DUAL 4-INPUT MULTIPLEXER

The MC54/74F153 is a high-speed Dual 4-Input Multiplexer with common select inputs and individual enable inputs for each section. It can select two lines of data from four sources. The two buffered outputs present data in the true (non-inverted) form. In addition to multiplexer operation, the F153 can generate any two functions of three variables.

CONNECTION DIAGRAM DIP (TOP VIEW)

LOGIC DIAGRAM

MC54/74F153

DUAL 4-INPUT MULTIPLEXER
FAST ${ }^{\text {TM }}$ SHOTTKY TTL

D SUFFIX SOIC CASE 751B-03

ORDERING INFORMATION

```
MC54FXXXJ Ceramic
MC74FXXXN Plastic
MC74FXXXD
```

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
$V_{\text {CC }}$	Supply Voltage	54, 74	4.5	5.0	5.5	V
T_{A}	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
IOH	Output Current - High	54, 74			-1.0	mA
IOL	Output Current - Low	54, 74			20	mA

MC54/74F153

FUNCTIONAL DESCRIPTION

The MC54/74F153 is a Dual 4-Input Multiplexer. It can select two bits of data from up to four sources under the control of the common Select Inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The two 4 -input multiplexer circuits have individual active LOW Enables (\bar{E}_{a}, \bar{E}_{b}) which can be used to strobe the outputs independently. When the Enables ($\overline{\mathrm{E}}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$) are HIGH, the corresponding outputs (Z_{a}, $\left.Z_{b}\right)$ are forced LOW.

The F153 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two Select Inputs. The logic equations for the outputs are shown below:

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{a}}= & \overline{\mathrm{E}}_{\mathrm{a}} \cdot\left(\mathrm{I}_{0 \mathrm{a}} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{a}} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{0}+\right. \\
& \left.\mathrm{I}_{2 \mathrm{a}} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3 \mathrm{a}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}\right) \\
\mathrm{Z}_{\mathrm{b}}= & \overline{\mathrm{E}}_{\mathrm{b}} \cdot\left(\mathrm{I}_{0 \mathrm{~b}} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{~b}} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{0}+\right. \\
& \left.\mathrm{I}_{2 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}\right)
\end{aligned}
$$

The F153 can be used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the Select Inputs. A less obvious application is as a function generator. The F153 can generate two functions of three variables. This is useful for implementing highly irregular random logic.

FUNCTION TABLE

Select Inputs							
Inputs (a or b)						Output	
$\mathrm{S}_{\mathbf{0}}$	$\mathrm{S}_{\mathbf{1}}$	E	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{2}}$	$\mathrm{I}_{\mathbf{3}}$	Z
X	X	H	X	X	X	X	L
L	L	L	L	X	X	X	L
L	L	L	H	X	X	X	H
H	L	L	X	L	X	X	L
H	L	L	X	H	X	X	H
L	H	L	X	X	L	X	L
L	H	L	X	X	H	X	H
H	H	L	X	X	X	L	L
H	H	L	X	X	X	H	H

H = HIGH Voltage Level; L = LOW Voltage Level; X = Don't Care
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter	Limits			Unit	Test Conditions	
		Min	Typ	Max			
V_{IH}	Input HIGH Voltage	2.0			V	Guaranteed In	H Voltage
VIL	Input LOW Voltage			0.8	V	Guaranteed In	W Voltage
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$,	MIN
V_{OH}	Output HIGH Voltage	2.5			V	$\mathrm{I} \mathrm{OL}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$
		2.7			V	$\mathrm{I} \mathrm{OL}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
V_{OL}	Output LOW Voltage			0.5	V	$\mathrm{IOL}=20 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
IIH	Input HIGH Current			20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}, \mathrm{~V}$	
				0.1	mA	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}$	
IIL	Input LOW Current			-0.6	mA	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {C }}$	
Ios	Output Short Circuit Current (Note 2)	-60		-150	mA	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {c }}$	MAX
ICC	Power Supply Current			20	mA	$\mathrm{V}_{\text {IN }}=\mathrm{GND}, \mathrm{V}_{\mathrm{C}}$	

[^0]
MC54/74F153

AC CHARACTERISTICS

Symbol	Parameter	54/74F		54F		74F		Unit
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Max	Min	Max	Min	Max	
tplH	Propagation Delay	4.5	10.5	4.5	14	4.5	12	ns
tPHL	S_{n} to Z_{n}	3.5	9.0	3.5	11	3.5	10.5	
tplH	Propagation Delay	4.5	9.0	4.5	11.5	4.5	10.5	ns
tPHL	\bar{E}_{n} to Z_{n}	3.0	7.0	2.5	9.0	2.5	8.0	
tplH	Propagation Delay	3.0	7.0	2.5	9.0	3.0	8.0	ns
tPHL	I_{n} to Z_{n}	3.0	6.5	2.5	8.0	2.5	7.5	

[^0]: NOTES:

 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 2. Not more than one output should be shorted at a time, nor for more than 1 second.
