ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

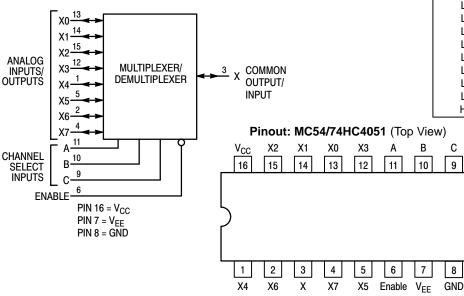
onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

This document, MC74HC4051/D has been canceled and replaced by MC74HC4051A/D LAN was sent 9/28/01

Analog Multiplexers/ Demultiplexers High-Performance Silicon-Gate CMOS

The MC54/74HC4051, MC74HC4052 and MC54/74HC4053 utilize silicon–gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF leakage currents. These analog multiplexers/ demultiplexers control analog voltages that may vary across the complete power supply range (from V_{CC} to V_{EE}).

The HC4051, HC4052 and HC4053 are identical in pinout to the metal–gate MC14051B, MC14052B and MC14053B. The Channel–Select inputs determine which one of the Analog Inputs/Outputs is to be connected, by means of an analog switch, to the Common Output/Input. When the Enable pin is HIGH, all analog switches are turned off.

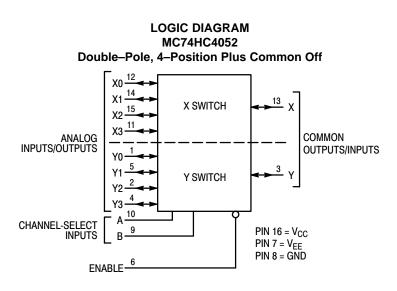

The Channel–Select and Enable inputs are compatible with standard CMOS outputs; with pullup resistors they are compatible with LSTTL outputs.

These devices have been designed so that the ON resistance (R_{on}) is more linear over input voltage than R_{on} of metal-gate CMOS analog switches.

For multiplexers/demultiplexers with channel-select latches, see HC4351, HC4352 and HC4353.

- Fast Switching and Propagation Speeds
- Low Crosstalk Between Switches
- Diode Protection on All Inputs/Outputs
- Analog Power Supply Range (V_{CC} V_{EE}) = 2.0 to 12.0 V
- Digital (Control) Power Supply Range (V_{CC} GND) = 2.0 to 6.0 V
- Improved Linearity and Lower ON Resistance Than Metal–Gate Counterparts
- Low Noise
- In Compliance With the Requirements of JEDEC Standard No. 7A
 - Chip Complexity: HC4051 184 FETs or 46 Equivalent Gates HC4052 — 168 FETs or 42 Equivalent Gates
 - HC4053 156 FETs or 39 Equivalent Gates

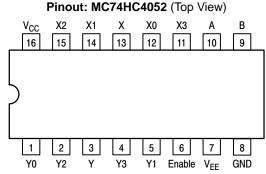
LOGIC DIAGRAM MC54/74HC4051 Single–Pole, 8–Position Plus Common Off

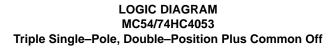

MC54/74HC4051 MC74HC4052 MC54/74HC4053

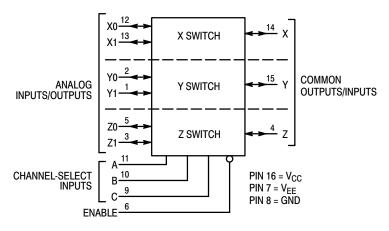
	J SUFFIX CERAMIC PACKAGE CASE 620–10
	N SUFFIX PLASTIC PACKAGE CASE 648–08
	D SUFFIX
16	SOIC PACKAGE
1	CASE 751B-05
16	DW SUFFIX SOIC PACKAGE CASE 751G-02
	DT SUFFIX
16 Present	TSSOP PACKAGE
1	CASE 948F-01
ORDERING	INFORMATION
MC54HCXXX	KJ Ceramic
MC74HCXXX	KN Plastic
MC74HCXXXX	KD SOIC
MC74HCXXXX	KDW SOIC Wide
MC74HCXXX	KDT TSSOP

FUNCTION TABLE - MC54/74HC4051

Contr	Control Inputs			
	Select			
Enable	СВА		Α	ON Channels
L	L	L	L	X0
L	L	L	Н	X1
L	L	Н	L	X2
L	L	Н	Н	X3
L	н	L	L	X4
L	н	L	Н	X5
L	н	Н	L	X6
L L	н	Н	Н	X7
Н	Х	Х	Х	NONE

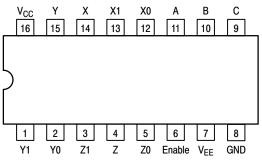

X = Don't Care




FUNCTION TABLE – MC74HC4052

Control Inputs					
Select Enable B A			ON Ch	annels	
L	L	L	Y0	X0	
L	L	н	Y1	X1	
L	н	L	Y2	X2	
L	н	н	Y3	X3	
н	X	Х	NONE		

X = Don't Care


NOTE: This device allows independent control of each switch. Channel–Select Input A controls the X–Switch, Input B controls the Y–Switch and Input C controls the Z–Switch

FUNCTION TABLE - MC54/74HC4053

Control Inputs							
Select Enable C B A			ON	I Chann	els		
				Z0	Y0	X0	
		I	Н	Z0 Z0	YO	X1	
L	L	Ĥ	L	ZO	Y1	X0	
L	L	н	Н	ZO	Y1	X1	
L	Н	L	L	Z1	Y0	X0	
L	Н	L	Н	Z1	Y0	X1	
L	Н	Н	L	Z1	Y1	X0	
L	н	Н	Н	Z1	Y1	X1	
Н	Х	Х	Х	NONE			

X = Don't Care

Pinout: MC54/74HC4053 (Top View)

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V _{CC}	Positive DC Supply Voltage (Referenced to GND) (Referenced to V _{EE})	- 0.5 to + 7.0 - 0.5 to + 14.0	V
V_{EE}	Negative DC Supply Voltage (Referenced to GND)	- 7.0 to + 5.0	V
V _{IS}	Analog Input Voltage	V _{EE} – 0.5 to V _{CC} + 0.5	V
Vin	Digital Input Voltage (Referenced to GND)	-0.5 to V_CC + 0.5	V
I	DC Current, Into or Out of Any Pin	± 25	mA
P _D	Power Dissipation in Still Air, Plastic or Ceramic DIP† SOIC Package† TSSOP Package†	750 500 450	mW
T _{stg}	Storage Temperature Range	– 65 to + 150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 Seconds Plastic DIP, SOIC or TSSOP Package Ceramic DIP	260 300	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND $\leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$. Unused inputs must always be

tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — Plastic DIP: – 10 mW/°C from 65° to 125°C

Ceramic DIP: – 10 mW/°C from 100° to 125°C SOIC Package: – 7 mW/°C from 65° to 125°C TSSOP Package: – 6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit	
V _{CC}	Positive DC Supply Voltage	sitive DC Supply Voltage (Referenced to GND) (Referenced to V _{EE})				
V _{EE}	Negative DC Supply Voltage, Out GND)	- 6.0	GND	V		
V _{IS}	Analog Input Voltage	V_{EE}	V _{CC}	V		
V _{in}	Digital Input Voltage (Referenced	to GND)	GND	V _{CC}	V	
V _{IO} *	Static or Dynamic Voltage Across	Switch		1.2	V	
T _A	Operating Temperature Range, Al	Operating Temperature Range, All Package Types			°C	
t _r , t _f	Input Rise/Fall Time (Channel Select or Enable Inpu	ts) $V_{CC} = 2.0 V$ $V_{CC} = 4.5 V$ $V_{CC} = 6.0 V$	0 0 0	1000 500 400	ns	

* For voltage drops across switch greater than 1.2V (switch on), excessive V_{CC} current may be drawn; i.e., the current out of the switch may contain both V_{CC} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.

			Vcc	Guara	nteed Lim	nit	
Symbol	Parameter	Condition	V	–55 to 25°C	≤85°C	≤125°C	Unit
V _{IH}	Minimum High–Level Input Voltage, Channel–Select or Enable Inputs	R _{on} = Per Spec	2.0 4.5 6.0	1.50 3.15 4.20	1.50 3.15 4.20	1.50 3.15 4.20	V
V _{IL}	Maximum Low–Level Input Voltage, Channel–Select or Enable Inputs	R _{on} = Per Spec	2.0 4.5 6.0	0.3 0.9 1.2	0.3 0.9 1.2	0.3 0.9 1.2	V
l _{in}	Maximum Input Leakage Current, Channel–Select or Enable Inputs	$V_{in} = V_{CC} \text{ or GND},$ $V_{EE} = -6.0 \text{ V}$	6.0	± 0.1	±1.0	± 1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current (per Package)		6.0 6.0	2 8	20 80	40 160	μA

DC CHARACTERISTICS — Digital Section (Voltages Referenced to GND) V_{EE} = GND, Except Where Noted

DC CHARACTERISTICS — Analog Section

					Guara	nteed Lin	nit	
Symbol	Parameter	Condition	Vcc	V_{EE}	–55 to 25°C	≤85°C	≤125°C	Unit
R _{on}	Maximum "ON" Resistance		4.5 4.5 6.0	0.0 - 4.5 - 6.0	190 120 100	240 150 125	280 170 140	Ω
			4.5 4.5 6.0	0.0 - 4.5 - 6.0	150 100 80	190 125 100	230 140 115	
ΔR_{on}	Maximum Difference in "ON" Resistance Between Any Two Channels in the Same Package		4.5 4.5 6.0	0.0 - 4.5 - 6.0	30 12 10	35 15 12	40 18 14	Ω
I _{off}	Maximum Off–Channel Leakage Current, Any One Channel		6.0	- 6.0	0.1	0.5	1.0	μΑ
	Maximum Off-ChannelHC4051Leakage Current,HC4052Common ChannelHC4053		6.0 6.0 6.0	- 6.0 - 6.0 - 6.0	0.2 0.1 0.1	2.0 1.0 1.0	4.0 2.0 2.0	
I _{on}	Maximum On-ChannelHC4051Leakage Current,HC4052Channel-to-ChannelHC4053		6.0 6.0 6.0	- 6.0 - 6.0 - 6.0	0.2 0.1 0.1	2.0 1.0 1.0	4.0 2.0 2.0	μA

		Vc	_	Gua	aranteed Lin	nit	
Symbol	Parameter	V		-55 to 25°C	≤85°C	≤125°C	Uni
t _{PLH} ,	Maximum Propagation Delay, Channel–Select to Analog C	Output 2.0)	370	465	550	ns
t _{PHL}	(Figure 9)	4.5	5	74	93	110	
		6.0)	63	79	94	
t _{PLH} ,	Maximum Propagation Delay, Analog Input to Analog Outp	out 2.0)	60	75	90	ns
t _{PHL}	(Figure 10)	4.5	5	12	15	18	
		6.0)	10	13	15	
t _{PLZ} ,	Maximum Propagation Delay, Enable to Analog Output	2.0)	290	364	430	ns
t _{PHZ}	(Figure 11)	4.5	5	58	73	86	
		6.0)	49	62	73	
t _{PZL} ,	Maximum Propagation Delay, Enable to Analog Output	2.0)	345	435	515	ns
t _{PZH}	(Figure 11)	4.5	5	69	87	103	
		6.0)	59	74	87	
C _{in}	Maximum Input Capacitance, Channel-Select or Enable Ir	nputs		10	10	10	pF
C _{I/O}	Maximum Capacitance Ar	nalog I/O		35	35	35	pF
	(All Switches Off) Common O/I:	HC4051		130	130	130	
		HC4052		80	80	80	
		HC4053		50	50	50	
	Fee	dthrough		1.0	1.0	1.0	
			Туріс	al @ 25°C, V	_{CC} = 5.0 V, V	' _{EE} = 0 V	
C _{PD}	Power Dissipation Capacitance (Figure 13)*	HC4051			45		pF
		HC4052		:	80		
		HC4053			45		

AC CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

			Vcc	VEE	Limit*			
Symbol	Parameter	Condition	V	V		25°C		Unit
BW	Maximum On–Channel Bandwidth or Minimum Frequency Response (Figure 6)	$\label{eq:fin} \begin{array}{l} f_{in} = 1 MHz \; Sine \; Wave; \; Adjust \; f_{in} \; Voltage \; to \\ Obtain \; 0dBm \; at \; V_{OS}; \; Increase \; f_{in} \; Frequency \\ Until \; dB \; Meter \; Reads \; -3dB; \\ R_L = 50\Omega, \; C_L = 10pF \end{array}$	2.25 4.50 6.00	-2.25 -4.50 -6.00	'51 80 80 80	'52 95 95 95	⁶ 53 120 120 120	MHz
_	Off–Channel Feedthrough Isolation (Figure 7)	$ \begin{array}{l} f_{in} = \text{Sine Wave; Adjust } f_{in} \text{ Voltage to Obtain} \\ \text{OdBm at } V_{\text{IS}} \\ f_{in} = 10 \text{kHz}, \ \text{R}_{\text{L}} = 600 \Omega, \ \text{C}_{\text{L}} = 50 \text{pF} \end{array} $	2.25 4.50 6.00	-2.25 -4.50 -6.00		-50 -50 -50	120	dB
		f _{in} = 1.0MHz, R _L = 50Ω, C _L = 10pF	2.25 4.50 6.00	-2.25 -4.50 -6.00		-40 -40 -40		
_	Feedthrough Noise. Channel–Select Input to Common I/O (Figure 8)	$ \begin{array}{l} V_{in} \leq 1 MHz \; Square \; Wave \; (t_{r}=t_{f}=6ns); \\ Adjust \; R_{L} \; at \; Setup \; so \; that \; I_{S}=0A; \\ Enable = GND \qquad \qquad R_{L}=600\Omega, \; C_{L}=50 pF \end{array} $	2.25 4.50 6.00	-2.25 -4.50 -6.00		25 105 135		mV _{PP}
		$R_L = 10k\Omega$, $C_L = 10pF$	2.25 4.50 6.00	-2.25 -4.50 -6.00		35 145 190		
_	Crosstalk Between Any Two Switches (Figure 12) (Test does not apply to HC4051)	$ \begin{array}{l} f_{in} = \text{Sine Wave; Adjust } f_{in} \text{ Voltage to Obtain} \\ \text{OdBm at } V_{\text{IS}} \\ f_{in} = 10 \text{kHz}, \ \text{R}_{\text{L}} = 600 \Omega, \ \text{C}_{\text{L}} = 50 \text{pF} \end{array} $	2.25 4.50 6.00	-2.25 -4.50 -6.00		-50 -50 -50		dB
		f _{in} = 1.0MHz, R _L = 50Ω, C _L = 10pF	2.25 4.50 6.00	-2.25 -4.50 -6.00		60 60 60		
THD	Total Harmonic Distortion (Figure 14)	$\label{eq:states} \begin{array}{l} f_{in} = 1 \text{kHz}, \ \text{R}_L = 10 \text{k}\Omega, \ \text{C}_L = 50 \text{pF} \\ \text{THD} = \text{THD}_{measured} - \text{THD}_{source} \\ \text{V}_{IS} = 4.0 \text{V}_{PP} \ \text{sine wave} \\ \text{V}_{IS} = 8.0 \text{V}_{PP} \ \text{sine wave} \\ \text{V}_{IS} = 11.0 \text{V}_{PP} \ \text{sine wave} \end{array}$	2.25 4.50 6.00	-2.25 -4.50 -6.00		0.10 0.08 0.05		%

ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)

* Limits not tested. Determined by design and verified by qualification.

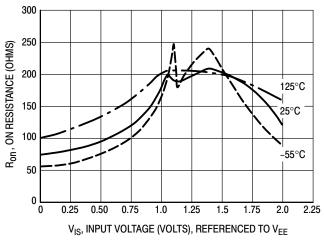


Figure 1a. Typical On Resistance, $V_{CC} - V_{EE} = 2.0 V$

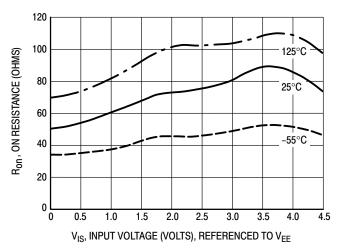


Figure 1b. Typical On Resistance, $V_{CC} - V_{EE} = 4.5 V$

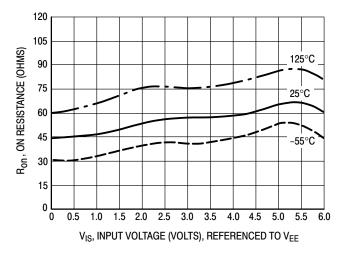


Figure 1c. Typical On Resistance, $V_{CC} - V_{EE} = 6.0 V$

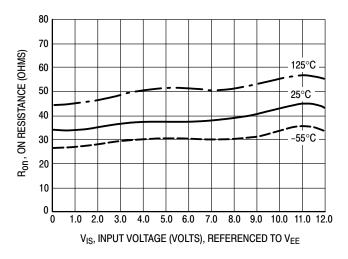


Figure 1e. Typical On Resistance, $V_{CC} - V_{EE} = 12.0 V$

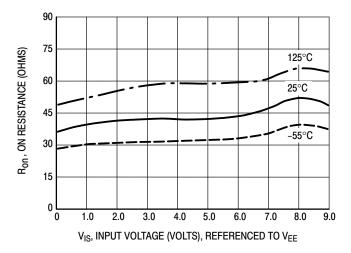


Figure 1d. Typical On Resistance, $V_{CC} - V_{EE} = 9.0 V$

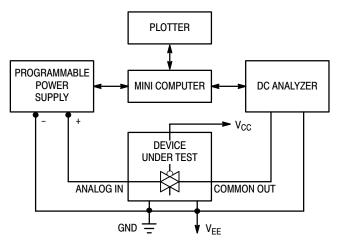


Figure 2. On Resistance Test Set–Up

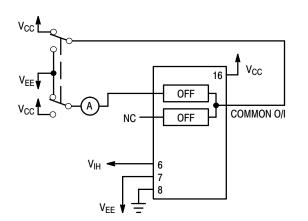


Figure 3. Maximum Off Channel Leakage Current, Any One Channel, Test Set–Up

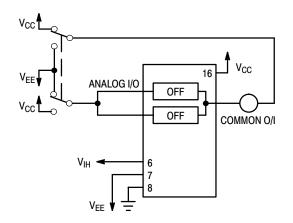


Figure 4. Maximum Off Channel Leakage Current, Common Channel, Test Set–Up

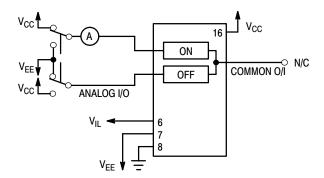
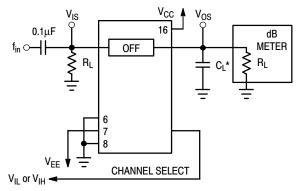



Figure 5. Maximum On Channel Leakage Current, Channel to Channel, Test Set–Up

*Includes all probe and jig capacitance

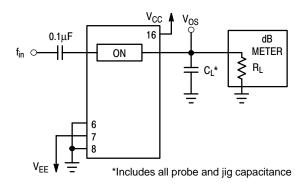
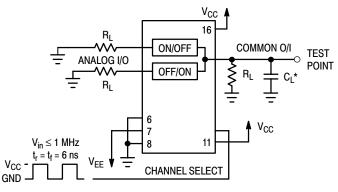



Figure 6. Maximum On Channel Bandwidth, Test Set–Up

*Includes all probe and jig capacitance

Figure 8. Feedthrough Noise, Channel Select to Common Out, Test Set–Up

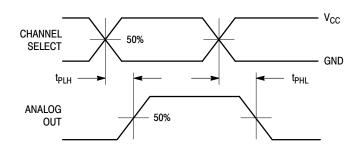
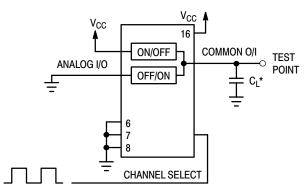
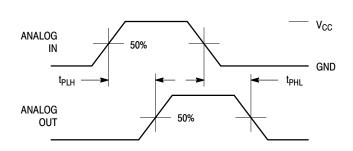
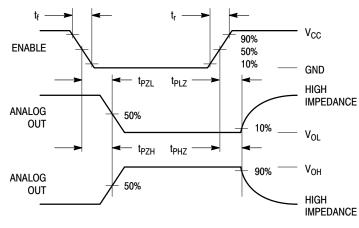
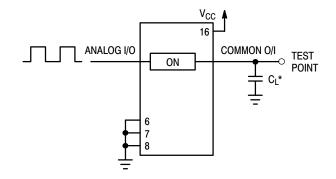
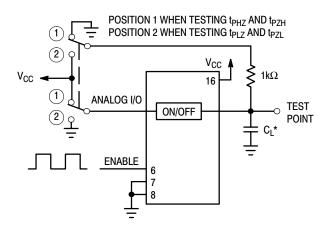




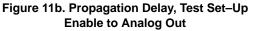
Figure 9a. Propagation Delays, Channel Select to Analog Out

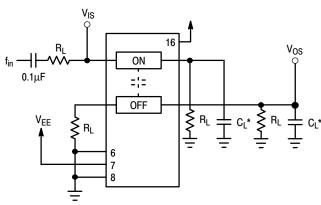
*Includes all probe and jig capacitance

Figure 9b. Propagation Delay, Test Set–Up Channel Select to Analog Out

Figure 10a. Propagation Delays, Analog In to Analog Out


Figure 11a. Propagation Delays, Enable to Analog Out



*Includes all probe and jig capacitance

Figure 10b. Propagation Delay, Test Set–Up Analog In to Analog Out

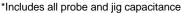


Figure 12. Crosstalk Between Any Two Switches, Test Set–Up

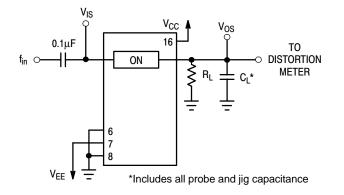


Figure 14a. Total Harmonic Distortion, Test Set-Up

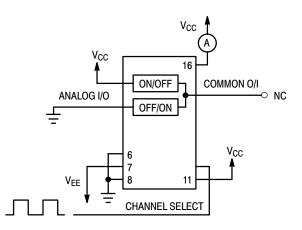


Figure 13. Power Dissipation Capacitance, Test Set–Up

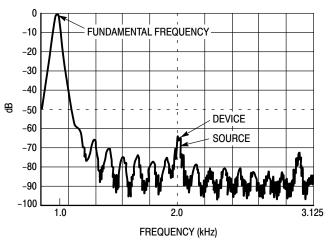


Figure 14b. Plot, Harmonic Distortion

APPLICATIONS INFORMATION

The Channel Select and Enable control pins should be at V_{CC} or GND logic levels. V_{CC} being recognized as a logic high and GND being recognized as a logic low. In this example:

$$V_{CC} = +5V = logic high$$

GND = 0V = logic low

The maximum analog voltage swings are determined by the supply voltages V_{CC} and V_{EE} . The positive peak analog voltage should not exceed V_{CC} . Similarly, the negative peak analog voltage should not go below V_{EE} . In this example, the difference between V_{CC} and V_{EE} is ten volts. Therefore, using the configuration of Figure 15, a maximum analog signal of ten volts peak–to–peak can be controlled. Unused analog inputs/outputs may be left floating (i.e., not connected). However, tying unused analog inputs and outputs to V_{CC} or GND through a low value resistor helps minimize crosstalk and feedthrough noise that may be picked up by an unused switch.

Although used here, balanced supplies are not a requirement. The only constraints on the power supplies are that:

$$\begin{array}{l} \mathsf{V}_{CC} - \mathsf{GND} = 2 \text{ to } 6 \text{ volts} \\ \mathsf{V}_{EE} - \mathsf{GND} = 0 \text{ to } -6 \text{ volts} \\ \mathsf{V}_{CC} - \mathsf{V}_{EE} = 2 \text{ to } 12 \text{ volts} \\ \text{ and } \mathsf{V}_{FE} \leq \mathsf{GND} \end{array}$$

When voltage transients above V_{CC} and/or below V_{EE} are anticipated on the analog channels, external Germanium or Schottky diodes (D_x) are recommended as shown in Figure 16. These diodes should be able to absorb the maximum anticipated current surges during clipping.

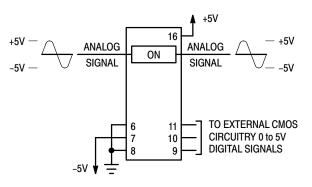


Figure 15. Application Example

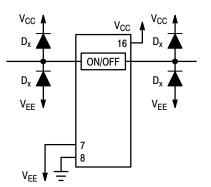
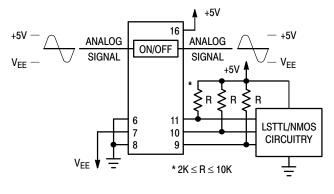
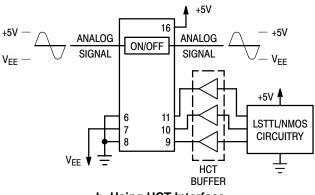




Figure 16. External Germanium or Schottky Clipping Diodes

a. Using Pull–Up Resistors

b. Using HCT Interface

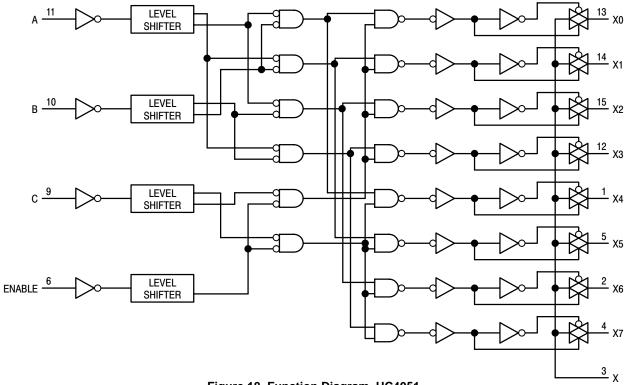
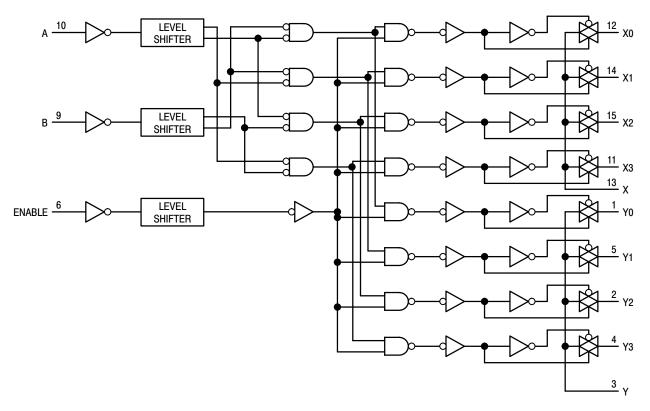



Figure 18. Function Diagram, HC4051

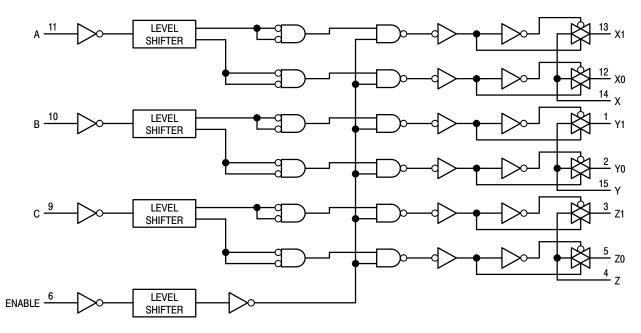
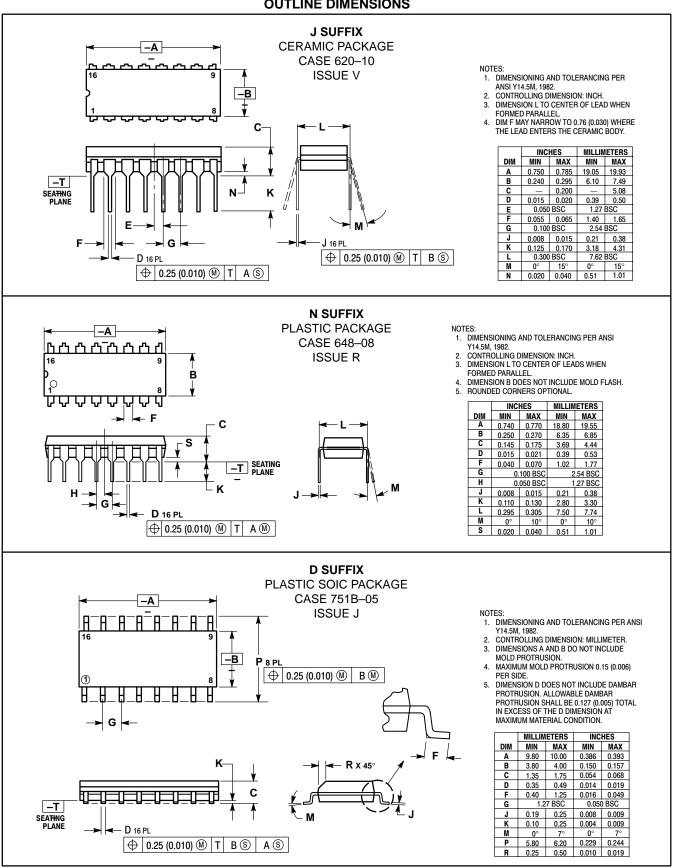



Figure 20. Function Diagram, HC4053

OUTLINE DIMENSIONS

OUTLINE DIMENSIONS

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.