

MICROCIRCUIT DATA SHEET

CN54F109-X REV 0A0

Original Creation Date: 06/25/97 Last Update Date: 07/08/97 Last Major Revision Date: 06/25/97

DUAL JK POSITIVE EDGE-TRIGGERED FLIP-FLOP

General Description

The F109 consists of two high-speed, completely independent transition clocked $J\overline{K}$ flip-flops. The clocking operation is independent of rise and fall times of the clock waveform. The $J\overline{K}$ design allows operation as a D flip-flop (refer to F74 data sheet) by connecting the J and \overline{K} inputs.

Asynchronous Inputs:

LOW input to $\overline{\text{CD}}$ sets Q to HIGH level LOW input to $\overline{\text{CD}}$ sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on $\overline{\text{CD}}$ and $\overline{\overline{\text{SD}}}$ makes both Q and $\overline{\overline{\text{Q}}}$ HIGH

Industry Part Number

NS Part Numbers

54F109DC

Prime Die

M109

Processing	Subgrp	Description	Temp ($^{\circ}$ C)
Quality Conformance Inspection	1 2 3 4 5 6 7 8A 8B 9 10	Static tests at Static tests at Static tests at Dynamic tests at Dynamic tests at Dynamic tests at Tunctional tests at Functional tests at Functional tests at Switching tests at Switching tests at Switching tests at	+25 +70 0 +25 +70 0 +25 +70 0 +25 +70 0

Features

- Guaranteed 4000V minimum ESD protection.

(Absolute Maximum Ratings)

(Note 1)

Storage Temperature -65 C to +150 C Ambient Temperature under Bias -55 C to +125 C Junction Temperature under Bias -55 C to +175 C Vcc Pin Potential to Ground Pin -0.5V to +7.0VInput Voltage (Note 2) -0.5V to +7.0VInput Current (Note 2) -30 mA to +5.0mA Voltage Applied to Output in HIGH State (with Vcc=0V) $-0.5 \mbox{V}$ to \mbox{Vcc} Standard Output TRI-STATE Output -0.5V to +5.5VCurrent Applied to Output in LOW State (Max) twice the rated Iol(mA) ESD Last Passing Voltage (Min) 4000V

Note 1: Absolute Maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature Commercial 0 C to +70 C $\,$

Supply Voltage

Commercial +4.5V to +5.5V

Electrical Characteristics

DC PARAMETER

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: VCC 4.5V to 5.5V, Temp range: OC to +70C

SYMBOL PARAMETER		CONDITIONS		PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
VIH	Input HIGH Voltage	Recognized as a HIGH Signal	1	INPUTS	2.0		V	1, 2,
VIL	Input LOW Voltage	Recognized as a LOW Signal	1	INPUTS		0.8	V	1, 2,
VCD	Input Clamp Diode Voltage	VCC=4.5V, IIN=-18mA	2, 3	INPUTS		-1.2	V	1, 2,
VOH	Output HIGH Voltage	VCC=4.5V, IOH=-1.0mA	2, 3	OUTPUTS	2.5		V	1, 2,
		VCC=4.75V, IOH=-1.0mA	2, 3	OUTPUTS	2.7		V	1, 2,
VOL	Output LOW Voltage	VCC=4.5V, IOL=20mA	2, 3	OUTPUTS		0.5	V	1, 2,
IIH	Input HIGH Current	VCC=5.5V, VIN=2.7V	2, 3	INPUTS		5.0	uA	1, 2,
IBVI	Input HIGH Current Breakdown Test	VCC=5.5V, VIN=7.0V	2, 3	INPUTS		7.0	uA	1, 2,
ICEX	Output HIGH Leakage Current	VCC=5.5V, VOUT = VCC	2, 3	OUTPUTS		100	uA	1, 2,
VID	Input Leakage Test	VCC = 0.0V, IID = 1.9uA, All other pins grounded	2, 3	INPUTS	4.75		V	1, 2,
IOD	Output Leakage Circuit Current	VCC = 0.0V, VIOD = 150mV, All other pins grounded	2, 3	OUTPUTS		4.75	uA	1, 2,
IIL	Input LOW Current	VCC=5.5V, VIN=0.5V	2, 3	Jn, Kn		-0.6	mA	1, 2,
		VCC=5.5V, VIN = 0.5V	2, 3	$\overline{\mathbb{C}}\mathbb{D}\mathbb{n}$, $\overline{\mathbb{S}}\mathbb{D}\mathbb{n}$		-1.8	mA	1, 2,
IOS	Output Short Circuit Current	VCC=5.5V, VOUT = 0V	2, 3	OUTPUTS	-60	-150	mA	1, 2,
ICC	Power Supply Current	VCC=5.5V, CP = 0V	2, 3	VCC		17.0	mA	1, 2,

Electrical Characteristics

AC PARAMETER

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: CL=50pf, RL=500 OHMS, TR=2.5ns, TF=2.5ns, SEE AC FIGS. Temp Range: 0C to +70C

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
fMAX	Maximum Clock Frequency	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	4		100		MHZ	9
			4		90		MHZ	10, 11
tpLH(1)	Propagation Delay	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	2, 3	CPn_to Qn/Qn	3.8	7.0	ns	9
			2, 3	CPn_to Qn/Qn	3.8	8.0	ns	10, 11
tpHL(1)	Propagation Delay	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	2, 3	CPn to Qn/Qn	4.4	8.0	ns	9
			2, 3	CPn_to Qn/Qn	4.4	9.2	ns	10, 11
tpLH(2)	Propagation Delay CDn/SDn to Qn/Qn	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	2, 3		3.2	7.0	ns	9
tpLH(2)	Propagation Delay CDn/SDn to Qn/Qn	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	2, 3		3.2	8.0	ns	10, 11
tpHL(2)	Propagation Delay CDn/SDn to Qn/Qn	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	2, 3		3.5	9.0	ns	9
tpHL(2)	Propagation Delay CDn/SDn to Qn/Qn	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	2, 3		3.5	10.5	ns	10, 11
ts(H)	Setup Time (HIGH)	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	4	$Jn/\overline{K}n$ to CPn	3.0		ns	9, 10, 11
ts(L)	Setup Time (LOW)	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	4	Jn/Kn to CPn	3.0		ns	9, 10, 11
th(H/L)	Hold Time (HIGH or LOW)	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	4	Jn/Kn to CPn	1.0		ns	9, 10, 11
tw(H)	Pulse Width (HIGH)	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	4	CPn	4.0		ns	9, 10, 11
tw(L)	Pulse Width (LOW)	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	4	CPn	5.0		ns	9, 10, 11
tw (L)	Pulse Width (LOW)	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	4	⊡Dn or SDn	4.0		ns	9, 10, 11
tREC	Recovery Time	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	4	CDn/SDn to CP	2.0		ns	9, 10, 11

Note 1: Note 2:

Guaranteed by applying specific input condition and testing VOL & VOH.

Screen tested 100% on each device at +75C temperature only, subgroups A2 & A10.

Sample tested (Method 5005, table 1) on each MFG. lot at +75C temperature only, Note 3:

subgroups A2 & A10. Note 4: Guaranteed but not tested.

Revision History

Rev	ECN #	Rel Date	Originator	Changes
0A0	M0001686	07/08/97		Legal issue with Fairchild, due to the Fairchild/National split, is forcing the change from CN74F which is 'Fairchilds' product code to CN54F which is 'Nationals' product code.