

Datasheet

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

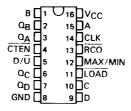
- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - · Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

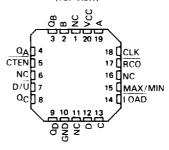
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

DECEMBER 1972-REVISED DECEMBER 1983


- Counts 8-4-2-1 BCD or Binary
- Single Down/Up Count Control Line
- Count Enable Control Input
- Ripple Clock Output for Cascading
- Asynchronously Presettable with Load Control
- Parallel Outputs
- Cascadable for n-Bit Applications

		TYPICAL	
	AVERAGE	MAXIMUM	TYPICAL
TYPE	PROPAGATION	CLOCK	POWER
	DELAY	FREQUENCY	DISSIPATION
' 19 0,'191	20 ns	25MHz	325mW
'LS190,'LS191	20ns	25MHz	100mW


description

The '190, 'LS190, '191, and 'LS191 are synchronous, reversible up/down counters having a complexity of 58 equivalent gates. The '191 and 'LS191 are 4-bit binary counters and the '190 and 'LS190 are BCD counters. Synchronous operation is provided by having all flipflops clocked simultaneously so that the outputs change coincident with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.

SN54190, SN54191, SN54LS190, SN54LS191...JOR W PACKAGE SN74190, SN74191...JOR N PACKAGE SN74LS190, SN74LS191...JOR N PACKAGE (TOP VIEW)

SN54LS190, SN54LS191 FK PACKAGE SN74LS190, SN74LS191 ... FN PACKAGE (TOP VIEW)

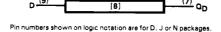
NC No internal connection

The outputs of the four master-slave flip-flops are triggered on a low-to-high transition of the clock input if the enable input is low. A high at the enable input inhibits counting. Level changes at the enable input should be made only when the clock input is high. The direction of the count is determined by the level of the down/up input. When low, the counter count up and when high, it counts down. A false clock may occur if the down/up input changes while the clock is low. A false ripple carry may occur if both the clock and enable are low and the down/up input is high during a load pulse.

These counters are fully programmable; that is, the outputs may be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change to agree with the data inputs independently of the level of the clock input. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

The clock, down/up, and load inputs are buffered to lower the drive requirement which significantly reduces the number of clock drivers, etc., required for long parallel words.

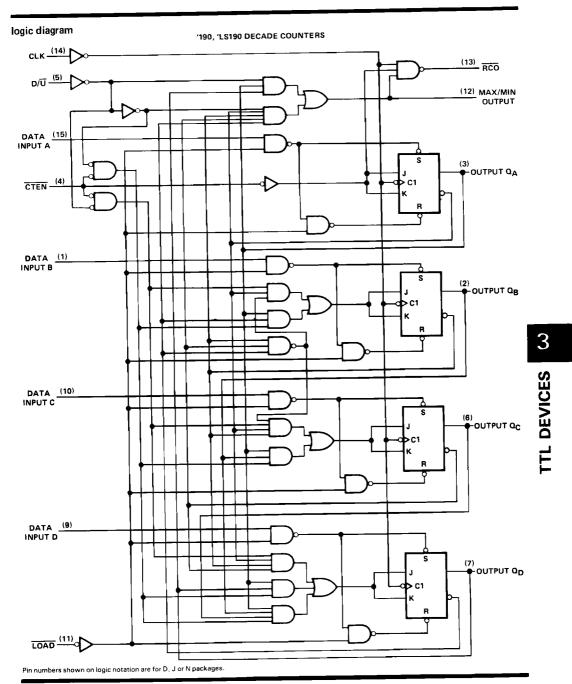
Two outputs have been made available to perform the cascading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock when the counter overflows or underflows. The ripple clock output produces a low-level output pulse equal in width to the lowlevel portion of the clock input when an overflow or underflow condition exists. The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.


Series 54' and 54LS' are characterized for operation over the full military temperature range of 55°C to 125°C; Series 74' and 74LS' are characterized for operation from 0°C to 70°C.

3

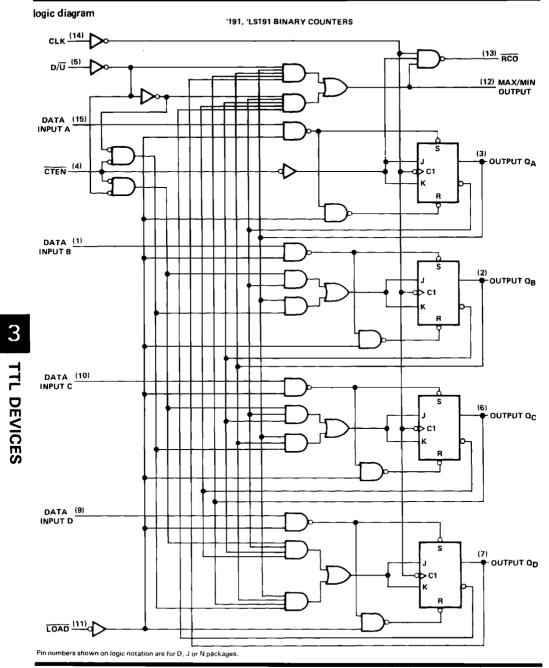
logic symbols

'190, 'LS190 CTRDV10 (4)CTEN G1 (5) (12) D/Ū M2 [DOWN] 2(CT = 0)Z6 MAX/MIN M3 [UP] 3(CT = 9)Z6 (14) CLK-> 1,2-/1,3+ (13) RCO G4 6,1,4 C5 (15) A (1) (3) 5D ۰QA [1] +--(2) в - QB [2] (10) (6) (7) OC С [4] (9) D [8] - QD '191, 'LS191 CTRDIV16 G1 (5) (12)D/U M2 [DOWN] 2(CT = 0)26 MAX/MIN M3 [UP] 3(CT = 15)Z6 (14 CLK >1,2-/1,3+ (13) RCO G4 6, 1, 4 LOAD (11) C5 (<u>3)</u> QA (15) 5D [1] Α +---(1) (2) в [2] οB (<u>6)</u> (<u>6)</u> OC (10) с [4]


(7) QD

D (9)

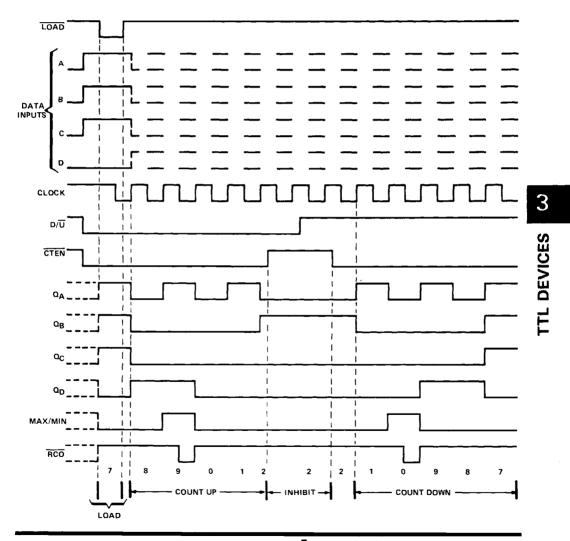
3 TTL DEVICES



TYPES SN54190, SN54LS190, SN74190, SN74LS190 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

TEXAS INSTRUMENTS

TYPES SN54191, SN54LS191, SN74191, SN74LS191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL


TYPES SN54190, SN54LS190, SN74190, SN74LS190 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

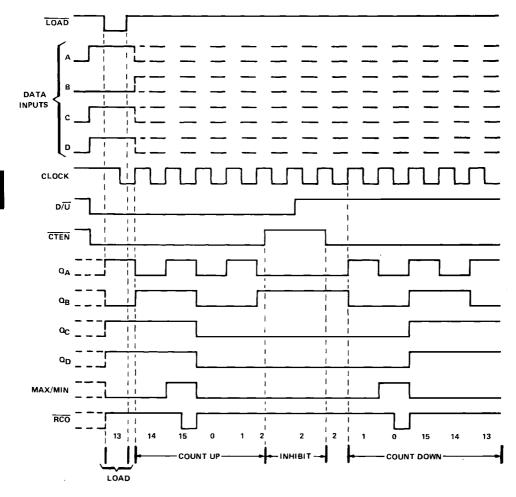
'190, 'LS190 DECADE COUNTERS

typical load, count, and inhibit sequences

Illustrated below is the following sequence:

- 1. Load (preset) to BCD seven.
- 2. Count up to eight, nine (maximum), zero, one, and two.
- 3. Inhibit.
- 4. Count down to one, zero (minimum), nine, eight, and seven.

TEXAS INSTRUMENTS


TYPES SN54191, SN54LS191, SN74191, SN74LS191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

'191, 'LS191 BINARY COUNTERS

typical load, count, and inhibit sequences

Illustrated below is the following sequence:

- 1. Load (preset) to binary thirteen.
- 2. Count up to fourteen, fifteen (maximum), zero, one, and two.
- 3. Inhibit,
- 4. Count down to one, zero (minimum), fifteen, fourteen, and thirteen.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	/
Input voltage: SN54', SN74' Circuits	/
SN54LS', SN74LS' Circuits	/
Operating free-air temperature range: SN54', SN54LS' Circuits	2
SN74', SN74LS' Circuits	2
Storage temperature range \ldots	2

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN54190, SN54191 SN74190, SN74191						
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V
юн	High-level output	current	1		- 0.8			- 0.8	mA
IOL .	Low-level output	current			16			16	mA
fclock_	Input clock frequ	ency	0		20	0		20	MHz
tw(clock)	Width of clock input pulse					25			ns
tw(load)	Width of load inp	ut pulse	35			35			ns
	Setup time	Data, high or low (See Figure 1 and 2)	20			20			ns
t _{su}	Setup time	Load inactive state	20			20		MAX 5.25 - 0.8 16	
^t hoid	Data hold time		0			0			ns
TA	Operating free-air	temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			SN54190, SN54191		54191	SN74			
		TEST CONDITIONS [†]	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage	V _{CC} = MIN	2			2			V
VIL	Low-level input voltage	V _{CC} = MIN			0.8			0.8	V
VIK	Input clamp voitage	$V_{CC} = MIN$, $i_1 = -12 \text{ mA}$			-1.5		_	1.5	v
VOH	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = - 0.8 mA	2.4	3.4		2.4	3.4		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	v
(j	High-level input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V			1			1	mA
ſн	High-level input current at any input except enable				40			40	μA
цн	High-level input current at enable input	V _{CC} = MAX, V _I = 2.4 V			120			120	μA
ίιL	Low-level input current at any input except enable				-1.6			-1.6	mA
Low-level input current IL at enable input				4.8		·	-4.8	mA	
los	Short-circuit output current §	V _{CC} = MAX	-20		-65	-18		-65	mA
lcc	Supply current	VCC = MAX, See Note 2		65	99	1	65	105	mA

[†]For conditions shown as MAX or MIN, use appropriate value specified under recommended operating conditions.

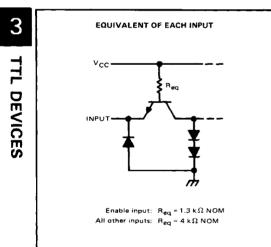
[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

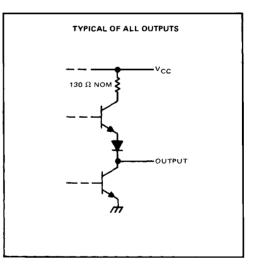
\$ Not more than one output should be shorted at a time.

NOTE 2: 1_{CC} is measured with all inputs grounded and all outputs open.

TYPES SN54190, SN54191, SN74190, SN74191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

	FROM	TO			'190, '191		
PARAMETER	(INPUT)	(OUTPUT)	(OUTPUT) TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax		T		20	25		MHz
^t PLH	Load	0 _A , 0 _B , 0 _C , 0 _D			22	33	ns
^t PHL	Load	uд, ug, uc, ub		1	33	50	
^t PLH	Data A, B, C, D	0.0.0.0.			14	22	ns
^t PHL	Data A, B, C, D	Q_A, Q_B, Q_C, Q_D			35	50	
^t PLH	CLK		CL = 15 pF, RL ≤ 400 Ω, See Figures 1 and 3 thru 7		13	20	ns
tPHL	ULK	RCO			16	24	
TPLH		0.0.0.0-	See Figures Fand 5 tind 7		16	24	ns
^t PHL	CLK	0 _A , 0 _B , 0 _C , 0 _D			24	36	
^t PLH		Max/Min	1		28	42	ns
tPHL	CLK	wax/wiri			37	52	1 13
TPLH					30	45	ns
TPHL	D/Ū	RCO			30	45	1 115
^t PLH				-	21	33	
TPHL	D/Ū	Max/Min			22	33	ns


switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$


 $f_{max} \equiv maximum$ clock frequency

 $t_{PLH} \equiv propagation delay time, low-to-high-level output$

 $t_{PHL} \equiv$ propagation delay time, high-to-low-level output

schematics of inputs and outputs

TYPES SN54LS190, SN54LS191, SN74LS190, SN74LS191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

recommended operating conditions

			SN54LS190 SN74LS190 SN54LS191 SN74LS191				UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
юн	High-level output current			- 0.4			- 0.4	mA
IOL	Low-level output current			4			8	mA
fclock	Clock frequency	0		20	0		20	MHz
tw(clock)	Width of clock input pulse	25			25			ns
tw(load)	Width of load input pulse	35			35			ns
t _{su}	Data setup time (See Figures 1 and 2)	20			20			ns
t _{su}	Load inactive state setup time	30			30			ns
t _h	Data hold time	5			5			ns
th	Enable hold time	0			0			ns
t _{enable}	Count enable time (see Note 3)	40			40			ns
TA	Operating free-air temperature	- 55	-	125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TES	TEST CONDITIONS [†]		SN54LS190 SN54LS191			SN74LS190 SN74LS191			UNIT	
						MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIH	High-level input voltag	le				2			2			v
VIL	Low-level input voltag	e						0.7			0.8	V
Vik	Input clamp voltage		V _{CC} = MIN,	$l_1 = -18 mA$				1.5			-1.5	V
v _{он}	High-level output volta	age —	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{1H} = 2 V, I _{OH} = -400 μA		2.5	3.4		2.7	3.4		v
Voi	Low-level output voltage VCC = MIN, VIH = 2 V, IOL = 4 mA		0.25	0.4		0.25	0.4	v				
.05		-9c	VIL = VIL max		¹ OL = 8 mA				0.35	0.35	0.5	
_	High-level input	Enable						0.3			0.3	
1	current at maximum input voltage	Others	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	mA
	High-level	Enable						60			60	
ЧH	input current	Others	V _{CC} = MAX,	V ₁ = 2.7 V				20			20	μA
	Low-level	Enable						-1.2			-1.2	
μĽ	input current	Others	V _{CC} ≃ MAX,	V _I = 0.4 V				-0.4			-0.4	mA
los	Short-circuit output c	urrent§	V _{CC} = MAX,			-20		-100	-20		_100	mA
¹ cc	Supply current		V _{CC} = MAX,	See Note 2			20	35		20	35	mA

[†]For conditions shown as MAX or MIN, use appropriate value specified under recommended operating conditions for the applicable device type.

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

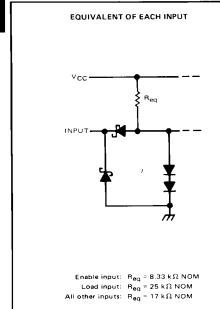
 $rac{8}{9}$ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

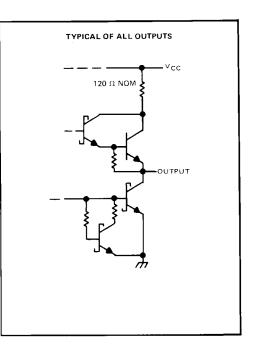
NOTES: 2. ICC is measured with all inputs grounded and all outputs open.

3. Minimum count enable time is the interval immediately preceeding the rising edge of the clock pulse during which interval the count enable input must be low to ensure counting.

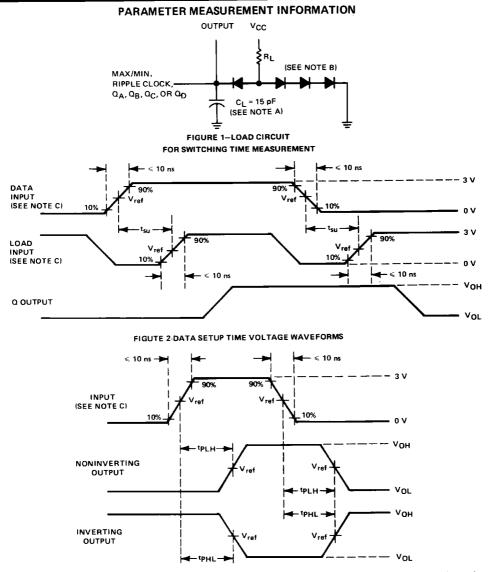
TYPES SN54LS190, SN54LS191, SN74LS190, SN74LS191 SYNCHRONOUS UP/DOWN COUNTERS WITH DOWN/UP MODE CONTROL

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$


	FROM	то		'LS	190, 'L	S191	
PARAMETER	(INPUT)	TEST CONDITIONS		MIN		MAX	
fmax				20	25	_	MH2
tPLH		0.0.0.0-			22	33	ns
^t PHL	Load	Q_A, Q_B, Q_C, Q_D			33	50	
^t PLH	Data A, B, C, D	Q_A, Q_B, Q_C, Q_D			20	32	ns
^t PHL	Data A, B, C, D	ад, а <u>в</u> , ас, ар			27	40	<u> </u>
^t PLH		RCO	$C_{1} = 15 pF, B_{L} = 2 k\Omega,$		13	20	- DS
PHL	CLK	HLU	See Figures 1 and 3 thru 7		16	24	
TPLH		Q _A , Q _B , Q _C , Q _D Max/Min			16	24	ns
^t PHL	CLK				24	36	
^t PLH	21.16				28	42	
^t PHL	CLK				37	52	
^t PLH	_				30	45	ns
TPHL	D/Ū	RCO		30	45		
^t PLH	D/II Max/Min		21	33	ns		
^t PHL	Ū\a	WI3X/WIN			22	33	
tPLH	·				21	33	ns
tPHL	CTEN	RCO			22	33	


¶fmax maximum clock frequency

tPLH propagation delay time, low to high level output


tPHL propagation delay time, high to-low level output

schematics of inputs and outputs

See waveform sequences in figures 4 through 7 for propagation times from a specific input to a specific output. For simplication, pulse rise times, reference levels, etc., have not been shown in figures 4 through 7.

FIGURE 3-GENERAL VOLTAGE WAVEFORMS FOR PROPAGATION TIMES

NOTES: A. CL includes probe and jig capacitance. B. All diodes are 1N3064 or equivalent.

- C. The input pulses are supplied by generators having the following characteristics: $Z_{OUT} = 50 \ \Omega$, duty cycle \leq 50%, PRR \leq 1 MHz.
- D. Vref = 1.5 V for '190 and '191; 1.3 V for 'LS190 and 'LS191.

3 *ITL DEVICES*

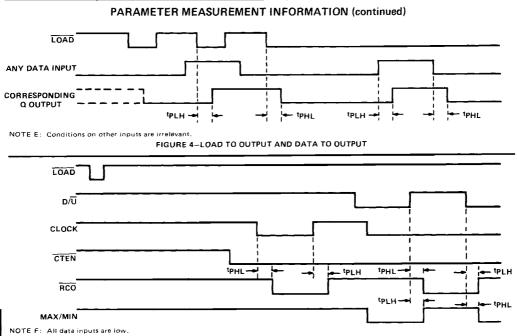
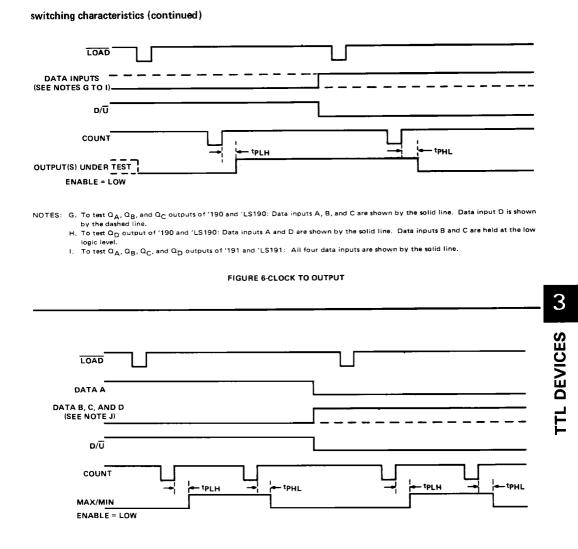



FIGURE 5-ENABLE TO RIPPLE CLOCK, CLOCK TO RIPPLE CLOCK, DOWN/UP TO RIPPLE CLOCK, AND DOWN/UP TO MAX/MIN

PARAMETER MEASUREMENT INFORMATION (continued)

NOTE J: Data inputs B and C are shown by the dashed line for the '190 and 'LS190 and the solid line for the '191 and 'LS191: Data input D is shown by the solid line for both devices.

FIGURE 7-CLOCK TO MAX/MIN

TTL DEVICES