

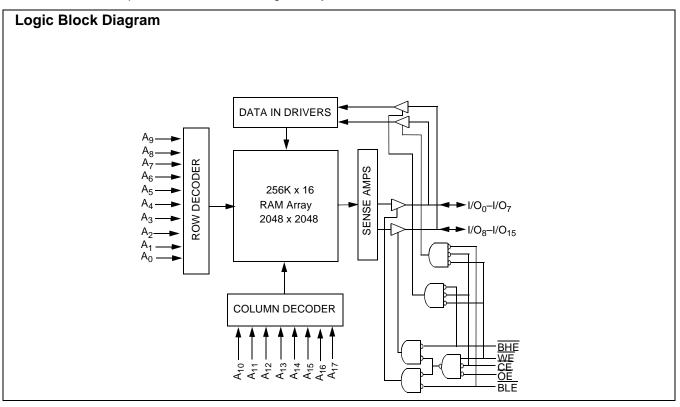
CY62146CV18 MoBL2™

256K x 16 Static RAM

Features

- High Speed
 - $-\,55$ ns and 70 ns availability
- Low voltage range:
 - 1.65V–1.95V
- Pin Compatible with CY62146BV18
- Ultra-low active power
 - Typical Active Current: 0.5 mA @ f = 1 MHz
- Typical Active Current: 2 mA @ f = f_{max} (70 ns speed)
- Low standby power
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features
- Automatic power-down when deselected
- CMOS for optimum speed/power

Functional Description

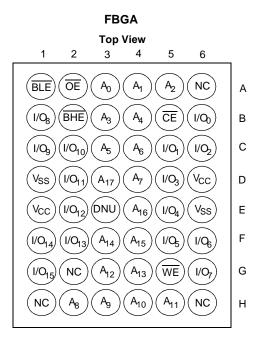

The CY62146CV18 is a high-performance CMOS static RAM organized as 256K words by 16 bits. These devices feature advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life[™] (MoBL[™]) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly

reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected (\overline{CE} HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when deselected (\overline{CE} HIGH), outputs are disabled (\overline{OE} HIGH), BHE and BLE are disabled (\overline{BHE} , BLE HIGH), or during a write operation (\overline{CE} LOW, and WE LOW).

<u>Writing</u> to the device is <u>accomplished</u> by taking Chip Enable (\overline{CE}) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified <u>on the</u> address pins (A₀ through A₁₆). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₇).

Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O_0 to I/O_7 . If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O_8 to I/O_{15} . See the truth table at the back of this data sheet for a complete description of read and write modes.

The CY62146CV18 is available in a 48-Ball FBGA package.



Cypress Semiconductor Corporation • Document #: 38-05010 Rev. *C

3901 North First Street
 San Jose
 CA 95134
 408-943-2600
 Revised August 28, 2002

Pin Configurations^[1, 2]

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential –0.5V to +2.4V
DC Voltage Applied to Outputs in High-Z State ^[2] 0.5V to V _{CC} + 0.5V DC Input Voltage ^[2] 0.5V to V _{CC} + 0.5V

Product Portfolio

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Device	Range	Ambient Temperature	v _{cc}
CY62146CV18	Industrial	-40°C to +85°C	1.65V to 1.95V

						Power	istrial)					
	V _{CC} Range					Operati	ng (I _{CC})					
					f = 1 MHz		f = 1 MH		f = f	max	Standby	y (I _{SB2})
Product	V _{CC(min.)}	V_{CC(typ.)} ^[4]	V _{CC(max.)}	Speed	Typ. ^[4]	Max.	Typ. ^[4]	Max.	Typ. ^[4]	Max.		
CY62146CV18	1.65V	1.80V	1.95V	55ns	0.5 mA	3 mA	2.5 mA	7 mA	1 μA	10 µA		
				70ns	0.5 mA	3 mA	2 mA	6 mA				

Notes:

NC pins are not connected to the die.
 E3 (DNU) can be left as NC or V_{SS} to ensure proper application.
 V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

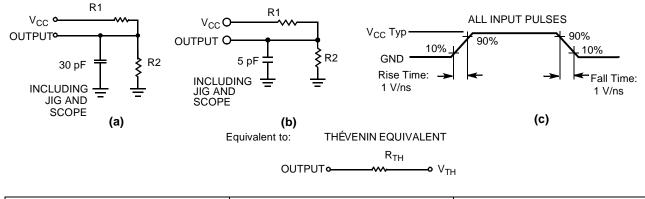
Electrical Characteristics Over the Operating Range

				/62146C\ loBL2™-{		CY621 MoBL2	46CV18 2 [™] -70			
Param- eter	Description	Test Cond	litions	Min.	Typ. ^[4]	Мах	Min.	Typ. ^[4]	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -0.1 mA	$V_{CC} = 1.65V$	1.4			1.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	$V_{CC} = 1.65V$			0.2			0.2	V
V _{IH}	Input HIGH Voltage			1.4		V _{CC} + 0.2V	1.4		V _{CC} + 0.2V	V
V _{IL}	Input LOW Voltage			-0.2		0.4	-0.2		0.4	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$		-1		+1	-1		+1	μΑ
I _{OZ}	Output Leakage Current	$\begin{array}{l} {\rm GND} \leq {\rm V_O} \leq {\rm V_{CC}}, \\ {\rm Disabled} \end{array}$	Output	-1		+1	-1		+1	μΑ
	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{\rm CC} = 1.95V$		2.5	7		2	6	mA
I _{CC}	Current	f = 1 MHz	I _{OUT} = 0 mA CMOS levels		0.5	3		0.5	3	mA
I _{SB1}	Automatic CE Power-down Current— CMOS Inputs	$\label{eq:central_constraint} \hline \hline$			1	10		1	10	μA
I _{SB2}	Automatic CE Power-down Current— CMOS Inputs									

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	Output Capacitance	V _{CC} = V _{CC(typ.)}	10	pF

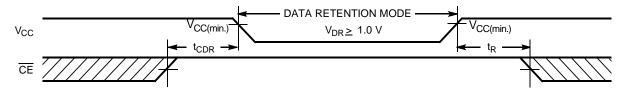
Thermal Resistance


Description	Test Conditions	Symbol	BGA	Unit
Thermal Resistance (Junction to Ambient) ^[5]	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	Θ_{JA}	55	°C/W
Thermal Resistance (Junction to Case) ^[5]		Θ ^{JC}	16	°C/W

Note:

5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms



Parameters	1.8V	UNIT
R1	13500	Ohms
R2	10800	Ohms
R _{TH}	6000	Ohms
V _{TH}	0.80	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[4]	Max.	Unit
V _{DR}	V_{CC} for Data Retention		1.0		1.95	V
I _{CCDR}	Data Retention Current	$\frac{V_{CC}}{CE} \ge 1.0V$ $\frac{V_{CC}}{CE} \ge V_{CC} - 0.2V,$ $V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$		1	8	μΑ
t _{CDR} ^[5]	Chip Deselect to Data Retention Time		0			ns
t _R ^[6]	Operation Recovery Time		t _{RC}			ns

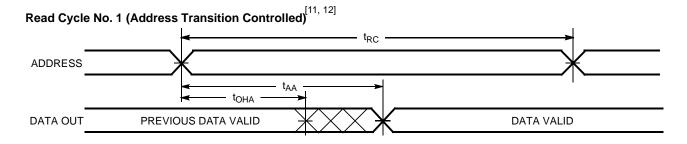
Data Retention Waveform

Note:

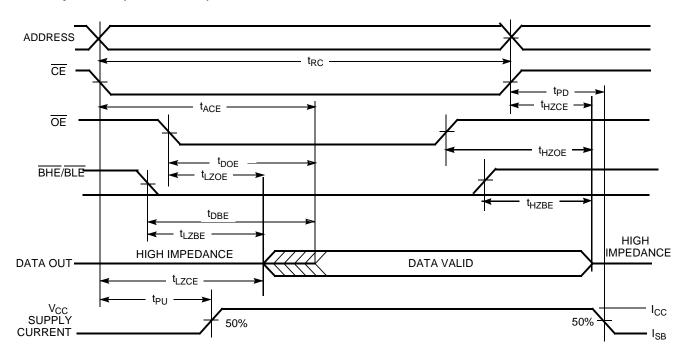
6. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} \geq 100 µs or stable at V_{CC(min)} \geq 100 µs.

Switching Characteristics Over the Operating Range ^[7]

		55	ns	70		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle	I	•	1			
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE LOW to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low-Z ^[8]	5		5		ns
t _{HZOE}	OE HIGH to High-Z ^[8, 9]		20		25	ns
t _{LZCE}	CE LOW to Low-Z ^[8]	5		10		ns
t _{HZCE}	CE HIGH to High-Z ^[8, 9]		20		25	ns
t _{PU}	CE LOW to Power-up	0		0		ns
t _{PD}	CE HIGH to Power-down		55		70	ns
t _{DBE}	BHE / BLE LOW to Data Valid		30		45	ns
t _{LZBE}	BHE / BLE LOW to Low-Z ^[8]	5		5		ns
t _{HZBE}	BHE / BLE HIGH to High-Z ^[8, 9]		20		25	ns
Write Cycle ^[10]			1	1	LL	
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE LOW to Write End	40		60		ns
t _{AW}	Address Set-up to Write End	40		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		50		ns
t _{BW}	BHE / BLE Pulse Width	40		60		ns
t _{SD}	Data Set-up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High-Z ^[8, 9]		15		25	ns
t _{LZWE}	WE HIGH to Low-Z ^[9]	5		10		ns


Notes:

7. Test conditions assume signal transition time of 3ns or less, timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance

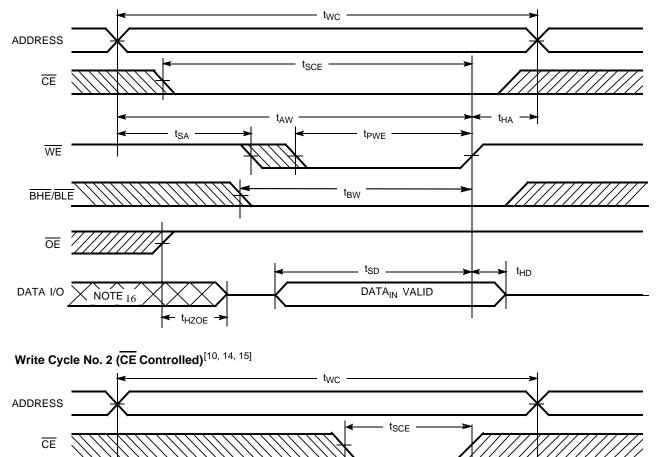

 8. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZCE}, t_{HZDE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 9. t_{HZCE}, t_{HZCE}, t_{HZDE}, t_H the write

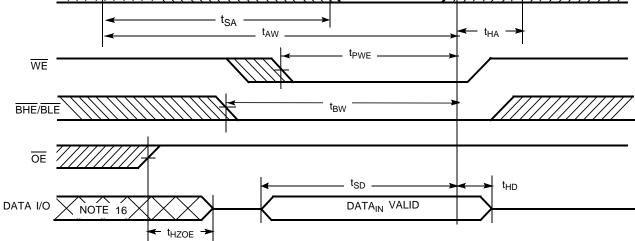
Switching Waveforms

Read Cycle No. 2 (OE Controlled)^[12, 13]

Notes:

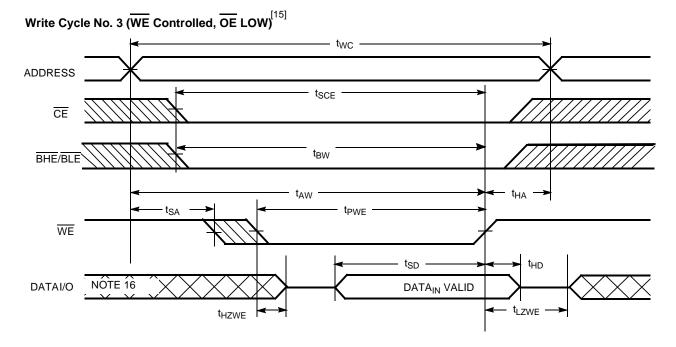
- 11. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$, \overline{BHE} and/or $\overline{BLE} = V_{IL.}$

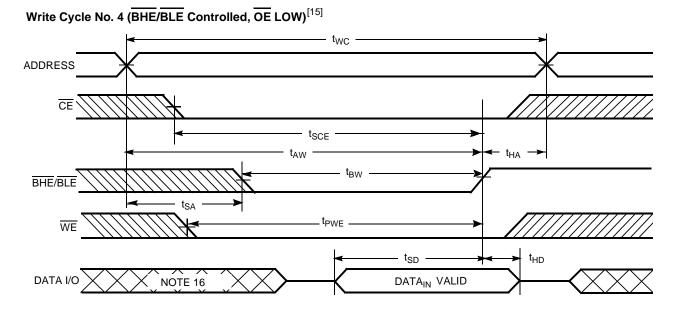

 12. WE is HIGH for read cycle.

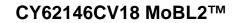

 13. Address valid prior to or coincident with \overline{CE} , \overline{BHE} , \overline{BLE} , transition LOW.

Switching Waveforms (continued)

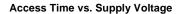
Write Cycle No. 1(WE Controlled)^[10, 14, 15]

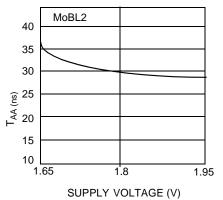



Notes:


- 14. Data I/O is high-impedance if OE = V_{IH}.
 15. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 16. During this period, the I/Os are in output state and input signals should not be applied.

Switching Waveforms (continued)

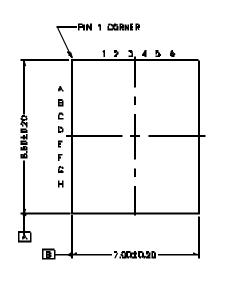


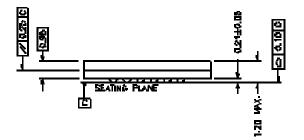


Typical DC and AC Characteristics (Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC Typ}$, $T_A = 25^{\circ}C$.)

Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O ₀ -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High-Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High-Z	Data Out (I/O ₈ –I/O ₁₅); Read	
L	Н	L	Н	Н	High-Z	Output Disabled	Active (I _{CC})
L	Н	Н	Х	Х	High-Z	Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O ₀ –I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High-Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High-Z	Write	Active (I _{CC})
L	L	Х	Н	Н	High-Z	Output Disabled	Active (I _{CC})

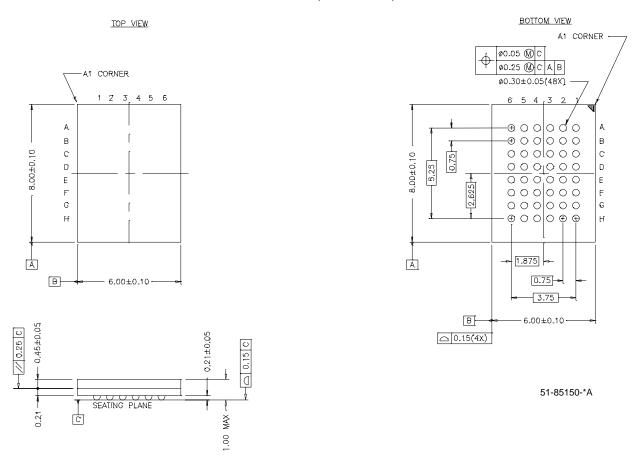

Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62146CV18LL-70BAI	BA48B	48-Ball Fine Pitch BGA (7 mm x 8.5 mm x 1.2 mm)	Industrial
	CY62146CV18LL-70BVI	BV48A	48-Ball Fine Pitch BGA (6 mm x 8 mm x 1 mm)	
55	CY62146CV18LL-55BAI	BA48B	48-Ball Fine Pitch BGA (7 mm x 8.5 mm x 1.2 mm)	
	CY62146CV18LL-55BVI	BV48A	48-Ball Fine Pitch BGA (6 mm x 8 mm x 1 mm)	

Package Diagrams

48-Ball (7.00 mm x 8.5 mm x 1.2 mm) Thin BGA BA48B

<u>TOP VIEW</u>


PIN 1 CORNER •0.05 Øc PG.25 00 € A B 90.30±0.08(48X) **& o o o o d** <u>& O O O O O O</u> ٨ 1 0000000 ĉ 85040.20 ß 000 <u>00</u> Ô <u>0000000</u> E 2522 000'000 F 0001000 ĉ @ 0 0₁0 **@ @** н 1.875 A U.75 3.75 7.00±0.20 **二(15(4X)**

51-85106-*C

<u>Boitom View</u>

Package Diagrams (continued)

48-Lead VFBGA (6 x 8 x 1 mm) BV48A

MoBL is a registered trademark, and MoBL2 and More Battery Life are trademarks, of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Document Title: CY62146CV18 MoBL2™ MoBL2 256K x 16 SRAM Document Number: 38-05010

Document Number: 38-05010				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	106039	05/08/01	HRT/MGN	Created Preliminary Data Sheet
*A	107702	06/15/01	MGN	Delete Datasheet. Not offering this device.
*В	111468	11/02/01	MGN	Reactivating datasheet. Die Rev. from R5 to R7.
*C	115863	09/03/02	DPM	From Preliminary to Final. Added BV package