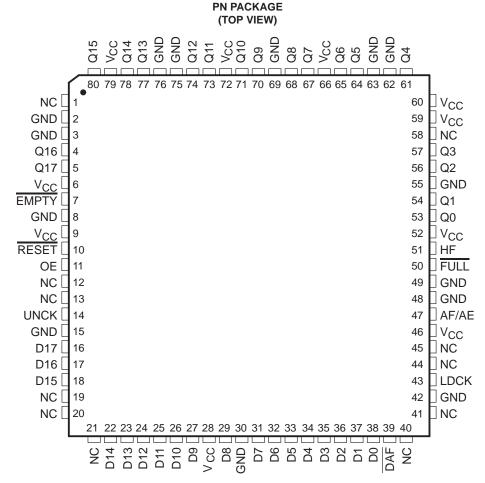

SCAS187D - AUGUST 1990 - REVISED APRIL 1998

- **Member of the Texas Instruments** Widebus™ Family
- Low-Power Advanced CMOS Technology
- Load and Unload Clocks Can Be Asynchronous or Coincident
- 1024 Words × 18 Bits
- **Programmable Almost-Full/Almost-Empty** Flag
- **Empty, Full, and Half-Full Flags**

- Fast Access Times of 30 ns With a 50-pF Load
- Fall-Through Time Is 20 ns Typical
- Data Rates up to 40 MHz
- **High-Output Drive for Direct Bus Interface**
- 3-State Outputs
- Package Options Include 68-Pin (FN) and 80-Pin Thin Quad Flat (PN) Packages

FN PACKAGE (TOP VIEW)


NC - No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated

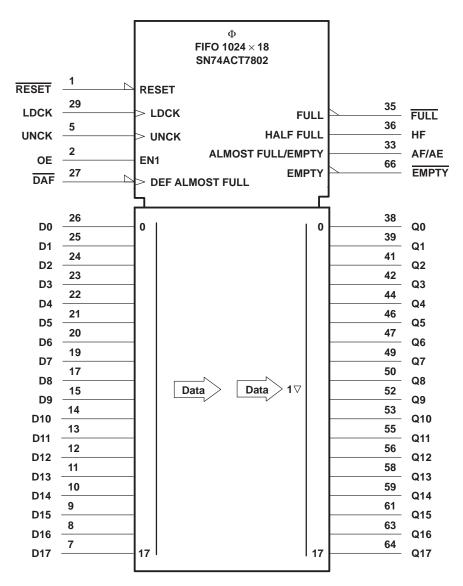
NC - No internal connection

description

A FIFO memory is a storage device that allows data to be written into and read from its array at independent data rates. The SN74ACT7802 is a 1024-word by 18-bit FIFO for high-speed applications. It processes data in a bit-parallel format at rates up to 40 MHz and access times of 30 ns.

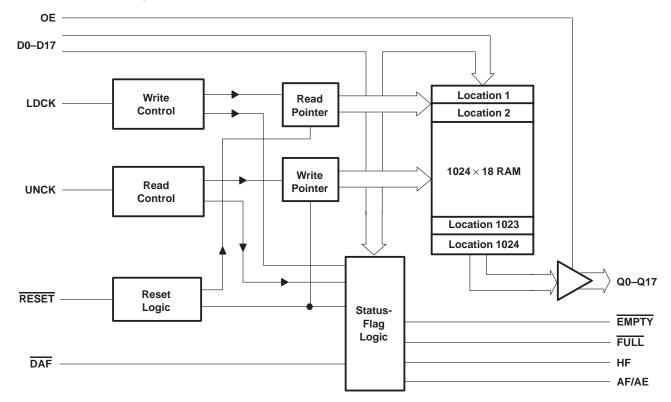
Data is written into the FIFO memory on a low-to-high transition on the load-clock (LDCK) input and is read out on a low-to-high transition on the unload-clock (UNCK) input. The memory is full when the number of words clocked in exceeds by 1024 the number of words clocked out. When the memory is full, LDCK has no effect on the data in the memory; when the memory is empty, UNCK has no effect.

A low level on the reset (RESET) input resets the FIFO internal clock stack pointers and sets full (FULL) high, almost full/almost empty (AF/AE) high, half full (HF) low, and empty (EMPTY) low. The Q outputs are not reset to any specific logic level. The FIFO must be reset upon power up. The Q outputs are noninverting and are in the high-impedance state when the output-enable (OE) input is low.


When writing to the FIFO after a reset pulse or when the FIFO is empty, the first active transition on LDCK drives EMPTY high and causes the first word written to the FIFO to appear on the Q outputs. An active transition on UNCK is not required to read the first word written to the FIFO. Each subsequent read from the FIFO requires an active transition on UNCK.

The SN74ACT7802 can be cascaded in the word-width direction but not in the word-depth direction.

The SN74ACT7802 is characterized for operation from 0°C to 70°C.



logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the FN package.

functional block diagram

Terminal Functions

TE	RMINAL	1/0	DECORPTION
NAME	NO.†	I/O	DESCRIPTION
AF/AE	33	0	Almost-full/almost-empty flag. Depth-offset values can be programmed for AF/AE, or the default value of 256 can be used for the almost-empty almost-full offset (X). AF/AE is high when memory contains X or fewer words or $(1024 - X)$ or more words. AF/AE is high after reset.
DAF	27	-	Define almost-full flag. The high-to-low transition of \overline{DAF} stores the binary value of data inputs as the AF/AE offset value (X). With DAF held low, a low pulse on RESET defines AF/AE using X.
D0-D17	7–15, 17, 19–26	ı	18-bit data input port
EMPTY	66	0	Empty flag. EMPTY is low when the FIFO is empty. A FIFO reset also causes EMPTY to go low.
FULL	35	0	Full flag. FULL is low when the FIFO is full. A FIFO reset causes FULL to go high.
HF	36	0	Half-full flag. HF is high when the FIFO memory contains 512 or more words. HF is low after reset.
LDCK	29	- 1	Load clock. Data is written to the FIFO on the rising edge of LDCK when FULL is high.
OE	2	-	Output enable. When OE is low, the data outputs are in the high-impedance state.
Q0-Q17	38–39, 41–42, 44, 46–47, 49–50, 52–53, 55–56, 58–59, 61, 63–64	0	18-bit data-output port
RESET	1	I	Reset. A low level on RESET resets the FIFO and drives AF/AE and FULL high and HF and EMPTY low.
UNCK	5	I	Unload clock. Data is read from the FIFO on the rising edge of UNCK when EMPTY is high.

[†] Terminal numbers listed are for the FN package.

SCAS187D - AUGUST 1990 - REVISED APRIL 1998

offset value values for AF/AE

The FIFO memory status is monitored by the FULL, EMPTY, HF, and AF/AE flags. The FULL output is low when the memory is full; the EMPTY output is low when the memory is empty. The HF output is high when the memory contains 512 or more words and low when it contains fewer than 512 words. The level of the AF/AE flag is determined by both the number of words in the FIFO and a user-definable offset X. AF/AE is high when the FIFO is almost full or almost empty, i.e., when it contains X or fewer words or (1024 – X) or more words. The AF/AE offset value is either user-defined or the default value of 256; it is programmed during each reset cycle as follows:

user-defined X:

Take DAF from high to low.

If RESET is not already low, take RESET low.

With DAF held low, take RESET high. This defines the AF/AE flag using X.

default X:

To redefine the AF/AE flag using the default value of X = 256, hold \overline{DAF} high during the reset cycle.

SCAS187D – AUGUST 1990 – REVISED APRIL 1998

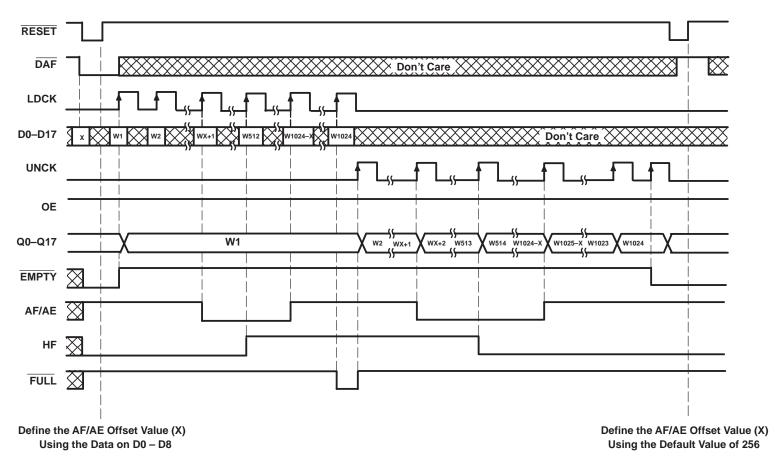


Figure 1. Write, Read, and Flag Timing Reference

SCAS187D - AUGUST 1990 - REVISED APRIL 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5	V to 7 V
Input voltage range, V _I	0.5	\mbox{V} to 7 \mbox{V}
Voltage range applied to a disabled 3-state output	0.5 V	to 5.5 V
Package thermal impedance, θ _{JA} (see Note 1): FN package		39°C/W
PN package		62°C/W
Storage temperature range, Teta	-65°C 1	to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions

		'ACT7802-25		'ACT7802-40		'ACT78	UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage	4.5	5.5	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2		2		2		V
V _{IL}	Low-level input voltage		0.8		0.8		0.8	V
ІОН	High-level output current		-8		-8		-8	mA
loL	Low-level output current		16		16		16	mA
TA	Operating free-air temperature	0	70	0	70	0	70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS								
Voн	$V_{CC} = 4.5 \text{ V},$	2.4			V					
V _{OL}	$V_{CC} = 4.5 \text{ V},$	I _{OL} = 16 mA				0.5	V			
lį	V _{CC} = 5.5 V,	$V_I = V_{CC}$ or 0				±5	μΑ			
loz	$V_{CC} = 5.5 \text{ V},$	VO = VCC or 0				±5	μΑ			
I _{CC} §	$V_{I} = V_{CC} - 0.2 \text{ V or } 0$					400	μΑ			
ΔlCC§	V _{CC} = 5.5 V,	One input at 3.4 V,	Other inputs at VCC or GND			1	mA			
C _i	V _I = 0,	f = 1 MHz	·		4		pF			
Co	$V_{O} = 0$,	f = 1 MHz			8		pF			

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

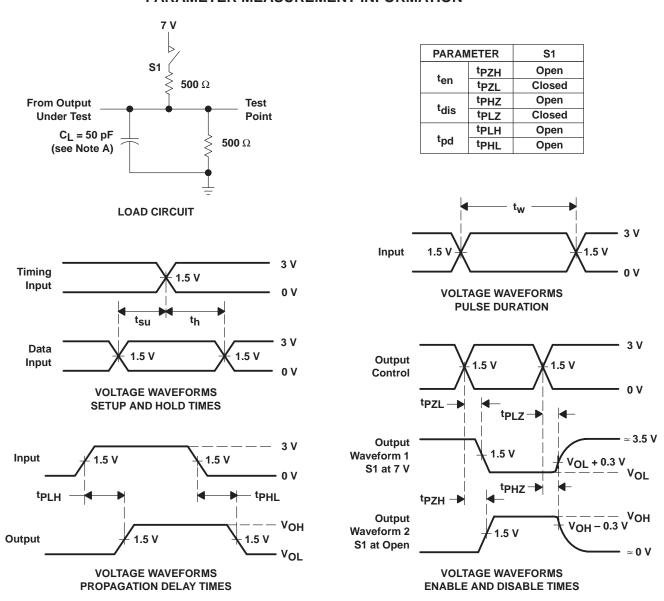
[§] ICC tested with outputs open

timing requirements over recommended operating conditions (see Figures 1 and 2)

			'ACT78	302-25	'ACT78	802-40	'ACT78	02-60	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
fclock	Clock frequency			40		25		16.7	MHz
		LDCK high or low	10		14		20		
۱.	Pulse duration	UNCK high or low	10		14		20		20
t _W	Pulse duration	DAF high	10		10		10		ns
		RESET low	20		25		25		
		D0-D7 before LDCK↑			5		5		
	Setup time	RESET inactive (high) before LDCK↑	5		5		5		
t _{su}		Define AF/AE: D0–D8 before DAF↓	5		5		5		ns
		Define AF/AE: DAF↓ before RESET↑			7		7		
		Define AF/AE (default): DAF high before RESET↑	5		5		5		
		D0-D7 after LDCK↑	1		2		2		
۱.	Hold time	Define AF/AE: D0–D8 after DAF↓ Define AF/AE: DAF low after RESET↑			0		0		20
th	Hold time				0		0		ns
		Define AF/AE (default): DAF high after RESET↑	0		0		0		

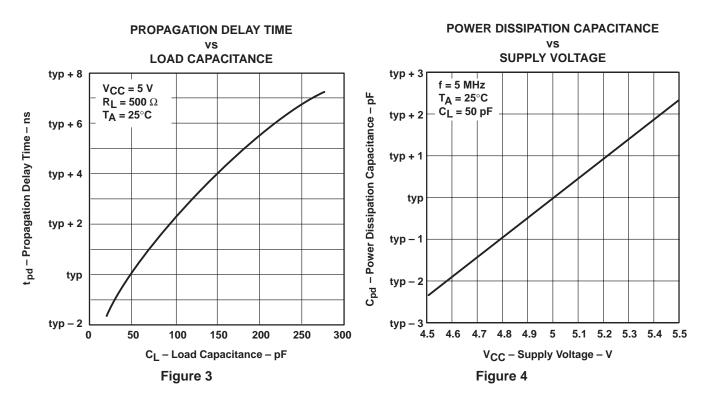
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (see Figures 1 and 2)

PARAMETER	FROM	то	'ACT7802-25			'ACT78	302-40	'ACT78	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP†	MAX	MIN	MAX	MIN	MAX	UNII
f _{max}	LDCK or UNCK		40			25		16.7		MHz
+ .	LDCK↑	Any Q	8	20	30	8	35	8	45	
^t pd	UNCK↑	Ally Q	12		30	12	35	12	45	ns
t _{pd} ‡	UNCK↑	Any Q		21						ns
^t PLH	LDCK↑	EMPTY	4		18	4	20	4	22	ns
	UNCK↑	EMPT)	2		18	2	20	2	22	
tPHL	RESET↓	EMPTY	2		18	2	20	2	22	ns
	LDCK [↑]	FULL	4		18	4	20	4	22	
4	UNCK↑	=	4		17	4	19	4	21	ns
^t PLH	RESET↓	FULL	2		17	2	19	2	21	
	LDCK↑	AF/AE	2		20	2	22	2	24	ns
^t pd	UNCK↑	AF/AE	2		20	2	22	2	24	115
+	RESET↓	AF/AE	2		17	2	19	2	21	
^t PLH	LDCK↑	HF	2		18	2	20	2	22	ns
+=	UNCK↑	UE	2		18	2	20	2	22	ns
^t PHL	RESET↓	HF	2		17	2	19	2	21	
t _{en}	OE	Any Q	2		12	2	14	2	16	ns
^t dis	OE	Any Q	2		14	2	16	2	18	ns


operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CO	TYP	UNIT	
C _{pd}	Power dissipation capacitance per channel	$C_L = 50 pF$,	f = 5 MHz	65	pF

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. ‡ This parameter is measured with C_L = 30 pF (see Figure 3).


PARAMETER MEASUREMENT INFORMATION

NOTE A: C_L includes probe and jig capacitance.

Figure 2. Load Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

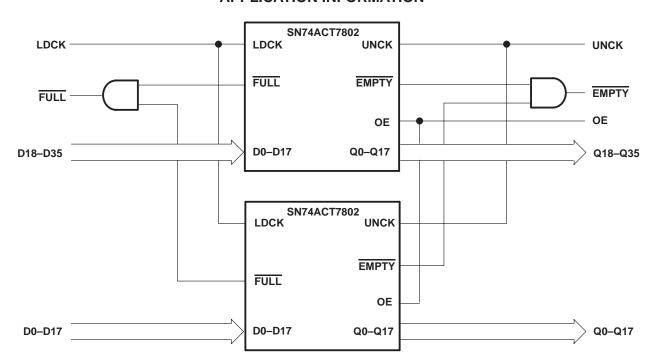


Figure 5. Word-Width Expansion: 1024 × 36 Bit

11-Jul-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74ACT7802-25FN	ACTIVE	PLCC	FN	68	18	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	0 to 70	SN74 ACT7802-25FN	Samples
SN74ACT7802-25PN	ACTIVE	LQFP	PN	80	119	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	0 to 70	ACT7802-25	Samples
SN74ACT7802-40FN	LIFEBUY	PLCC	FN	68	18	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	0 to 70	SN74 ACT7802-40FN	
SN74ACT7802-40PN	ACTIVE	LQFP	PN	80	119	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	0 to 70	ACT7802-40	Samples
SN74ACT7802-60PN	ACTIVE	LQFP	PN	80	119	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	0 to 70	ACT7802-60	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

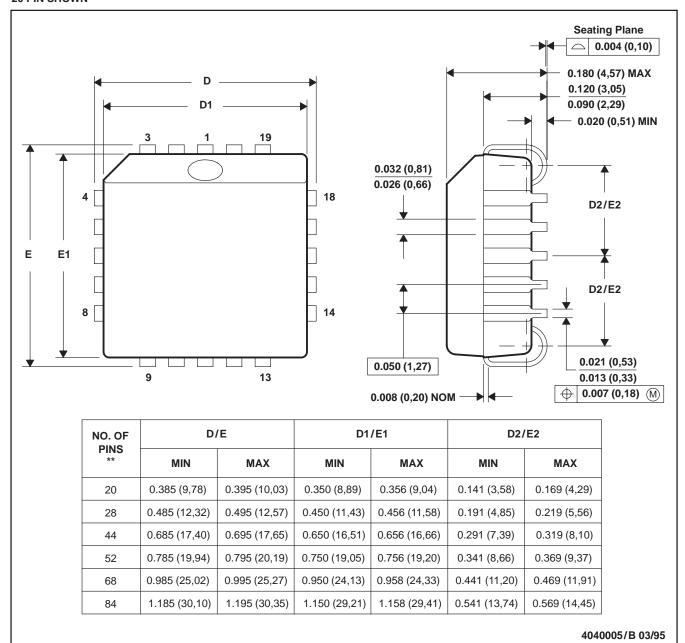
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

11-Jul-2015

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

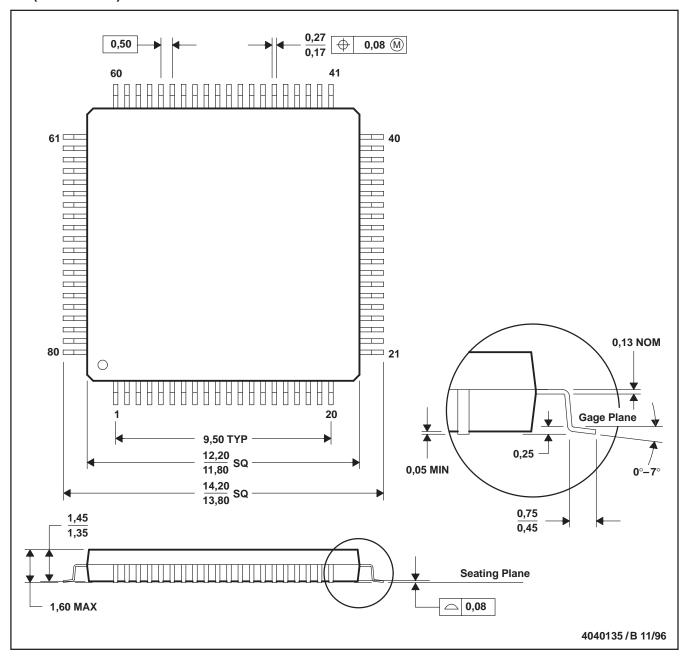

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

FN (S-PQCC-J**)

20 PIN SHOWN

PLASTIC J-LEADED CHIP CARRIER


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-018

PN (S-PQFP-G80)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-026

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity