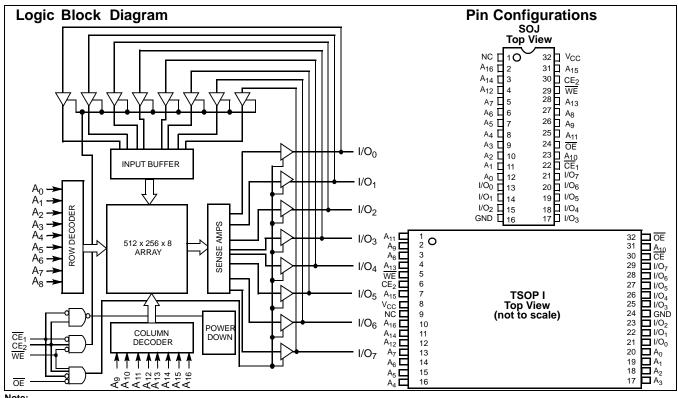


128K x 8 Static RAM

Features

- · High speed
 - $t_{AA} = 12 \text{ ns}$
- · Low active power
- 495 mW (max. 12 ns)
- · Low CMOS standby power
 - 55 mW (max.) 4 mW
- 2.0V Data Retention
- · Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with \overline{CE}_1 , CE_2 , and \overline{OE} options


Functional Description[1]

The CY7C109BN/CY7C1009BN is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable ($\overline{\text{CE}}_1$), an active HIGH Chip Enable ($\overline{\text{CE}}_2$), an active LOW Output Enable ($\overline{\text{OE}}$), and three-state drivers. Writing to the device is accomplished by taking Chip Enable One ($\overline{\text{CE}}_1$) and Write Enable ($\overline{\text{WE}}$) inputs LOW and Chip Enable Two ($\overline{\text{CE}}_2$) input HIGH. Data on the eight I/O pins (I/O $_0$ through I/O $_7$) is then written into the location specified on the address pins ($\overline{\text{A}}_0$ through $\overline{\text{A}}_{16}$).

Reading from the device is accomplished by taking Chip Enable One ($\overline{\text{CE}_1}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable ($\overline{\text{WE}}$) and Chip Enable Two ($\overline{\text{CE}_2}$) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (CE_1 HIGH or CE_2 LOW), the outputs are disabled (OE HIGH), or during a write operation (CE_1 LOW, CE_2 HIGH, and WE LOW).

The CY7C109BN is available in standard 400-mil-wide SOJ and 32-pin TSOP type I packages. The CY7C1009BN is available in a 300-mil-wide SOJ package. The CY7C1009BN and CY7C109BN are functionally equivalent in all other respects.

Note:

1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

Selection Guide

		7C109B-12 7C1009B-12	7C109B-15 7C1009B-15	7C109B-20 7C1009B-20	Unit
Maximum Access Time		12	15	20	ns
Maximum Operating Current		90	80	75	mA
Maximum CMOS Standby Current		10	10	10	mA
	L	2	2	2	mA

ser guide-	Maximum Ratings Above which the useful life may be impaired. For user guideines, not tested.)
+150°C	Storage Temperature65°C to +150°C
o +125°C	Ambient Temperature with Power Applied–55°C to +125°C
to +7.0V	Supply Voltage on V_{CC} to Relative $GND^{[2]}$ $-0.5V$ to $+7.0V$
_{CC} + 0.5V	OC Voltage Applied to Outputs n High Z State ^[2] 0.5V to V _{CC} + 0.5V
0 +150°C 0 +125°C to +7.0V	Storage Temperature—65°C to +150°C Ambient Temperature with Power Applied—55°C to +125°C Supply Voltage on V _{CC} to Relative GND ^[2] –0.5V to +7.0V

Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	.>200 mA

Operating Range

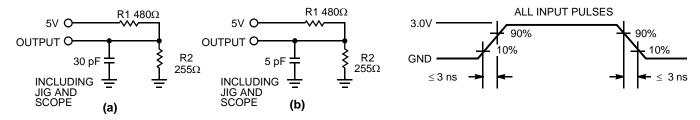
Ambient Temperature		v _{cc}
Commercial	0°C to +70°C	5V ± 10%
Industrial	-40°C to +85°C	5V ± 10%

Electrical Characteristics Over the Operating Range

DC Input Voltage $^{[2]}$-0.5V to V_{CC} + 0.5V

					9BN-12 9BN-12		7C109BN-15 7C1009BN-15		7C109BN-20 7C1009BN-20	
Parameter	Description	Test Conditions	-	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ m}$	nΑ	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 m	ıΑ		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	$V_{CC} + 0.3$	2.2	$V_{CC} + 0.3$	2.2	$V_{CC} + 0.3$	V
V _{IL}	Input LOW Voltage ^[2]			-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Leakage Current	GND ≤ V _I ≤ V _{CC}		-1	+1	-1	+1	-1	+1	μΑ
I _{OZ}	Output Leakage Current	GND ≤ V _I ≤ V _{CC} , Output Disabled		- 5	+5	- 5	+5	- 5	+5	μΑ
I _{OS}	Output Short Circuit Current ^[3]	$V_{CC} = Max., V_{OUT} = GND$			-300		-300		-300	mA
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max., I_{OUT} = 0 mA,$ $f = f_{MAX} = 1/t_{RC}$			90		80		75	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	Max. V_{CC} , $\overline{CE}_1 \ge V_{IH}$ or $CE_2 \le V_{IL}$, $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$			45		40		30	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,			10		10		10	mA
	Power-Down Current —CMOS Inputs	$CE_1 \ge V_{CC} - 0.3V$, or $CE_2 \le 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$, $f = 0$	L		2		2		2	mA

Capacitance^[4]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	9	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF

Notes:

- Minimum voltage is -2.0V for pulse durations of less than 20 ns.
 Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
 Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

THÉVENIN EQUIVALENT Equivalent to: 167Ω 1.73V **OUTPUT O**

Switching Characteristics^[5] Over the Operating Range

			BN-12 9BN-12		BN-15 9BN-15		BN-20 9BN-20	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle	,				•		•	
t _{RC}	Read Cycle Time			15		20		ns
t _{AA}	Address to Data Valid		12		15		20	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE ₁ LOW to Data Valid, CE ₂ HIGH to Data Valid		12		15		20	ns
t _{DOE}	OE LOW to Data Valid		6		7		8	ns
t _{LZOE}	OE LOW to Low Z	0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		6		7		8	ns
t _{LZCE}	CE₁ LOW to Low Z, CE₂ HIGH to Low Z ^[7]			3		3		ns
t _{HZCE}	CE ₁ HIGH to High Z, CE ₂ LOW to High Z ^[6, 7]		6		7		8	ns
t _{PU}	CE ₁ LOW to Power-Up, CE ₂ HIGH to Power-Up	0		0		0		ns
t _{PD}	CE ₁ HIGH to Power-Down, CE ₂ LOW to Power-Down		12		15		20	ns
Write Cycle	[8]						•	
t _{WC}	Write Cycle Time ^[9]	12		15		20		ns
t _{SCE}	CE ₁ LOW to Write End, CE ₂ HIGH to Write End	10		12		15		ns
t _{AW}	Address Set-Up to Write End	10		12		15		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	10		12		12		ns
t _{SD}	Data Set-Up to Write End	7		8		10		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	3		3		3		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		6		7		8	ns

Notes:

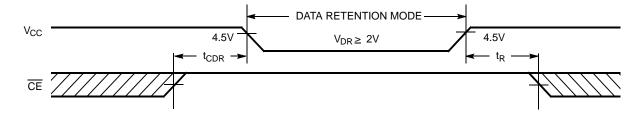
^{5.} Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.

to_(/ToH and 30-pr load capacitance.

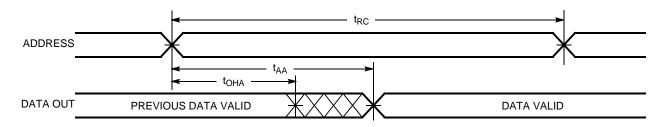
6. t_{HZOE}, t_{HZOE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.

7. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZOE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.

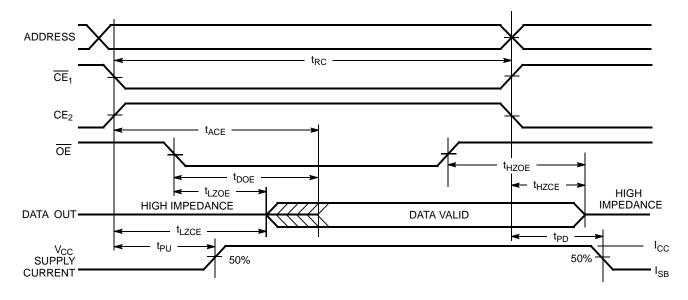
8. The internal write time of the memory is defined by the overlap of CE₁ LOW, CE₂ HIGH, and WE LOW. CE₁ and WE must be LOW and CE₂ HIGH to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the


^{9.} The minimum write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

Data Retention Characteristics Over the Operating Range (Low Power version only)


Parameter	Description	Conditions	Min.	Max	Unit
V_{DR}	V _{CC} for Data Retention	No input may exceed V _{CC} + 0.5V	2.0		V
I _{CCDR}	Data Retention Current	$\frac{V_{CC}}{CE_1} = V_{DR} = 2.0V,$ $CE_1 \ge V_{CC} - 0.3V \text{ or } CE_2 \le 0.3V,$		150	μΑ
t _{CDR}	Chip Deselect to Data Retention Time	$V_{\text{IN}} \ge V_{\text{CC}} - 0.3V \text{ or } V_{\text{IN}} \le 0.3V$	0		ns
t _R	Operation Recovery Time		200		μS

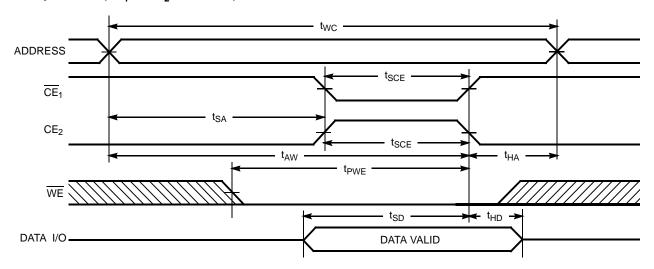
Data Retention Waveform



Switching Waveforms

Read Cycle No. 1^[10, 11]

Read Cycle No. 2 (OE Controlled)[11, 12]



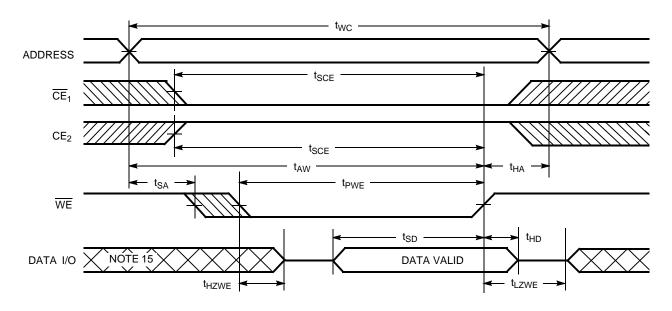
- Notes:
 10. <u>De</u>vice is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{|L}$, $CE_2 = V_{|H}$.
 11. \overline{WE} is HIGH for read cycle.
 12. Address valid prior to or coincident with \overline{CE}_1 transition LOW and CE_2 transition HIGH.

Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\text{CE}}_1$ or CE_2 Controlled)[13, 14]

Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[13, 14]

^{13.} Data I/O is high impedance if $\overline{OE} = V_{IH}$.


14. If \overline{CE}_1 goes HIGH or \overline{CE}_2 goes LOW simultaneously with \overline{WE} going HIGH, the output remains in a high-impedance state.

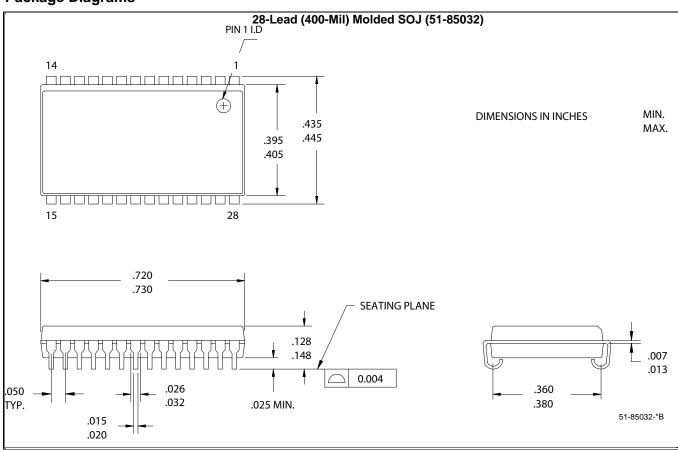
15. During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled, OE LOW)[14]

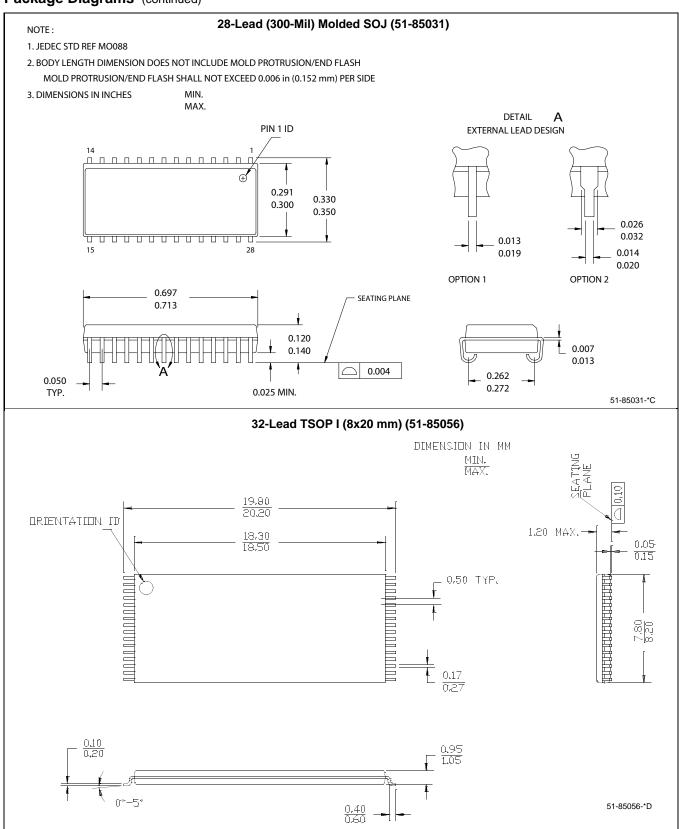
Truth Table

CE ₁	CE ₂	OE	WE	I/O ₀ –I/O ₇	Mode	Power
Н	Х	Х	Х	High Z	Power-Down	Standby (I _{SB})
Х	L	Х	Х	High Z	Power-Down	Standby (I _{SB})
L	Н	L	Н	Data Out	Read	Active (I _{CC})
L	Н	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})



Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
12	CY7C109BN-12VC	51-85032	32-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1009BN-12VC	51-85031	32-Lead (300-Mil) Molded SOJ	
	CY7C109BN-12ZC	51-85056	32-Lead TSOP Type I	
	CY7C109BN-12ZXC	51-85056	32-Lead TSOP Type I (Pb-free)	
15	CY7C109BNL-15VC	51-85032	32-Lead (400-Mil) Molded SOJ	Commercial
	CY7C109BN-15VC	51-85032	32-Lead (400-Mil) Molded SOJ	
	CY7C1009BN-15VC	51-85031	32-Lead (300-Mil) Molded SOJ	
	CY7C109BN-15ZC	51-85056	32-Lead TSOP Type I	
	CY7C109BN-15ZXC	51-85056	32-Lead TSOP Type I (Pb-free)	
	CY7C109BN-15VI	51-85032	32-Lead (400-Mil) Molded SOJ	Industrial
	CY7C1009BN-15VI	51-85031	32-Lead (300-Mil) Molded SOJ	
20	CY7C109BN-20VC	51-85032	32-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1009BN-20VC	51-85031	32-Lead (300-Mil) Molded SOJ	
	CY7C109BN-20VI	51-85032	32-Lead (400-Mil) Molded SOJ	Industrial
	CY7C109BN-20ZC	51-85056	32-Lead TSOP Type I	Commercial
	CY7C109BN-20ZXC	51-85056	32-Lead TSOP Type I (Pb-free)	


Please contact local sales representative regarding availability of these parts

Package Diagrams

Package Diagrams (continued)

All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY7C109BN/CY7C1009BN 128K x 8 Static RAM Document Number: 001-06430						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	423847	See ECN	NXR	New Data Sheet		