(D(Y)) \leftarrow 0$ $(Y) = 0 \text{ to } 7$	36
ion	SD	$(D(Y)) \leftarrow 1$ $(Y) = 0 \text{ to } 7$	38
Input/Output operation	SZD	(D(Y)) = 0 ? (Y) = 0 to 7	40
put/Ou	OEA	(E1, E0) ← (A1, A0)	35
드	IAE	$(A_2-A_0) \leftarrow (E_2-E_0)$	33
	OGA	(G) ← (A)	35
	IAG	(A) ← (G)	33
ave ration	SCAR	(CAR) ← 1	38
Carrier wave control operation	RCAR	(CAR) ← 0	36
	NOP	(PC) ← (PC) + 1	34
	POF	RAM back-up	35
	SNZP	(P) = 1 ?	39
	сск	STCK changes to f(XIN)	31
	CCK2	STCK changes to f(XIN)/2	31
ation	CCK4	STCK changes to f(Xin)/4	32
Other operation	CLVD	Reset occurrence voltage value changes	32
Othe	TLOA	$(LO_1,LO_0) \longleftarrow (A_1,A_0)$	44
	URSC	(URS) ← 1	45
	TPU0A	(PU03−PU00) ← (A3−A0)	44
	TPU1A	(PU13−PU10) ← (A3−A0)	44
	TPU2A	(PU23−PU20) ← (A3−A0)	44
	WRST	(WDF1) ← 0	46

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

An (Add n	and accumulator)					
Instruction	D8 D0		Number of	Number of	Flag CY	Skip condition
code	0 1 0 1 0 n3 n2 n1 n0 2	0 A n	words	cycles		
	-	· · · · · · · · · · · · · · · · · · ·	1	1	_	Overflow = 0
Operation:	$(A) \rightarrow (A) + (M(DP))$		Grouping:	Arithmetic	operation	
	n = 0 to 15		Description	register A The conte changed. Skips the	nts of cari	the immediate field to ry flag CY remains ur action when there is rather of operation.
AM (Add a	ccumulator and Memory)					
Instruction	D8 D0	0 0 A 16	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	_
Operation:	$(A) \leftarrow (A) + (M(DP))$		Grouping:	Arithmetic	operation	
						egister A. The contents iins unchanged.
AMC (Add	accumulator, Memory and Carry)					
Instruction code	D8 D0 0 0 0 1 0 1 1	0 0 B	Number of words	Number of cycles	Flag CY	Skip condition
	2	16	1	1	0/1	_
Operation:	$(A) \leftarrow (A) + (M(DP)) + (CY)$		Grouping:	Arithmetic	operation	
	(CY) ← Carry		Description		ster A. Sto	f M(DP) and carry flag res the result in regis- Y.
	h to address a)				I =	
Instruction code	D8 D0	1 8 2	Number of words	Number of cycles	Flag CY	Skip condition
code	1 1 a6 a5 a4 a3 a2 a1 a0 2	1 4 a a 16	1	1	-	-
Operation:	(PCL)← a6-a0		Grouping:	Branch op	eration	
			Description	: Branch wit a in the ide		: Branches to address e.

	nch to address a + Accumulator)			I		
Instruction code	D8 D0 0 0 0 0 0 1 2	0 0 1	Number of words	Number of cycles	Flag CY	Skip condition
	1 1 a6 a5 a4 a3 a2 a1 a0	18 2	2	2	-	-
	2	1 +a a 16	Grouping:	Branch op	eration	
Operation:	(PCL) ← a6–a4, A3–A0		Description	(a6 a5 a4 A ing the low	3 A2 A1 A0) /-order 4 b	: Branches to addres determined by replace its of the address a i h register A.
BL p. a (B	ranch Long to address a in page p)					
Instruction	D8 D0	0 3 p	Number of words	Number of cycles	Flag CY	Skip condition
		8	2	2	-	-
	1 1 a6 a5 a4 a3 a2 a1 a0 2	1 +a a 16	Grouping:	Branch op	eration	
Operation:	(PCH) ← (P) (PCL) ← a6–a0		Description Note:	: Branch our a in page p p is 0 to 15).	: Branches to addres
BLA p, a (Branch Long to address a in page p)					
Instruction code	D8 D0 0 0 1 0 0 0 0	0 1 0	Number of words	Number of cycles	Flag CY	Skip condition
		16	2	2	-	_
	1 1 a6 a5 a4 p3 p2 p1 p0 ₂	1 _{+a} p ₁₆	Grouping:	Branch op	eration	
Operation:	(PCH) ← (P) (PCL) ← (a6–a4, A3–A0)		Description Note:	(a6 a5 a4 A	3 A2 A1 A0) /-order 4 b h register A	: Branches to address determined by replace its of the address a in A.
BM a (Bra	nch and Mark to address a in page 2)					
Instruction code	D8 D0 1 0 a6 a5 a4 a3 a2 a1 a0	1 a a a	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 a6 a5 a4 a3 a2 a1 a0 ₂	1 a a ₁₆	1	1	_	-
Operation:	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a6-a0$		Grouping: Description		broutine in	tion page 2 : Calls the s a in page 2.

BML p, a	(Branch and Mark Long to address a	a in page p)					
Instruction	D8 D0		Number of	Number of	Flag CY	Skip condition	
code	0 0 1 1 1 p3 p2 p1 p0 2	0 7 p ₁₆	words	cycles			
	1 0 a6 a5 a4 a3 a2 a1 a0	1 a a ₁₆	2	2	_	_	
	1 0 40 45 44 45 42 41 40 2	16	Grouping:	Subroutine	call opera	tion	
Operation:	$(SK(SP)) \leftarrow (PC)$		Description	: Call the su address a		Calls the subroutine a	
	(SP) ← (SP) + 1		Note:	p is 0 to 15			
	(PCH) ← p (PCL) ← a6-a0			•			
	(1 02) 1 40 40						
	(Branch and Mark Long to address a	a in page p)	Northead	Niverbanaf	FI 0)/	01.5	
Instruction code	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition	
code	0 0 1 0 1 0 0 0 0 2	0 5 0 16	2	2	_	_	
	1 0 a6 a5 a4 p3 p2 p1 p0 2	1 a p 16		0.1			
0			Grouping: Description	Subroutine		tion Calls the subroutine a	
Operation:	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$		Description			A ₂ A ₁ A ₀) determine	
	(PCH) ← p			`		order 4 bits of addres	
	(PCL) ← (a6–a4, A3–A0)		a in page p with register A.				
			Note:	p is 0 to 15	5.		
CCV (Char							
Instruction	nge system Clock to f(XIN)) D8 D0		Number of	Number of	Flag CY	Skip condition	
code		0 5 9	words	cycles	l lag 01	OKIP CONTINUON	
		16	1	1	_	_	
Operation:	Change to STCK = f(XIN)		Grouping:	Other oper	ation		
орегиноп.	Orlange to O TOTA = T(XIII)		Description			k (STCK) from f(XIN)/8	
				to f(XIN).	,	(,	
CCK2 (Cha	ange system Clock to f(XIN)/2)						
Instruction	D8 D0		Number of	Number of	Flag CY	Skip condition	
code	0 0 0 0 1 1 0 0 1	0 1 9 16	words	cycles			
		16	1	1	_	_	
Operation:	Change to STCK = f(XIN)/2		Grouping:	Other oper	ation		
			Description	: Changes s	ystem cloc	k (STCK) from f(XIN)/	
				to f(XIN)/2.			
				(). =-			
				,			
				,			

Instruction	ange syster D8	01001	(• //	D ₀					Number of	Number of	Flag CY	Skip condition
code	0 0 0	1 0	1	1 0			0	2	D 16	words	cycles	l lag C1	Skip condition
		110	'	1 0					16	1	1	-	-
Operation:	Change to S	STCK = f	(XIN)/4							Grouping:	Other oper	ation	
										Description	: Changes s to f(XIN)/4.		k (STCK) from f(XIN)/
CLD (CLea	ar port D)												
Instruction code	D8	0 1	0	0 0	D0		0	1	1 40	Number of words	Number of cycles	Flag CY	Skip condition
									16	1	1	_	_
Operation:	(D) ← 0									Grouping:	Input/Outp	ut operatio	n
CLVD (Ch	ange Voltag	je Drop	Dete	ection	า)								
Instruction code	D8	1 0	1	1 1	D0		0	2	E .	Number of words	Number of cycles	Flag CY	Skip condition
						16	1	1	_	_			
Operation:	Reset occur	rence vo	Itage 1	1.5 →1	.7V					Grouping:	Other oper	ation	
										Description		set occurre a = 25°C, Ty	ence voltage from1.5\ yp).
Instruction	/Iplement of D8	Accum	iulato	r)	D ₀					Number of	Number of	Flag CY	Skip condition
code	0 0 0	0 1	1	1 0			0	1	C 16		cycles	riag o r	Chip condition
code	0 0 0 0 1 1 1 0 0 2	1 0 1 .	1 . 1	. 0	2			16	1	1	_	-	
										Grouping:	Arithmetic	operation	
Operation:	$(A) \leftarrow \overline{(A)}$									Grouping.	7111111110110	operation	

	rement register Y)		Niconi	Missel 1	Flac OV	OL:
Instruction code	D8 D0 0 0 1 0 1 1 1 1 2	0 1 7	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	(Y) = 15
Operation:	(Y) ← (Y) − 1		Grouping:	RAM addre	esses	
			Description	As a resul	lt of subtra gister Y is 1	contents of register Y ction, when the con 5, the next instruction
IAE (Input	: Accumulator from port E)					
Instruction	D8 D0	0 5 6 46	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	-
Operation:	(A2–A0) ← (E2–E0)		Grouping:	Input/Outp	ut operation	n
			Description	A.	ane domesti	s of port E to register
	Accumulator from port G)					
Instruction code	D8 D0 0 0 0 1 0 1 0 0 0 2	0 2 8	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	_
Operation:	$(A) \leftarrow (G)$		Grouping:		ut operation	
			Description	A.	me content	s of port G to registe
	ement register Y)					
Instruction code	D8 D0 0 0 0 0 1 0 0 1 1 2	0 1 3 16	Number of words	Number of cycles	Flag CY	Skip condition
	2	10	1	1	-	(Y) = 0
Operation:	$(Y) \leftarrow (Y) + 1$		Grouping:	RAM addre	esses	
- p			Description	: Adds 1 to t sult of ad		s of register Y. As a re

I A n (Load	d n in Accumulator)					
Instruction	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
coue	0 1 0 1 1 n3 n2 n1 n0 ₂	0 B n 16	1	1	_	Continuous description
Operation:	(A) ← n		Grouping:	Arithmetic	operation	
	n = 0 to 15		Description	register A. When the coded and struction	LA instruction is exec	the immediate field to tions are continuously d, only the first LA in- uted and other LA d continuously are
LGOP (Lo	Gic OPeration between accumulator	and register E)				
Instruction code	D8 D0 0 0 1 0 0 0 0 1	0 4 1	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1		_
Operation:	Logic operation XOR, OR, AND		Grouping:	Arithmetic	•	
				logic oper tween the	ation sele e content	operation selected by ction register LO be- s of register A and s the result in register
	oad register X and Y with x and y)		1			
Instruction code	D8 D0 0 1 1 x1 x0 y3 y2 y1 y0 2	0 C y 16	Number of words	Number of cycles	Flag CY	Skip condition
		<u> </u>	1	1		Continuous description
Operation:	$(X) \leftarrow x, x = 0 \text{ to } 3$		Grouping:	RAM addre	esses	
	$(Y) \leftarrow y, y = 0 \text{ to } 15$		Description	register X, field to reg tions are c only the fi	and the vagister Y. Wontinuouslinst LXY in	the immediate field to alue y in the immediate /hen the LXY instruc-y coded and executed, istruction is executed actions coded continu-
NOP (No C	Peration)					
Instruction code	D8 D0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 16	Number of words	Number of cycles	Flag CY	Skip condition
		0 0 0 16	1	1	_	-
Operation:	(PC) ← (PC) + 1		Grouping: Description	Other oper		

				- ov	
				Flag CY	Skip condition
0 1 0 0 0 0 1 0 0 2	0 8 4 16	1	1	_	_
(E1 E0) ← (A1 A0)		Grouping:	Input/Outp	ut operatio	n
(L1, L0) (A1, A0)					
put port G from Accumulator)					
D8 D0	0 8 0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
(G) ← (A)		Grouping:	Input/Outp	ut operatio	n
		Description	: Outputs th	e contents	of register A to port G.
er OFf1)					
D8 D0	0 0 0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
RAM back-up		Grouping:			
		Description	: Puts the sy	rstem in K <i>P</i>	ым раск-up state
		Moneyter	Number of	Fle = OV	Oldware 199
		Number of words	cycles	Flag CY	Skip condition
	0 1 D 16	1	1	0/1	-
→[CY]→[A3A2A1A0]¬		Grouping:	Arithmetic	operation	
		Description			ontents of register A in- of carry flag CY to the
	0 1 0 0 0 0 0 0 0 0 2 (G) ← (A) Per OFf1) D8	D8	D8	De	DB

RB j (Rese	at Bit\						
Instruction	D8 D0			Number of	Number of	Flag CY	Skip condition
code		0 4 C	16	words	cycles	1 9	
		[, +]	16	1	1	_	-
Operation:	(Mj(DP)) ← 0			Grouping:	Bit operation	on	
·	j = 0 to 3			Description			ts of bit j (bit specified e immediate field) of
RC (Reset	Carry flag)						
Instruction	D8 D0 0 0 0 1 1 0 0	0 0 6	7	Number of words	Number of cycles	Flag CY	Skip condition
			16	1	1	0	_
Operation:	(CY) ← 0			Grouping:	Arithmetic	operation	
				Description	: Clears (0)	to carry may	y O 1.
RCAR (Re	set CAR flag)						
Instruction code	D8 D0 0 1 0 0 0 0 1 1 0 0	0 8 6	7	Number of words	Number of cycles	Flag CY	Skip condition
			_ 16	1	1	-	-
Operation:	(CAR)← 0			Grouping:	Carrier wa	ve control o	pperation
				Description	: Clears (0)	to port CAF	RR output flag.
	port D specified by register Y)				I		
Instruction code	D8 D0 0 0 1 0 1 0 0	0 1 1	7	Number of words	Number of cycles	Flag CY	Skip condition
Jour	0 0 0 0 1 0 1 0 2	0 1 4	16	1	1	-	-
Operation:	$(D(Y)) \leftarrow 0$ However, (Y) = 0 to 7			Grouping: Description	: Clears (0)	ut operatio to a bit of p ph-impedan	ort D specified by reg-

PT (PoTur	n from subroutine)					
Instruction	D8 D0		Number of	Number of	Flag CY	Skip condition
code		0 4 4	words	cycles	1.0.9	
		16	1	2	_	_
Operation:	(SP) ← (SP) – 1		Grouping:	Return ope	eration	
	(PC) ← (SK(SP))		Description	: Returns for called the		outine to the routine
RTS (ReTu	urn form subroutine and Skip)					
Instruction	D8 D0	0 4 5	Number of words	Number of cycles	Flag CY	Skip condition
		0 7 3 16	1	2	_	Skip at uncondition
Operation:	(SP) ← (SP) – 1		Grouping:	Return ope	eration	
	(PC) ← (SK(SP))		Description		subroutine	outine to the routine, and skips the next in- lition.
SB j (Set E	Bit)					
Instruction	D8 D0 0 0 1 0 1 1 1 1 j1 j0 2	0 5 C +j 16	Number of words	Number of cycles	Flag CY	Skip condition
		0 3 +J 16	1	1	-	_
Operation:	(Mj(DP)) ← 1		Grouping:	Bit operation	on	
	j = 0 to 3		Description			of bit j (bit specified by ediate field) of M(DP).
SC (Set C	arry flag)					
Instruction code	D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
code		0 0 7 16	1	1	1	_
Operation:	(CY) ← 1		Grouping:	Arithmetic	operation	
			Description	: Sets (1) to	carry flag	CY.

SCAR (Set	CAR fl	ag)													
Instruction	D8					D	0					Number of	Number of	Flag CY	Skip condition
code	0 1	0	0 0	0	1	1 1	2	0	8	7	16	words 1	cycles 1	_	_
	(0.4.5)											Grouping:	Carrier wa	ve control	operation
Operation:	(CAR)	- 1													R output flag (CAR).
SD (Set po	rt D spe	cifie	d by r	egis	ter Y)									
Instruction	D8 0	0	0 1				00	0	1	5		Number of words	Number of cycles	Flag CY	Skip condition
							2				16	1	1	_	_
Operation:	(D(Y)) <	- 1										Grouping:	Input/Outp	out operation	on
·	(Y) = 0											Description	: Sets (1) to ter Y.	a bit of po	rt D specified by regis
SEA n (Ski	p Equal D8 0 0	, Ac	cumul	ator 0			0	e data	a n)	5	16	Number of words	Number of cycles	Flag CY	Skip condition (A) = n , n = 0 to 15
	0 1	0	1 1	n3	n2	nı r	10 2	0	В	n	16				
											10	Grouping:	Compariso		
Operation:	(A) = n $n = 0 to$											Description		gister A is	uction when the con equal to the value n ir
SEAM (Ski	p Equa	, Ac	cumul	ator	with	Men	nory)								
Instruction code	D8	0	1 0	0	1	1 0	00	0	2	6		Number of words	Number of cycles	Flag CY	Skip condition
	0 0	0	1 0	10	'	1 0	2	0		0	16	1	1	_	(A) = (M(DP))
Operation:	(A) = (N	1(DP)) ?									Grouping:	Compariso	n operatio	n
			•									Description			uction when the con equal to the contents o

SNZP (Ski	D8			D ₀				Number of	Number of	Flag CY	Skip condition
code	0 0 0	0 0	0 0	1 1	0	0	3 40	words	cycles		
				2		0	16	1	1	_	(P) = 1
Operation:	(P) = 1 ?							Grouping:	Other oper	ration	
								Description			ction when P flag is "1 remains unchanged.
SNZT1 (SI	kip if Non Z	ero con	dition o	f Timer 1	under	flow	flag)				
Instruction	D8 0 1	0 0	0 0	D0	0		2	Number of words	Number of cycles	Flag CY	Skip condition
				2			16	1	1	_	(T1F) = 1
Operation:	(T1F) = 1 ?							Grouping:	Timer ope	ration	
	(T1F) ← 0							Description		_	skips the next instruc ts of T1F flag is "1."
SNZT2 (SI	ip if Non Z	ero con	dition o	f Timer 2	interru	ıpt re	eques	flag)			
Instruction code	D8	0 1	0 0	D ₀	0	5	2	Number of words	Number of cycles	Flag CY	Skip condition
		1011		2			16	1	1	-	(T2F) = 1
Operation:	(T2F) = 1 ?							Grouping:	Timer ope	ration	
	(T2F) ← 0							Description		-	skips the next instruc ts of T2F flag is "1."
O T D 1 (O) :	if Zero, Bi	t)						.	N	EI 0)/	01:
	D8	1 0		D0				Number of words	Number of cycles	Flag CY	Skip condition
Instruction			0 0	j1 j0 ₂	0	2	j ₁₆	1	1	_	(Mj(DP)) = 0 $j = 0 to 3$
	0 0 0	1110									j = 0 t0 0
Instruction	$ \begin{array}{c cccc} 0 & 0 & 0 \\ \hline (Mj(DP)) = \\ i = 0 \text{ to } 3 \end{array} $							Grouping: Description	Bit operation		ruction when the co

SZC (Skip)3/									Number of	Number of	Flor CV	Ckin ocadition
Instruction code	D8	1 0	1	1 1	D ₀	1		2	F		words	cycles	Flag CY	Skip condition
code	0 0 0	1 0	1	1 1	1	2	0	2	Г	16	1	1	_	(CY) = 0
Operation:	(CY) = 0 ?										Grouping:	Arithmetic	operation	
	(01)												•	uction when the con
												tents of ca	rry flag CY	' is "0."
SZD (Skip	if Zero, por	t D spe	cified	d by re	egis	ter Y)								
Instruction	D8	1 0	0	1 0	D0]	0	2	4		Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0	1 0	1	0 1	1] ₂	0		<u> </u>	16 16	2	2	_	(D(Y)) = 0 (Y) = 0 to 7
Operation:	(D(Y)) = 0?										Grouping:	Input/Outp	ut operation	on
-	(Y) = 0 to 7										Description		next instru	ction when a bit of por
T1AB (Trailinstruction code	D8 0 0 1	o timer	1 an	d regi	Do 1		0		7	ıla ¹	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	at timer 1 st	op (V10=	=O)								Grouping:	Timer oper	ration	
оронии	(R17–R14) €		,	Io) ← (A	A)						Description	: At timer 1	stop (V10	= 0), transfers the con
	(T17–T14) ←											tents of re	gister A ar	d register B to timer 1
	at timer 1 or	_										and reload	-	
	(R17−R14) ∢	⊢ (B), (R	:13–R1	I0) ← (A	A)								of register	(V10 = 1), transfers th A and register B to re
T2AB (Tra	nsfer data t	o timer	2 an	d reg	iste	r R2L	from	Acc	cum	nul	ator and re	gister B)		
Instruction	D8				Do	7					Number of words	Number of cycles	Flag CY	Skip condition
code	0 1 0	0 0	1	0 0	0	2	0	8	8	16	1	1	-	_
Operation:	(R2L7-R2L4	4) ← (B)									Grouping:	Timer ope	ration	
	(R2L3−R2L0 (T27−T24) ← (T23−T20) ←	- (B)									Description			ts of registers A and E 2 reload register R2L.
	,	. ,												

T2HAB (Tr	ransfer data to register R2H Accumul	ator from regist	er B)			
Instruction	D8 D0 0 1 0 0 0 1 0 0 1 2	0 8 9 16	Number of words	Number of cycles	Flag CY	Skip condition
		10	1	1	_	_
Operation:	(R2H7−R2H4) ← (B)		Grouping:	Timer oper		
	(R2H3−R2H0) ← (A)		Description			nts of register A and register R2H.
T2R2L (Tra	ansfer data to timer 2 from register R	 2L)				
Instruction	D8 D0	0 5 3	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	-
Operation:	(T27–T24) ← (R2L7–R2L4)		Grouping:	Timer ope	ration	
·	(T23–T20) ← (R2L3–R2L0)				the conte	nts of reload register
TAB (Translation code	sfer data to Accumulator from registe D8	or B)	Number of words	Number of cycles	Flag CY	Skip condition
			1	1	_	_
Operation:	(A) ← (B)		Grouping:	Register to		
				ister A.	the conten	ts of register B to reg-
	nsfer data to Accumulator and registe	er B from timer	1	Novelend	FI 0)/	Olda a sandida a
Instruction code	D8 D0 0 1 0 1 0 1 1 1 1 2	0 5 7	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 1 0 1 0 1 1 1 2	0 5 7 16	1	1	_	-
Operation:	(B) ← (T17–T14) (A) ← (T13–T10)		Grouping: Description	Timer oper : Transfers ters A and	the conten	ts of timer 1 to regis-

TAB2 (Tran	D8				D ₀	,		*1		Number of	Number of	Flag CY	Skip condition
code	0 0 1	0 0	0	0 0			0	4 ()	words	cycles	l lag 01	Orap condition
	0 0 1	0 0	10	0 0		2		4 1	16	1	1	_	_
Operation:	(B) ← (T27-	·T24)								Grouping:	Timer oper	ation	
	(A) ← (T23-	,								<u> </u>			its of timer 2 to regi
											ters A and	В.	
TABE (Trai	nsfer data t	o Accu	mula	itor an	d reg	giste	r B fı	om r	egist	er E)			
Instruction	D8				D ₀					Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0	1 0	1	0 1	0	2	0	2 /	16	1	1	_	_
Operation:	(B) ← (ER7-	-ER4)								Grouping:	Register to	register tr	ansfer
	(A) ← (ER3-	,								Description			ts of register E to reg
ГАВР р (Ті	ansfer data	to Ac	cumi	ılator a	and r	egis	ter B	from	Prog	gram memo	ory in page	p)	
Instruction	D8				D ₀					Number of words	Number of cycles	Flag CY	Skip condition
code	0 1 0	0 1	p3	p2 p1	p0	2	0	9 1	16	1	3	-	_
peration:	SK(SP)) ← (PC) . (S	SP) ←	(SP) +	1					Grouping:	Arithmetic	0/1	
	$(PCH) \leftarrow p, G$ When URS : $(B) \leftarrow (ROM)$ When URS : $(CY) \leftarrow (RO)$	(Note), (= 0, ((PC))7 to = 1, M(PC))8	PC L) o 4, (A	← (DR ₂	–DRo	C)) 3 to	0			Description	to 0 to regis "0". These b address (DF by registers	ts 7 to 4 to ter A wher oits 7 to 0 a R ₂ DR ₁ DR A and D ir	
	(B) ← (ROM (SP) ← (SP)	. ,,		,	,	,))3 to	O			CY=0/1: Note:	to flag CY w (after the UF	hen URS f RSC instru k is used v	attern is transferred lag is set to "1". ction is executed). when the TABP p
TAM: /Tro	nofor doto t	Α Λοοι		otor fra	N	1000	- m ()			110101			
I AIVIJ (1 ra Instruction	nsfer data t	U ACCI	umula	alUI IIC	D ₀	ieinc	лу)			Number of	Number of	Flag CY	Skip condition
code	0 0 1	1 0	0	1 j1	jo	2	0	6	4 +i 16	words	cycles	Flag C1	Skip condition
				<u></u>					.,10	1	1	_	_
Operation:	(A) ← (M(D	P))								Grouping:	RAM to reg		
	$(X) \leftarrow (X)EX$ j = 0 to 3	(OR(j)								Description	register A performed	, an exclu between re mediate fie	e contents of M(DP) sive OR operation egister X and the valueld, and stores the r

D8 D0 0 0 1 1 1 1 1 1 2		Number of	NIaalaan af	l —. —l	
	0 1 F	words	Number of cycles	Flag CY	Skip condition
	0 1 5 16	1	1	-	-
(A) ← (Y)		Grouping:	Register to	register tra	ansfer
		Description	: Transfers t ter A.	he content:	s of register Y to regis
sfer data to register B from Accumula	ator)				
D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
2	16	1	1	_	_
(B) ← (A)		Grouping:	Register to	register tr	ansfer
		Description	: Transfers t ter B.	he content:	s of register A to regis
	ator)			= 0\d	
	0 2 9	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	_
$(DR2-DR0) \leftarrow (A2-A0)$		Grouping:	Register to	register tra	ansfer
		Description	: Transfers t ter D.	he content:	s of register A to regis
ansfer data to register E from Accumu	lator and regist	er B)			
D8 D0		Number of words	Number of cycles	Flag CY	Skip condition
	0 1 A 16	1	1	_	_
(ER7–ER4) ← (B)		Grouping:	Register to	register tra	ansfer
$(ER3-ER0) \leftarrow (A)$		Description			
	Sefer data to register B from Accumulate D_8 D_0 0 0 0 0 0 0 0 0 0	sfer data to register B from Accumulator) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(A) \leftarrow (Y) \\ \hline $	$(A) \leftarrow (Y) \\ \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$(A) \leftarrow (Y) \\ \hline \begin{tabular}{c c c c c c c c c c c c c c c c c c c $

nefor d	ata t	o rogi	etor l	O fro	m Ac	cumi	ulato	r)					
	מום וו	o regi	SIGI I	_0 110			uiaio	1)		Number of	Number of	Flag CY	Skip condition
	1	0 1	1]		5	Ω	words	cycles	l lag 01	Only condition
0 0		0 1	Τ'	0 0	0	2] 3]	16	1	1	-	_
(LO1. L	O0) +	– (A1.	(0/							Grouping:	Other oper	ration	
(== :, =		(, -	,										s of register A to logic
											operation s	selection re	gister LO.
ansfer o	data	to reg	giste	PU0	from	Accı	ımul	ator)					
D8	10	0 0	1 1	1 1]	0	8	F	Number of words	Number of cycles	Flag CY	Skip condition
0 1	10		<u>' '</u>	' '		2		0	16	1	1	-	-
(PU03-	-PU0	o) ← (A	3-A0)							Grouping:	Other ope	ration	
										Description			
	data	to re	giste	PU1			ımul	ator)				1	
	Τ.		Ι.			1						Flag CY	Skip condition
0 1	0	0 0	1	1 1	0	2	0	8	16	1	1	_	_
(PU13-	-PU1	o) ← (A	3-A0)							Grouping:	Other ope	ration	
										Description			
ansfer of	data	to reg	giste	PU2	from	Accı	ımul	ator)					
D8	0	0 0	1	1 0]	0	8	D	Number of words	Number of cycles	Flag CY	Skip condition
]2			16	1	1	_	_
(PU23-	-PU2	0) ← (A	3-A0)							Grouping:	Other ope	ration	
										Description			ts of register A to pull- J2.
	D8	ransfer data D8 0 0 1 (LO1, LO0) ransfer data D8 0 1 0 (PU03-PU06) ransfer data D8 0 1 0 (PU13-PU16)	D8 O O 1 O 1 (LO1, LO0) ← (A1, A) (LO1, LO0) ← (A1	D8 O O 1 O 1 1	D8	D8	D8	Transfer data to register PU0 from Accumulation D_8 D_0	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		D8	D8

TV1A (Tra	nsfer data to register V1 from Accum	ulator)				
Instruction	D8 D0 0 0 1 0 1 0 1 1 1 2	0 5 B ₁₆	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	(V12–V10) ← (A2–A0)		Grouping:	Timer oper		_
			Description	ter V1.	the content	s of register A to regis-
TV2A (Trai	nsfer data to register V2 from Accum	ulator)				
Instruction code	D8 D0 0 0 1 0 1 1 0 1 0 2	0 5 A ₁₆	Number of words	Number of cycles	Flag CY	Skip condition
-		10	1	1		
Operation:	(V23–V20) ← (A3–A0)		Grouping: Description	Timer oper: Transfers to ter V2.		s of register A to regis-
TYA (Transition code	sfer data to regiser Y from Accumulat D8 D0 0 0 0 0 0 1 1 0 0		Number of words	Number of cycles	Flag CY	Skip condition
		0 0 0 1	1	1	_	-
Operation:	(Y) ← (A)		Grouping: Description		o register tra	ansfer s of register A to regis-
URSC (Set	ts Upper ROM Code reference enabl	e flag)				
Instruction	D8 D0 0 1 0 0 0 0 0 1 0	0 8 2 16	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	-	-
Operation:	(URS) ← 1		Grouping: Description	Other oper Sets the mence enable	nost signific	cant ROM code refer-S) to "1."

Instruction	/atchdog timer ReSeT)		Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 1 1	0 0 F	words	cycles	riag CT	Skip condition
		10	1	1	_	-
Operation:	(WDF1) ← 0		Grouping:	Other oper	ation	
			Description		the water	ndog timer flag (WD
XAM j (eX	change Accumulator and Memory da	 ata)				
Instruction code	D8 D0 0 0 1 1 0 0 0 j1 j0	0 6 j ₁₆	Number of words	Number of cycles	Flag CY	Skip condition
			1	1	_	-
Operation:	$(A) \leftarrow \rightarrow (M(DP))$		Grouping:	RAM to reg	gister trans	sfer
	$(X) \leftarrow (X)EXOR(j)$ j = 0 to 3		Description	with the co OR operat ter X and t	ntents of r ion is perf he value j	ne contents of M(DP register A, an exclusive formed between regis in the immediate field in register X.
XAMD j (e	Xchange Accumulator and Memory	data and Decrer	nent registe	er Y and sk	ip)	
Instruction code	D8 D0 0 0 1 1 0 1 1 j1 j0 0	0 6 C +j 16	Number of words	Number of cycles	Flag CY	Skip condition
		L +j 16	1	1	_	(Y) = 15
Operation:	$(A) \leftarrow \rightarrow (M(DP))$		Grouping:	RAM to reg	,	
	$(X) \leftarrow (X)EXOR(j)$ j = 0 to 3 $(Y) \leftarrow (Y) - 1$		Description	with the co OR operat ter X and t and stores Subtracts As a resul	ntents of reion is perfehe value jethe result from the tof subtra	e contents of M(DP) egister A, an exclusive ormed between regisin the immediate field in register X. contents of register Y action, when the contents of the contents of the contents of the contents of the next instruction
	Change Accumulator and Memory d	ata and Increme		-		
Instruction code	D8 D0 0 1 1 0 1 0 j1 j0 0	0 6 8 +j 16	Number of words	Number of cycles	Flag CY	Skip condition
	2	L +j 16	1	1	-	(Y) = 0
			Grouping:	RAM to reg	gister trans	fer
Operation:	$(A) \leftarrow \rightarrow (M(DP))$					e contents of M(DP

INSTRUCTION CODE TABLE

1	D8-D4	00000	00001	00010	00011	00100	00101	00110	00111	01000	01001	01010	01011	01100	01101	01110	01111	10000 10111	11000 11111
D3-D0	Hex.	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–1F
0000	0	NOP	BLA	SZB 0	BL	TAB2	BMLA	XAM 0	BML	OGA	TABP 0	A 0	LA 0	LXY 0,0	LXY 1,0	LXY 2,0	LXY 3,0	ВМ	В
0001	1	ВА	CLD	SZB 1	BL	LGOP	_	XAM 1	BML	_	TABP 1	A 1	LA 1	LXY 0,1	LXY 1,1	LXY 2,1	LXY 3,1	ВМ	В
0010	2			SZB 2	BL	SNZT1	SNZT2	XAM 2	BML	URSC	TABP 2	A 2	LA 2	LXY 0,2	LXY 1,2	LXY 2,2	LXY 3,2	ВМ	В
0011	3	SNZP	INY	SZB 3	BL	_	T2R2L	XAM 3	BML	_	TABP 3	A 3	LA 3	LXY 0,3	LXY 1,3	LXY 2,3	LXY 3,3	ВМ	В
0100	4	_	RD	SZD	BL	RT	_	TAM 0	BML	OEA	TABP 4	A 4	LA 4	LXY 0,4	LXY 1,4	LXY 2,4	LXY 3,4	ВМ	В
0101	5	_	SD	SEAn	BL	RTS	_	TAM 1	BML	_	TABP 5	A 5	LA 5	LXY 0,5	LXY 1,5	LXY 2,5	LXY 3,5	ВМ	В
0110	6	RC		SEAM	BL	_	IAE	TAM 2	BML	RCAR	TABP 6	A 6	LA 6	LXY 0,6	LXY 1,6	LXY 2,6	LXY 3,6	ВМ	В
0111	7	sc	DEY	_	BL	T1AB	TAB1	TAM 3	BML	SCAR	TABP 7	A 7	LA 7	LXY 0,7	LXY 1,7	LXY 2,7	LXY 3,7	ВМ	В
1000	8	_		IAG	BL	_	TLOA	XAMI 0	BML	T2AB	TABP 8	A 8	LA 8	LXY 0,8	LXY 1,8	LXY 2,8	LXY 3,8	ВМ	В
1001	9		CCK2	TDA	BL	_	ССК	XAMI 1	BML	T2HAB	TABP 9	A 9	LA 9	LXY 0,9	LXY 1,9	LXY 2,9	LXY 3,9	ВМ	В
1010	А	AM	TEAB	TABE	BL	_	TV2A	XAMI 2	BML	_	TABP 10	A 10	LA 10	LXY 0,10	LXY 1,10	LXY 2,10	LXY 3,10	ВМ	В
1011	В	AMC	-	_	BL	_	TV1A	XAMI 3	BML	_	TABP 11	A 11	LA 11	LXY 011	LXY 1,11	LXY 2,11	LXY 3,11	BM	В
1100	С	TYA	СМА	_	BL	RB 0	SB 0	XAMD 0	BML	_	TABP 12	A 12	LA 12	LXY 0,12	LXY 1,12	LXY 2,12	LXY 3,12	ВМ	В
1101	D	POF	RAR	CCK4	BL	RB 1	SB 1	XAMD 1	BML	TPU2A	TABP 13	A 13	LA 13	LXY 0,13	LXY 1,13	LXY 2,13	LXY 3,13	ВМ	В
1110	Е	TBA	TAB	CLVD	BL	RB 2	SB 2	XAMD 2	BML	TPU1A	TABP 14	A 14	LA 14	LXY 0,14	LXY 1,14	LXY 2,14	LXY 3,14	ВМ	В
1111	F	WRST	TAY	SZC	BL	RB 3	SB 3	XAMD 3	BML	TPU0A	TABP 15	A 15	LA 15	LXY 0,15	LXY 1,15	LXY 2,15	LXY 3,15	ВМ	В

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D8–D4 show the high-order 5 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use the code marked "–."

The codes for the second word of a two-word instruction are described below.

	Т	he secon	d word
BL	1	1 a a a	aaaa
BML	1	0 a a a	aaaa
BA	1	1 a a a	aaaa
BLA	1	1 a a a	рррр
BMLA	1		рррр
SEA	0	1011	nnnn
SZD	0	0010	1011

MACHINE INSTRUCTIONS (INDEX BY FUNCTION)

Parameter						lr	nstru	ıctio	n co	de				r of s	r of s				
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Дз	D ₂	D ₁	D ₀	l	adeo	cimal on	Number of words	Number of cycles	Function			
	TAB	0	0	0	0	1	1	1	1	0	0	1	Е	1	1	(A) ← (B)			
Je	ТВА	0	0	0	0	0	1	1	1	0	0	0	Ε	1	1	(B) ← (A)			
r transf	TAY	0	0	0	0	1	1	1	1	1	0	1	F	1	1	(A) ← (Y)			
egiste	TYA	0	0	0	0	0	1	1	0	0	0	0	С	1	1	(Y) ← (A)			
Register to register transfer	TEAB	0	0	0	0	1	1	0	1	0	0	1	Α	1	1	(ER7–ER4) ← (B) (ER3–ER0) ← (A)			
Regis	TABE	0	0	0	1	0	1	0	1	0	0	2	Α	1	1	(B) ← (ER7–ER4) (A) ← (ER3–ER0)			
	TDA	0	0	0	1	0	1	0	0	1	0	2	9	1	1	$(DR_2-DR_0) \leftarrow (A_2-A_0)$			
	LXY x, y	0	1	1	X1	X 0	уз	y 2	y 1	y 0	0	C +x	•	1	1	$(X) \leftarrow x, x = 0 \text{ to } 3$ $(Y) \leftarrow y, y = 0 \text{ to } 15$			
RAM addresses	INY	0	0	0	0	1	0	0	1	1	0	1	3	1	1	(Y) ← (Y) + 1			
<u> </u>	DEY	0	0	0	0	1	0	1	1	1	0	1	7	1	1	(Y) ← (Y) − 1			
	ТАМ ј	0	0	1	1	0	0	1	j1	j o	0	6	4 +j	1	1	$(A) \leftarrow (M(DP))$ $(X) \leftarrow (X) EXOR(j)$ j = 0 to 3			
ansfer	XAM j	0	0	1	1	0	0	0	j1	jo	0	6	j	1		$(A) \longleftrightarrow (M(DP))$ $(X) \leftarrow (X) EXOR(j)$ j = 0 to 3			
RAM to register transfer	XAMD j	0	0	1	1	0	1	1	j1	jo	0	6	C +j	1		$(A) \longleftrightarrow (M(DP))$ $(X) \longleftrightarrow (X) EXOR(j)$ $j = 0 \text{ to } 3$ $(Y) \longleftrightarrow (Y) - 1$			
	XAMI j	0	0	1	1	0	1	0	j1	jo	0	6	8 +j	1		$(A) \longleftrightarrow (M(DP))$ $(X) \longleftrightarrow (X) EXOR(j)$ j = 0 to 3 $(Y) \longleftrightarrow (Y) + 1$			

Skip condition	Carry flag CY	Detailed description
-	-	Transfers the contents of register B to register A.
-	_	Transfers the contents of register A to register B.
-	_	Transfers the contents of register Y to register A.
-	_	Transfers the contents of register A to register Y.
-	_	Transfers the contents of registers A and B to register E.
-	-	Transfers the contents of register E to registers A and B.
-	_	Transfers the contents of register A to register D.
Continuous description		Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed
		and other LXY instructions coded continuously are skipped.
(Y) = 0	-	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped.
(Y) = 15	_	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped.
-	_	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
-	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped.
(Y) = 0	-	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped.

Parameter						lr	nstru	ıctio	n co	de				er of Is	er of				
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Dз	D ₂	D ₁	D ₀	Hexa	adec tatio	imal on	Number of words	Number of cycles	Function			
	LA n	0	1	0	1	1	n3	n ₂	n1	no	0	В	n	1	1	(A) ← n n = 0 to 15			
	ТАВР р	0	1	0	0	1	рз	p ₂	p1	po	0	9	p	1	3	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow p \text{ (Note)}$ $(PCL) \leftarrow (DR_2-DR_0, A_3-A_0)$ When URS=0, $(B) \leftarrow (ROM(PC))7 \text{ to } 4$ $(A) \leftarrow (ROM(PC))3 \text{ to } 0$ When URS=1, $(CY) \leftarrow (ROM(PC))8$ $(B) \leftarrow (ROM(PC))7 \text{ to } 4$ $(A) \leftarrow (ROM(PC))3 \text{ to } 0$ $(SP) \leftarrow (SP) - 1$ $(PC) \leftarrow (SK(SP))$			
ation	AM	0	0	0	0	0	1	0	1	0	0	0	Α	1	1	$(A) \leftarrow (A) + (M(DP))$			
Arithmetic operation	AMC	0	0	0	0	0	1	0	1	1	0	0	В	1	1	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$			
Arith	A n	0	1	0	1	0	n3	n ₂	N1	no	0	Α	n	1	1	$(A) \leftarrow (A) + n$ n = 0 to 15			
	SC	0	0	0	0	0	0	1	1	1	0	0	7	1	1	(CY) ← 1			
	RC	0	0	0	0	0	0	1	1	0	0	0	6	1	1	(CY) ← 0			
	SZC	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY) = 0?			
			0	0		1	1	1	0	0		1		1	1	$(A) \leftarrow (\overline{A})$			
			0	0		1	1	1		1		1		1	1	CY A3A2A1A0			
	LGOP	0	0	1	0	0	0	0	0	1	0	4	1	1	1	Logic operation instruction XOR, OR, AND			

Note: p is 0 to 15.

Skip condition	Carry flag CY	Detailed description
Continuous description	_	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
_	0/1	Transfers bits 7 to 4 to register B and bits 3 to 0 to register A when URS flag is cleared to "0." These bits 7 to 0 are the ROM pattern in address (DR ₂ DR ₁ DR ₀ A ₃ A ₂ A ₁ A ₀) specified by registers A and D in page p. Transfers bit 8 of ROM pattern is transferred to flag CY when URS flag is set to "1" (after the URSC instruction is executed). (One of stack is used when the TABP p instruction is executed.)
-	_	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	_	Adds the value n in the immediate field to register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation.
-	1	Sets (1) to carry flag CY.
_	0	Clears (0) to carry flag CY.
(CY) = 0	_	Skips the next instruction when the contents of carry flag CY is "0."
_	_	Stores the one's complement for register A's contents in register A.
_	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
-	_	Executes the logic operation selected by logic operation selection register LO between the contents of register A and register E, and stores the result in register A.

Parameter	mnemonic					lr	nstru	ıctio	n co	de				er of	er of				
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Dз	D ₂	D ₁	D ₀		adec otati		Number of words	Number of cycles	Function			
	SB j	0	0	1	0	1	1	1	j1	j o	0	5	C +j	1	1	(Mj(DP)) ← 1 j = 0 to 3			
Bit operation	RB j	0	0	1	0	0	1	1	j1	jo	0	4	C +j	1		(Mj(DP)) ← 0 j = 0 to 3			
Bit	SZB j	0	0	0	1	0	0	0	j1	jo	0	2	j	1	1	(Mj(DP)) = 0 ? j = 0 to 3			
	SEAM	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP)) ?			
Comparison operation	SEA n	0	0	0	1	0	0	1	0	1	0	2	5	2		(A) = n ? n = 0 to 15			
S =		0	1	0	1	1	n 3	n2	n1	no	0	В	n						
	Ва	1	1	a 6	a 5	a 4	a 3	a 2	a 1	a 0	1	8 +a	а	1	1	(PCL) ← a6–a0			
	BL p, a	0	0	0	1	1	рз	p ₂	p 1	p 0	0	3	р	2	2	(PCH) ← p (PCL) ← a6−a0 (Note)			
Branch operation		1	1	a 6	a 5	a 4	a 3	a 2	a 1	a 0	1	8 +a	а			(Note)			
nch op	ВА а	0	0	0	0	0	0	0	0	1	0	0	1	2	2	(PCL) ← (a6–a4, A3–A0)			
Bra		1	1	a 6	a 5	a 4	a 3	a 2	a 1	a 0	1	8 +a	а						
	BLA p, a	0	0	0	0	1	0	0	0	0	0	1	0	2	2	(PCH) ← p (PCL) ← (a6-a4, A3-A0)			
		1	1	a 6	a 5	a 4	рз	p ₂	p 1	p ₀	1	8 +a	р			(Note)			

Note: p is 0 to 15.

Skip condition	Carry flag CY	Detailed description
-	_	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
-	_	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	_	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0."
(A) = (M(DP))	-	Skips the next instruction when the contents of register A is equal to the contents of M(DP).
(A) = n n = 0 to 15	_	Skips the next instruction when the contents of register A is equal to the value n in the immediate field.
_	_	Branch within a page : Branches to address a in the identical page.
-	_	Branch out of a page : Branches to address a in page p.
-	_	Branch within a page: Branches to address (a ₆ a ₅ a ₄ A ₃ A ₂ A ₁ A ₀) determined by replacing the low-order 4 bits of the address a in the identical page with register A.
-	_	Branch out of a page: Branches to address (a ₆ a ₅ a ₄ A ₃ A ₂ A ₁ A ₀) determined by replacing the low-order 4 bits of the address a in page p with register A.

Parameter						lı	nstru	ıctio	n co	de				r of	r of			
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Dз	D ₂	D ₁	D ₀	Hexa	adeo tati		Number of words	Number of cycles	Function		
	ВМ а	1	0	a 6	a 5	a 4	аз	a 2	a ₁	a 0	1	а	а	1	1	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a_{6}-a_{0}$		
peration	BML p, a	0	0	1	1	1	рз	p ₂	p 1	p ₀	0	7	р	2	2	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow p$		
Subroutine operation		1	0	a 6	a 5	a 4	a 3	a 2	a1	a 0	1	а	а			(PCL) ← a6–a0 (Note)		
S	BMLA p, a						0 p ₃			0 po			0 p	2	2	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow p$		
																(PCL) ← (a6-a4, A3-A0) (Note)		
Return operation	RT	0	0	1	0	0	0	1	0	0	0	4	4	1	2	$(SP) \leftarrow (SP) - 1$ $(PC) \leftarrow (SK(SP))$		
Return o	RTS	0	0	1	0	0	0	1	0	1	0	4	5	1	2	$(SP) \leftarrow (SP) - 1$ $(PC) \leftarrow (SK(SP))$		
	T1AB	0	0	1	0	0	0	1	1	1	0	4	7	1	1	at timer 1 stop (V10=0) $(R17-R14) \leftarrow (B)$, $(R13-R10) \leftarrow (A)$ $(T17-T14) \leftarrow (B)$, $(T13-T10) \leftarrow (A)$ at timer 1 operating (V10=1) $(R17-R14) \leftarrow (B)$, $(R13-R10) \leftarrow (A)$		
uc	TAB1	0	0	1	0	1	0	1	1	1	0	5	7	1	1	(B) ← (T17–T14) (A) ← (T13–T10)		
peratic	TV1A	0	0	1	0	1	1	0	1	1	0	5	В	1	1	$(V1_2-V1_0) \leftarrow (A_2-A_0)$		
Timer operation	SNZT1	0	0	1	0	0	0	0	1	0	0	4	2	1	1	(T1F) = 1 ? (T1F) ← 0		
	T2AB	0	1	0	0	0	1	0	0	0	0	8	8	1	1	$(R2L7-R2L4) \leftarrow (B)$ $(R2L3-R2L0) \leftarrow (A)$ $(T27-T24) \leftarrow (B)$, $(T23-T20) \leftarrow (A)$		

Note: p is 0 to 15.

Skip condition	Carry flag CY	Detailed description
_	_	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
_	_	Call the subroutine : Calls the subroutine at address a in page p.
_	_	Call the subroutine: Calls the subroutine at address (a6 a5 a4 A3 A2 A1 A0) determined by replacing the low-order 4 bits of address a in page p with register A.
-	_	Returns from subroutine to the routine called the subroutine.
Skip at uncondition	_	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.
-	-	At timer 1 stop (V10 = 0), transfers the contents of register A and register B to timer 1 and reload register R1.
		At timer 1 operating (V10 = 1), transfers the contents of register A and register B to reload register R1.
_	_	Transfers the contents of timer 1 to registers A and B.
_	_	Transfers the contents of register A to registers V1.
(T1F) = 1	_	Clears T1F flag and skips the next instruction when the contents of T1F flag is "1."
_	_	Transfers the contents of register A and register B to timer 2 and reload register R2L.

Parameter	Mnemonic					Ir	nstru	ıctio	n co	de				r of s	r of	
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Dз	D ₂	D ₁	D ₀	Hexa	adec tati		Number of words	Number of cycles	Function
	TAB2	0	0	1	0	0	0	0	0	0	0	4	0	1	1	(B) ← (T27–T24), (A) ← (T23–T20)
	TV2A	0	0	1	0	1	1	0	1	0	0	5	Α	1	1	(V23−V20) ← (A3−A0)
eration	SNZT2	0	0	1	0	1	0	0	1	0	0	5	2	1	1	(T2F) = 1 ? (T2F) ← 0
Timer operation	Т2НАВ	0	1	0	0	0	1	0	0	1	0	8	9	1	1	(R2H7–R2H4) ← (B) (R2H3–R2H0) ← (A)
	T2R2L	0	0	1	0	1	0	0	1	1	0	5	3	1	1	$(T27-T24) \leftarrow (R2L7-R2L4)$ $(T23-T20) \leftarrow (R2L3-R2L0)$
ve	SCAR	0	1	0	0	0	0	1	1	1	0	8	7	1	1	(CAR) ← 1
Carrier wave control operation	RCAR	0	1	0	0	0	0	1	1	0	0	8	6	1	1	(CAR) ← 0
	CLD	0	0	0	0	1	0	0	0	1	0	1	1	1	1	(D) ← 0
	RD	0	0	0	0	1	0	1	0	0	0	1	4	1	1	$(D(Y)) \leftarrow 0$ $(Y) = 0 \text{ to } 7$
	SD	0	0	0	0	1	0	1	0	1	0	1	5	1	1	(D(Y)) ← 1 (Y) = 0 to 7
	SZD	0	0	0	1	0	0	1	0	0	0	2	4	2	2	(D(Y)) = 0 ? (Y) = 0 to 7
eration		0	0	0	1	0	1	0	1	1	0	2	В			
put op	OEA	0	1	0	0	0	0	1	0	0	0	8	4	1	1	$(E_1, E_0) \leftarrow (A_1, A_0)$
Input/Output operation	IAE	0	0	1	0	1	0	1	1	0	0	5	6	1	1	$(A_2-A_0) \leftarrow (E_2-E_0)$
dul	OGA	0	1	0	0	0	0	0	0	0	0	8	0	1	1	(G) ← (A)
	IAG	0	0	0	1	0	1	0	0	0	0	2	8	1	1	(A) ← (G)

Skip condition	Carry flag CY	Detailed description
-	-	Transfers the contents of timer 2 to registers A and B.
-	-	Transfers the contents of register A to registers V2.
(T2F) = 1	-	Clears T2F flag and skips the next instruction when the contents of T2F flag is "1."
-	_	Transfers the contents of register A and register B to reload register R2H.
-	_	Transfers the contents of reload register R2L to timer 2.
_	_	Sets (1) to port CARR output flag (CAR).
-	-	Clears (0) to port CARR output flag (CAR).
-	-	Clears (0) to port D (high-impedance state).
-	-	Clears (0) to a bit of port D specified by register Y (high-impedance state).
-	_	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 (Y) = 0 to 7	_	Skips the next instruction when a bit of port D specified by register Y is "0."
-	_	Outputs the contents of register A to port E.
-	-	Transfers the contents of port E to register A.
-	_	Outputs the contents of register A to port G.
-	_	Transfers the contents of port G to register A.

Parameter						lr	nstru	ıctio	n co	de				er of Is	er of	
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Dз	D ₂	D ₁	D ₀	Hexa	adec tatio		Number of words	Number of cycles	Function
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	1	1	(PC) ← (PC) + 1
	POF	0	0	0	0	0	1	1	0	1	0	0	D	1	1	RAM back-up
	SNZP	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?
Other operation	CCK	0	0	1	0	1	1	0	0	1	0	5	9	1	1	STCK changes to f(XIN)
her op	CCK2	0	0	0	0	1	1	0	0	1	0	1	9	1	1	STCK changes to f(XIN)/2
ð	CCK4	0	0	0	1	0	1	1	0	1	0	2	D	1	1	STCK changes to f(XIN)/4
	CLVD	0	0	0	1	0	1	1	1	0	0	2	Е	1	1	Reset occurrence voltage 1.5V → 1.7V
	TLOA	0	0	1	0	1	1	0	0	0	0	5	8	1	1	(LO1, LO₀) ← (A1, A₀)
	URSC	0	1	0	0	0	0	0	1	0	0	8	2	1	1	(URS) ← 1
	TPU0A	0	1	0	0	0	1	1	1	1	0	8	F	1	1	(PU03–PU00) ← (A3–A0)
	TPU1A	0	1	0	0	0	1	1	1	0	0	8	Е	1	1	(PU13–PU10) ← (A3–A0)
	TPU2A	0	1	0	0	0	1	1	0	1	0	8	D	1	1	(PU23–PU20) ← (A3–A0)
	WRST	0	0	0	0	0	1	1	1	1	0	0	F	1	1	(WDF1) ← 0

Skip condition	Carry flag CY	Detailed description
-	_	No operation
-	_	Puts the system in RAM back-up state.
(P) = 1	_	Skips the next instruction when P flag is "1". After skipping, P flag remains unchanged.
-	_	System clock (STCK) changes to f(XIN) from f(XIN)/8.
_	_	System clock (STCK) changes to f(XIN) /2from f(XIN)/8.
-	_	System clock (STCK) changes to f(XIN) /4from f(XIN)/8.
-	_	Change detection voltage from 1.5V to 1.7V (Ta = 25°C, Typ).
-	_	Transfers the contents of register A to the logic operation selection register LO.
-	_	Sets the most significant ROM code reference enable flag (URS) to "1."
-	_	Transfers the contents of register A to register PU0.
-	_	Transfers the contents of register A to register PU1.
-	_	Transfers the contents of register A to register PU2.
-	_	Initializes the watchdog timer flag (WDF1).

REGISTER STRUCTURE

	Timer control register V1		t reset : 0002	at RAM back-up : 0002	W		
V12	Corrier ways output outp control hit	0	Auto-control output by timer 1 is invalid				
V 12	Carrier wave output auto-control bit	1	Auto-control output by timer 1 is valid				
V1 ₁	Timer 1 count source selection bit	0	Carrier wave output (CARRY)				
V 11	Timer i count source selection bit	1	Bit 5 of watchdog timer (WDT)				
\/4-	Times 4 control hit	0	Stop (Timer 1 state retained)				
V10	Timer 1 control bit	1	Operating				

	Timer control register V2	at	reset: 00002	at RAM back-up : 00002	W		
1/20	Carrier ways "H" interval expansion bit	0	To expand "H" inte	rval is invalid			
V Z3	V2 ₃ Carrier wave "H" interval expansion bit		To expand "H" interval is valid (when V22=1 selected)				
\/0-	Comics was a constant function control his	0	Carrier wave generation function invalid				
V2 ₂	Carrier wave generation function control bit	1	Carrier wave generation function valid				
1/0	Timer 2 count course calcution hit	0	f(XIN)				
V21	Timer 2 count source selection bit	1	f(XIN)/2				
V20	Timer 2 control bit	0	Stop (Timer 2 state retained)				
V Z0	Timer 2 control bit	1	Operating				

	Pull-down control register PU0	at	reset: 00002	at RAM back-up : state retained W				
PU03	Ports G ₂ , G ₃ pull-down transistor control	0	Pull-down transistor OFF, key-on wakeup invalid					
P 0 0 3	r ON, key-on wakeup valid							
PU02	Ports G ₀ , G ₁ pull-down transistor control	0	Pull-down transistor OFF, key-on wakeup invalid					
P U U 2	bit	1	Pull-down transistor ON, key-on wakeup valid					
PU0 ₁	Port Ex pull down transistor control hit	0	Pull-down transistor OFF, key-on wakeup invalid					
P 001	Port E ₁ pull-down transistor control bit	1	Pull-down transisto	r ON, key-on wakeup valid				
PU00	Port Es pull down transister control bit	0	Pull-down transistor OFF, key-on wakeup invalid					
F 000	Port E ₀ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid					

	Pull-down control register PU1	at	reset: 00002	at RAM back-up : state retained	W			
PU13	Dort D. well down transister control hit	0	Pull-down transistor OFF, key-on wakeup invalid					
PU13	Port D ₇ pull-down transistor control bit	1	Pull-down transisto	Pull-down transistor ON, key-on wakeup valid				
PU12	Dort De well down transister control hit	0	Pull-down transistor OFF, key-on wakeup invalid					
PU12	Port D ₆ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid					
PU1 ₁	Dort Do well down transister control hit	0	Pull-down transistor OFF, key-on wakeup invalid					
PUII	Port D₅ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid					
DI IA -	Dort D. will down transister control hit	0	Pull-down transistor OFF, key-on wakeup invalid					
PU10	Port D ₄ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid					

Note: "W" represents write enabled.

	Pull-down control register PU2	at reset : 00002		at RAM back-up : state retained	W		
DLIO	Dort De well down troncistor control hit	0	Pull-down transistor OFF, key-on wakeup invalid				
PU23	Port D ₃ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid				
DI IO-	Dort De well down troncistor control hit	0	Pull-down transistor OFF, key-on wakeup invalid				
PU22	Port D ₂ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid				
PU21	Port Dunull down transistor central hit	0	Pull-down transistor OFF, key-on wakeup invalid				
PU21	Port D ₁ pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid				
PU20	Port De pull down transister central hit	0	Pull-down transistor OFF, key-on wakeup invalid				
F 020	Port Do pull-down transistor control bit	1	Pull-down transistor ON, key-on wakeup valid				

Lo	Logic operation selection register LO		а	t reset : 002	at RAM back-up : 002	W		
		LO ₁	LO ₀		Logic operation function			
LO ₁	Logic operation selection bits	0	0	Exclusive logic OR operation (XOR)				
		0	1	OR operation (OR)				
LO ₀		1	0	AND operation (AND)				
				Not available				

Note: "W" represents write enabled.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vdd	Supply voltage		-0.3 to 5	V
Vı	Input voltage		-0.3 to VDD+0.3	V
Vo	Output voltage		-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range		-40 to 85	°C
Tstg	Storage temperature range		-65 to 125	°C

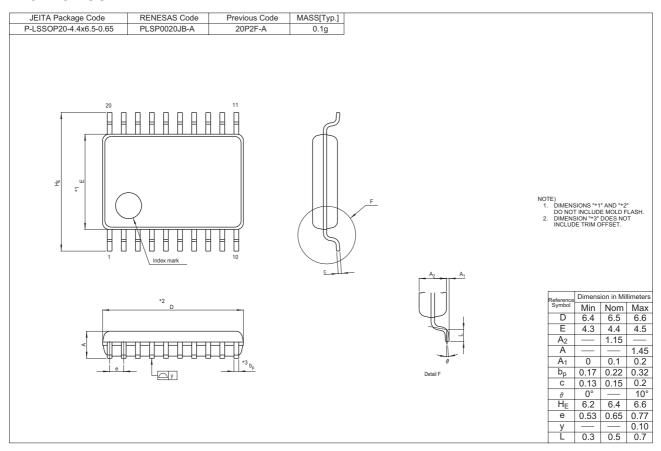
RECOMMENDED OPERATING CONDITIONS

 $(Ta = -40 \text{ to } 85 \text{ °C}, V_{DD} = 1.8 \text{ V to } 3.6 \text{ V}, \text{ unless otherwise noted})$

Symbol			Parameter	Conditions		Limits		Unit
Syllibol			Parameter	Conditions	Min.	Тур.	Max.	Ulli
Vdd	Supply voltage				1.8		3.6	V
VRAM	RAM back-up	voltage	(at RAM back-up mode)		1.1		3.6	V
Vss	Supply voltage	!				0		V
VIH	"H" level input	voltage	Ports D, E, G	VDD = 3.0 V	0.7Vdd		Vdd	V
ViH	"H" level input	voltage	XIN	VDD = 3.0 V	0.8Vpd		Vdd	V
VIL	"L" level input	/oltage	Ports D, E, G	VDD = 3.0 V	0		0.2VDD	V
VIL	"L" level input	/oltage	Xin	VDD = 3.0 V	0		0.2VDD	V
Іон(peak)	· · · · · · · · · · · · · · · · · · ·			VDD = 3.0 V			-4	mA
loн(peak)				VDD = 3.0 V			-24	mA
loн(peak)	"H" level peak	output (current CARR	VDD = 3.0 V			-20	mA
loL(peak)	"L" level peak output current CARR			VDD = 3.0 V			4	mA
Iон(avg)	"H" level average output current Ports D, E ₁ , G			VDD = 3.0 V			-2	mA
Іон(avg)	"H" level average output current Port Eo			VDD = 3.0 V			-12	mA
Iон(avg)	"H" level average output current CARR			VDD = 3.0 V			-10	mA
loL(avg)	"L" level average output current CARR		VDD = 3.0 V			2	mA	
£/V\	clock frequency	when S	STCK = $f(X_{IN})/8$, $f(X_{IN})/4$, $f(X_{IN})/2$ selected	Ceramic resonance			4	MH
f(XIN)	Clock frequency	when	STCK = f(XIN) selected	Ceramic resonance			2	MH
			Reset occurrence		1.1		1.9	
	Detection volta	ge	Reset occurrence	Ta = 25 °C	1.4	1.5	1.56	V
	(before CLVD instruction exec	cution)	5		1.2		2.2	\ \
VDET	Instruction exec	Julion)	Reset release	Ta = 25 °C	1.6	1.7	1.76	
	Detection volta	ge	Reset occurrence/		1.2		2.2	
	(after CLVD instruction exec	cution)	Reset release	Ta = 25 °C	1.6	1.7	1.76	V
TDET	Voltage drop detection circuit low voltage determination time		circuit low voltage	When supply voltage passes the detected voltage at ±50V/s.		0.2	1.2	ms
Tpon	Power on rece	t oirouit	valid naver source riging time	$V_{DD} = 0 \rightarrow 2.2 \text{ V}$ $Ta = -20 \text{ °C to } 85 \text{ °C}$			1	ms
I PON	Power-on reset circuit valid power source rising time			$V_{DD} = 0 \rightarrow 2.2 \text{ V}$ $Ta = -40 \text{ °C to } 85 \text{ °C}$			100	μS

Note: The average output current ratings are the average current value during 100 ms.

ELECTRICAL CHARACTERISTICS


(Ta = -40 °C to 85 °C, V_{DD} = 3 V, unless otherwise noted)

Cumbal	Parameter	Took oon dikinga		Limits		Unit
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vol	"L" level output voltage Port CARR	IoL = 2 mA			0.9	V
Vol	"L" level output voltage Хоит	IoL = 0.2 mA			0.9	V
Vон	"H" level output voltage Ports D, E ₁ , G	Iон = −2 mA	2.1			V
Vон	"H" level output voltage Port Eo	Iон = −12 mA	1.5			V
Vон	"H" level output voltage CARR	Iон = −10 mA	1.0			V
Vон	"H" level output voltage Хоит	Iон = −0.2 mA	2.1			V
lı∟	"L" level input current Ports D, E, G	Vı = Vss			-1	μΑ
Іін	"H" level input current Ports Eo, E1	VI = VDD			1	μΑ
		Pull-down transistor in off-state				
loz	Output current at off-state Ports D, E ₀ , E ₁ , G	Vo = Vss			-1	μΑ
		f(XIN) = 4.0 MHz		400	800	μΑ
	Supply current (when operating)	f(XIN) = 2.0 MHz		350	700	μΑ
	Gappiy current (when operating)	f(XIN) = 1.0 MHz		300	600	μΑ
IDD		f(XIN) = 500 kHz		250	500	μΑ
	Supply current (at RAM back-up)			1	3	μΑ
	Ouppiy Guirent (at ItAnii back-up)	Ta = 25 °C		0.1	0.5	μΑ
Rрн	Pull-down resistor value Ports D, G, E	VI = 3V	75	150	300	kΩ
Rosc	Feedback resistor value between XIN-XOUT	VI = 3 V	700		3200	kΩ

BASIC TIMING DIAGRAM

Parameter	Machine cycle Pin name	Mi		М	i+1	
System clock	STCK					
Ports D, E, G output	D ₀ –D ₇ ,E ₀ ,E ₁ G ₀ –G ₃	X				X
Ports D, E, G input	D ₀ -D ₇ E ₀ -E ₂ G ₀ -G ₃		X			

PACKAGE OUTLINE

REVISION HISTORY 4286 Group Datasheet

Rev.	Date	Description		
		Page	Summary	
1.00	Aug. 06, 2008	-	First edition issued.	

All trademarks and registered trademarks are the property of their respective owners.

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect to the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the development of the development of the development of the procedure of the development of the de

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510