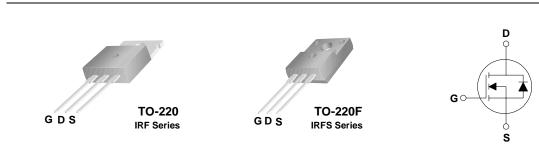
November 2001

IRF830B/IRFS830B

FAIRCHILD SEMICONDUCTOR

IRF830B/IRFS830B **500V N-Channel MOSFET**


General Description

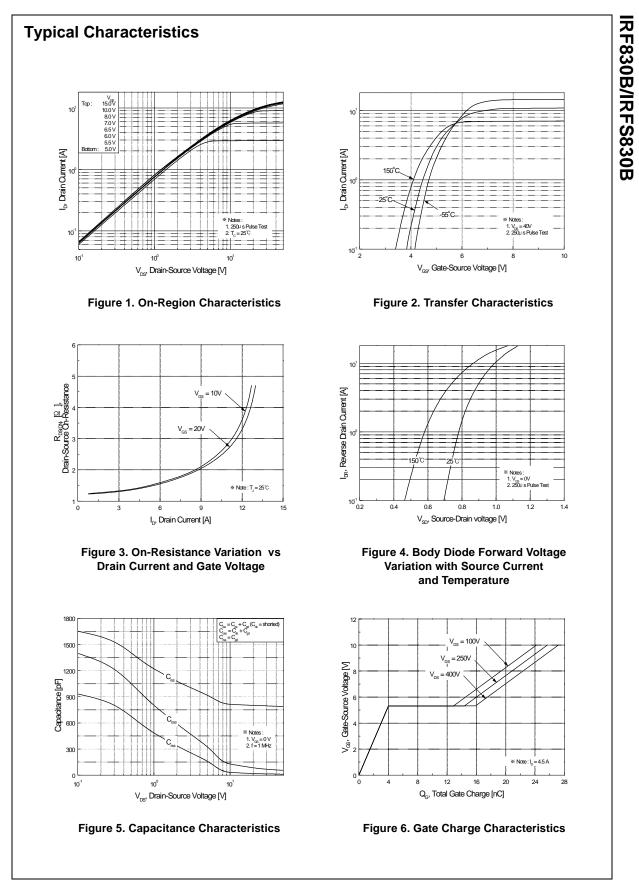
These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supplies, power factor correction and electronic lamp ballasts based on half bridge.

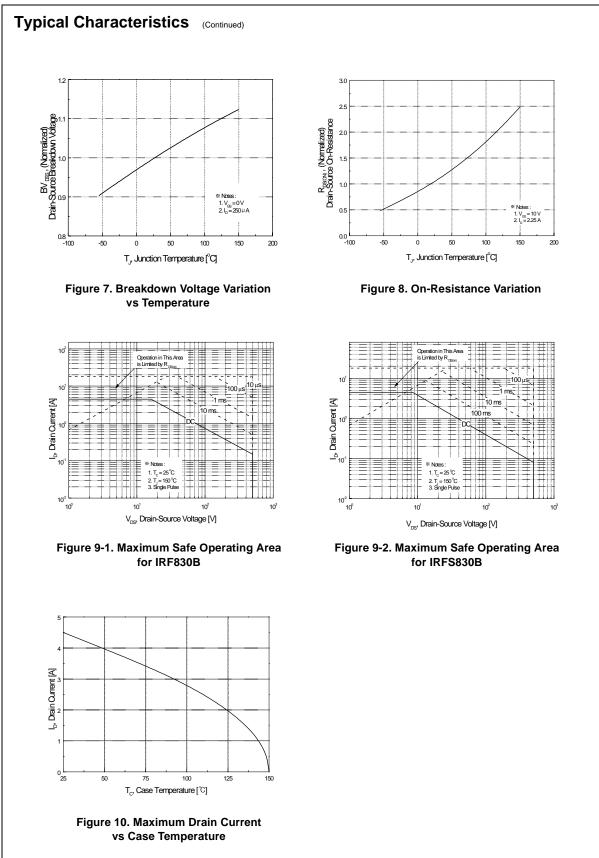
Features

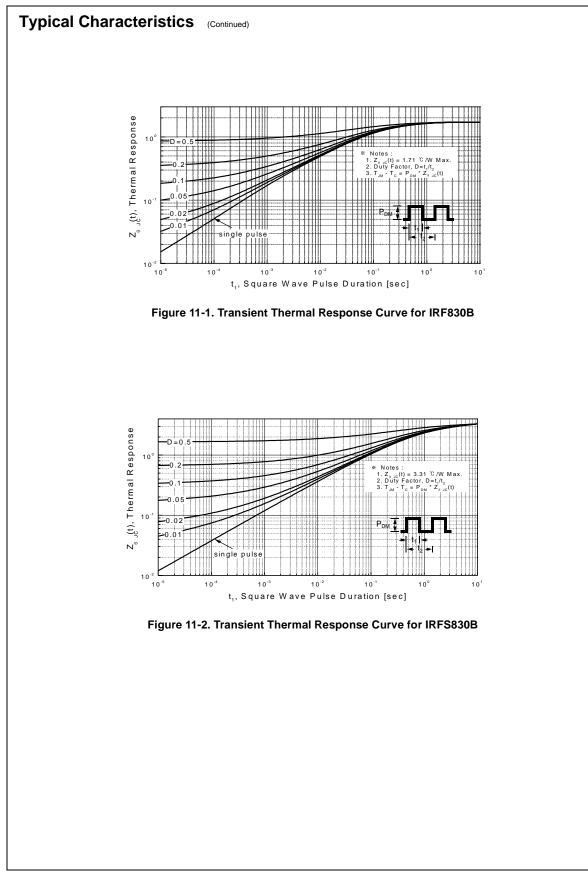
- + 4.5A, 500V, $R_{DS(on)}$ = 1.5 Ω @V_{GS} = 10 V + Low gate charge (typical 27 nC)
- Low Crss (typical 17 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

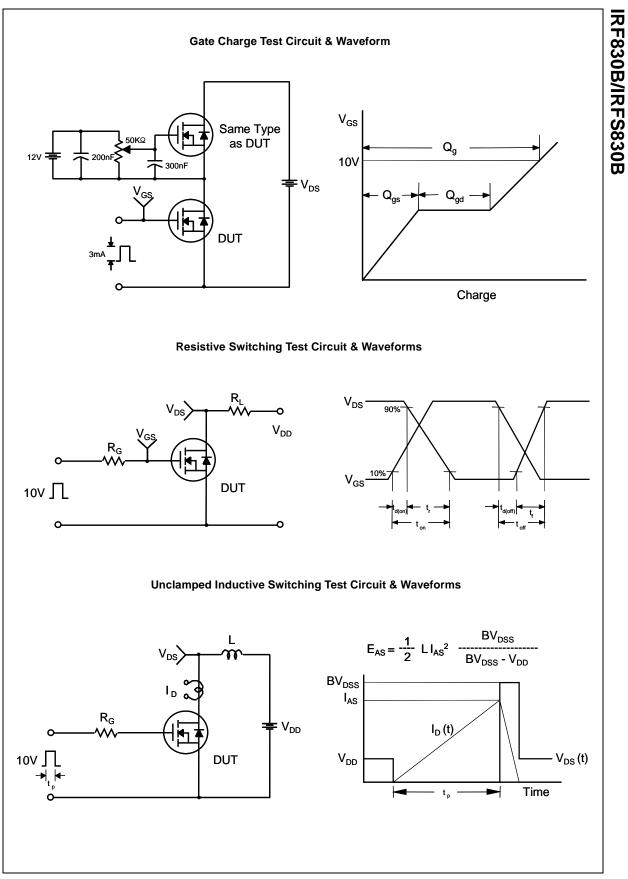
Absolute Maximum Ratings T_c = 25°C unless otherwise noted

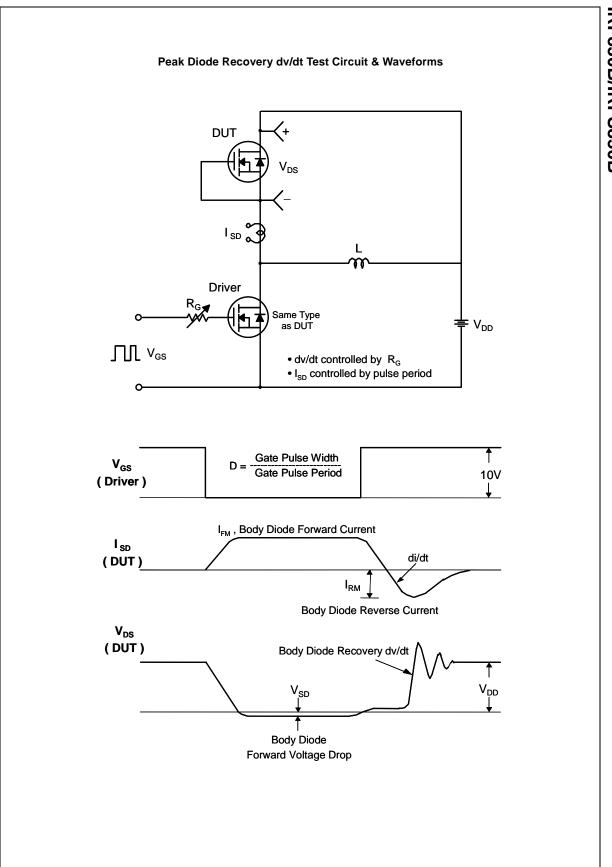

Symbol	Parameter	IRF830B	IRFS830	Units	
V _{DSS}	Drain-Source Voltage		500		V
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)		4.5	4.5 *	А
	- Continuous (T _C = 100°C)		2.9	2.9 *	A
I _{DM}	Drain Current - Pulsed	(Note 1)	18	18 *	А
V _{GSS}	Gate-Source Voltage	± 30		V	
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	270		mJ
I _{AR}	Avalanche Current	(Note 1)	4.5		Α
E _{AR}	Repetitive Avalanche Energy	(Note 1)	7.3		mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		5.5		V/ns
PD	Power Dissipation (T _C = 25°C) - Derate above 25°C		73	38	W
			0.58	0.3	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150		°C
ΤL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		30	00	°C

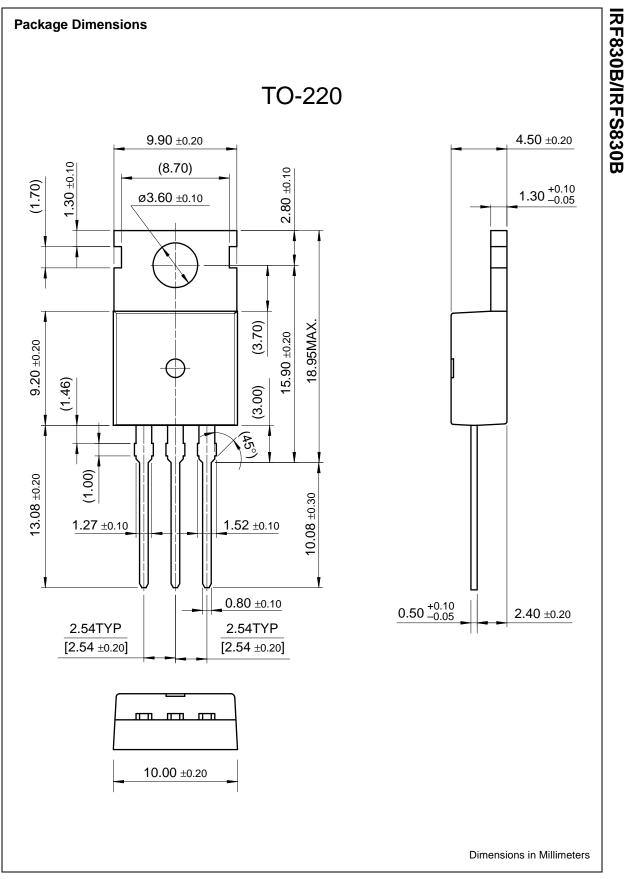
* Drain current limited by maximum junction temperature

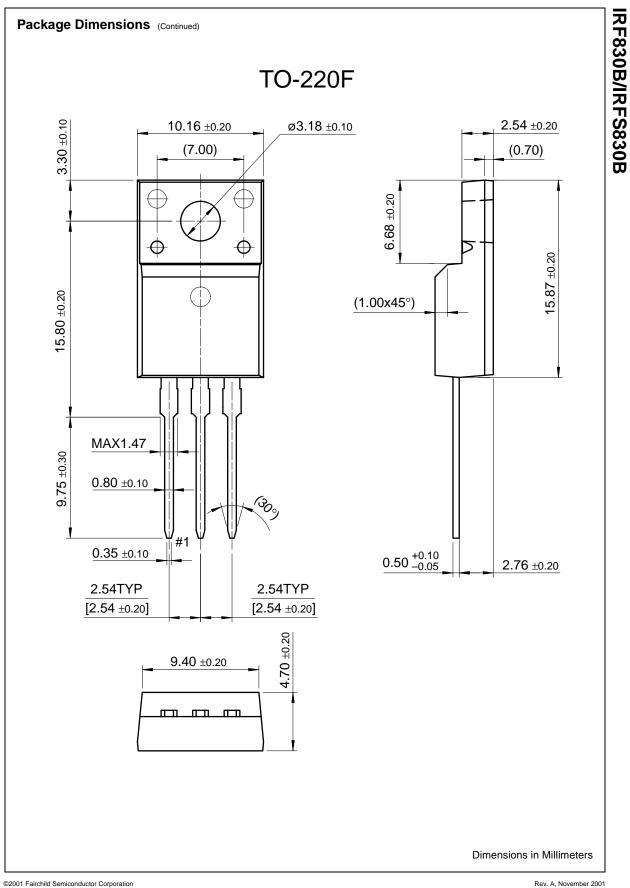

Thermal Characteristics


Symbol	Parameter	IRF830B	IRFS830B	Units
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case Max.	1.71	3.31	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink Typ.	0.5		°C/W
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient Max.	62.5	62.5	°C/W


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA	500			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25°C		0.54		V/°C
DSS		$V_{DS} = 500 \text{ V}, V_{GS} = 0 \text{ V}$			10	μΑ
	Zero Gate Voltage Drain Current	$V_{DS} = 400 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$			100	μΑ
GSSF	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
GSSR	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			-100	nA
On Cha	racteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 2.25 \text{ A}$		1.16	1.5	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 40 \text{ V}, \text{ I}_{D} = 2.25 \text{ A}$ (Note 4)		4.2		S
Dvnam	ic Characteristics		1		1	
C _{iss}	Input Capacitance			800	1050	pF
C _{OSS}	Output Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		76	100	pF
C _{rss}	Reverse Transfer Capacitance			17	22	pF
d(on)	Turn-On Delay Time	V _{DD} = 250 V, I _D = 4.5 A,		15	40	ns
t _r	Turn-On Rise Time	$V_{DD} = 250 \text{ V}, \text{ I}_{D} = 4.5 \text{ A},$ R _G = 25 Ω		40	90	ns
t _{d(off)}	Turn-Off Delay Time			85	180	ns
^t f	Turn-Off Fall Time	(Note 4, 5)		45	100	ns
Qg	Total Gate Charge	V _{DS} = 400 V, I _D = 4.5 A,		27	35	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10 V		4.0		nC
Q _{gd}	Gate-Drain Charge	(Note 4, 5)		12		nC
Drain-S	ource Diode Characteristics ar	nd Maximum Ratings				
s	Maximum Continuous Drain-Source Dic				4.5	А
ISM	Maximum Pulsed Drain-Source Diode F	Forward Current			18	А
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = 4.5 A$			1.4	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 V, I_{S} = 4.5 A,$		305		ns
Q _{rr}	Reverse Recovery Charge	$dI_{F} / dt = 100 \text{ A}/\mu \text{s} $ (Note 4)		2.6		μC
L = 24mH, I, I _{SD} \leq 4.5A, Pulse Test :	ating : Pulse width limited by maximum junction temper $A_S = 4.5A$, $V_{DD} = 50V$, $R_G = 25 \Omega$, Starting $T_J = 25^{\circ}C$ d/dt $\leq 300A/\mu$ s, $V_{DD} \leq BV_{DSS}$, Starting $T_J = 25^{\circ}C$ Pulse width $\leq 300 \mu$ s, Duty cycle $\leq 2\%$ ordenendent of concrition temperature	rature				
Essentially i	ndependent of operating temperature					


©2001 Fairchild Semiconductor Corporation





©2001 Fairchild Semiconductor Corporation

©2001 Fairchild Semiconductor Corporation

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM $CROSSVOLT^{TM}$ DenseTrenchTM DOMETM EcoSPARKTM E^2CMOS^{TM} EnSignaTM FACTTM FACT Quiet SeriesTM FAST[®] FASTr[™] FRFET[™] GlobalOptoisolator[™] GTO[™] HiSeC[™] ISOPLANAR[™] LittleFET[™] MicroFET[™] MicroPak[™] MICROWIRE[™]

OPTOLOGIC[™] OPTOPLANAR[™] PACMAN[™] POP[™] Power247[™] Power247[™] PowerTrench[®] QFET[™] QS[™] QT Optoelectronics[™] Quiet Series[™] SLIENT SWITCHER[®] SMART STARTTMVCXTMSTAR*POWERTMStealthTMSuperSOTTM-3SuperSOTTM-6SuperSOTTM-6SyncFETTMTruTranslationTMTinyLogicTMUHCTMUHCTMUltraFET®

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Product Folder - Fairchild P/N	RFS830B - 500V N-Channel B-FE1 / Substitute of IRFS830	J & IKF5850A	
Fairchild Semiconductor		s <mark>SEARCH <u>Para</u></mark>	ametric Cross Reference
		space Pro	duct Folders and Applica
find products	<u>Home</u> >> <u>Find products</u> >>		
Products groups Analog and Mixed Signal	IRFS830B 500V N-Channel B-FET / Substitute of IRFS830 & IRFS830A		Related Links <u>Request samples</u>
<u>Discrete</u> <u>Interface</u> <u>Logic</u> <u>Microcontrollers</u> Non-Volatile	Contents <u>General description Features Product</u> <u>status/pricing/packaging Application notes</u>	Datasheet Download this datasheet PDF	Dotted line How to order products Dotted line Product Change Notices (PCNs) Dotted line
<u>Memory</u> Optoelectronics <u>Markets and</u> applications	General description These N-Channel enhancement mode power	e-mail this datasheet	Support Dotted line Distributor and field sales representatives Dotted line Quality and reliability
<u>New products</u> <u>Product selection and</u> <u>parametric search</u> <u>Crosse reference</u>	field effect transistors are produced using Fairchild's proprietary, planar, DMOS technology.	This page Print version	Dotted line Design tools
Cross-reference search technical information	This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and		
buy products	 withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power 		
technical support	supplies, power factor correction and electronic- lamp ballasts based on half bridge.	-	
my Fairchild company	-		
	back to top		

Features

- 4.5A, 500V
 - $R_{DS(on)} = 1.5\Omega @V_{GS} = 10 V$
- Low gate charge (typical 27 nC)
- Low Crss (typical 17 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method
			,	,	

IRFS830B	Full Production	\$0.66	<u>TO-220F</u>	3	RAIL
IRFS830BT	Full Production	\$0.66	<u>TO-220F</u>	3	RAIL

* 1,000 piece Budgetary Pricing

back to top

Application notes

AN-4121: AN-4121 Design of Power Factor Correction Circuit Using FAN7527B (124 K) Jul 19, 2002

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor