

AM26LS29

Quad Three-State Single Ended RS-423 Line Driver

The AM26LS29 is a quad single ended line driver, designed for digital data transmission. The AM26LS29 meets all the requirements of EIA Standard RS-423 and Federal STD 1030. It features four buffered outputs with high source and sink current, and output short circuit protection.

A slew rate control pin allows the use of an external capacitor to control slew rate for suppression of near end cross talk to receivers in the cable. The AM26LS29 is constructed using advanced lowpower Schottky processing.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FOR REFERENCE ONLY

FINAL									

Am26LS29

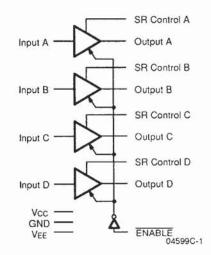
Quad Three-State Single Ended RS-423 Line Driver

DISTINCTIVE CHARACTERISTICS

- Four single ended line drivers in one package for maximum package density
- Output short-circuit protection
- Individual rise time control for each output
- High capacitive load drive capability
- Low Icc and IEE power consumption (26mW/driver typ.)
- Meets all requirements of RS-423
- Three-state outputs for bus oriented systems

GENERAL DESCRIPTION

The Am26LS29 is a quad single ended line driver, designed for digital data transmission. The Am26LS29 meets all the requirements of EIA Standard RS-423 and Federal STD 1030. It features four buffered outputs with high source and sink current, and output short circuit protection.


A slew rate control pin allows the use of an external capacitor to control slew rate for suppression of near end cross talk to receivers in the cable.

- Outputs do not clamp line with power off. Out-
- puts are in high-impedance state over entire transmission line voltage range of RS-423
- Low current PNP inputs compatible with TTL, MOS and CMOS
- Available in military and commercial temperature range
- Advanced low power Schottky processing

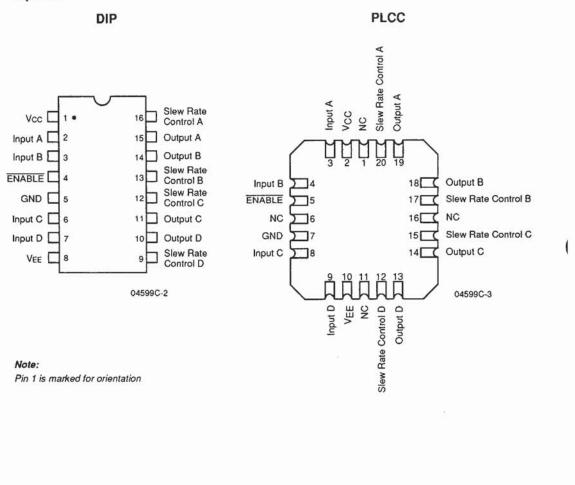
The Am26LS29 has three-state outputs for bus oriented systems. The outputs in the high-impedance state will not clamp the line over the transmission line voltage of RS-423. A typical full duplex system would use the Am26LS29 line driver and up to twelve Am26LS32 line receivers or an Am26LS32 line receiver and up to thirty-two Am26LS29 line drivers with only one enabled at a time and all others in the three-state mode.

The Am26LS29 is constructed using advanced lowpower Schottky processing.

BLOCK DIAGRAM

Publication# 04599 Rev. C Amendment/0 Issue Date: September 1993

D257525 0048267 254

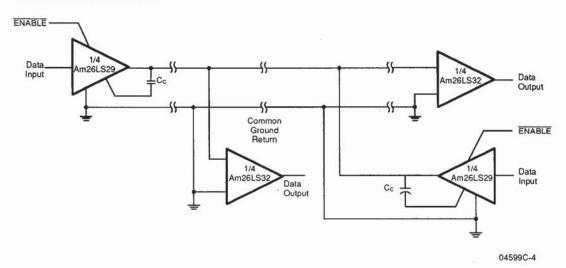


AMD

RELATED PRODUCTS Part Number Description 26LS30 Dual Differential RS-422 Party Line/Quad Single Ended RS-423 Line Driver 26LS32 Quad Differential Line Receiver 26LS33 Quad Differential Line Receiver

CONNECTION DIAGRAMS

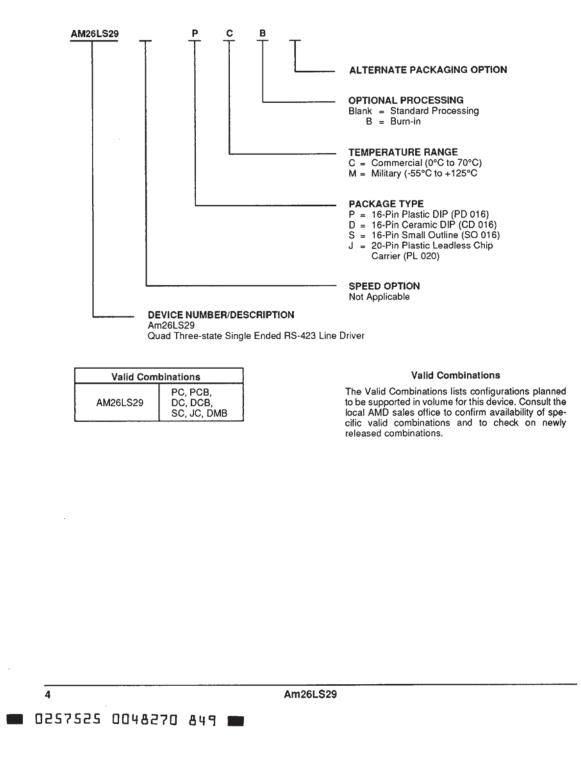
Top View


1

1

2 2 0257525 0048268 190

AMD


TYPICAL APPLICATION

— 0257525 0048269 027 **—**

ORDERING INFORMATION Standard Products

AMD products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

ABSOLUTE MAXIMUM RATINGS

Storage Temperature Range -65°C to +165°C Supply Voltage:

V+
Power Dissipation
Input Voltage
Enable Voltage ±15 V
Output Sink Current

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Temperature (TA)	0°C to +70°C
Supply Voltage (Vcc)	+4.75 V to +5.25 V
(VEE)	4.75 V to -5.25 V
Military (M) Devices	

windary (iii) Devices

 Temperature (T_A)
 -55 to +125°C

 Supply Voltage (Vcc)
 +4.75 V to +5.5 V

 (VEE)
 -4.75 V to -5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

Parameter Symbol	Parameter Description	Test Conditions		Min	Typ (Note 1)	Max	Unit
Vo Vo	Output Voltage	$ V_{CC} = V_{EE} = Min$ RL = ∞ (Note 3)	VIN . 2.4 V VIN . 0.4 V	4.0	4.4	6.0 6.0	V
VT		$ V_{CC} = V_{EE} = Min$	VIN . 2.4 V	3.6	4.1		v
VT	Output Voltage (Note 4)	$R_L = 450 \Omega$	VIN . 0.4 V	-3.6	-4.1		v
V⊤ – ⊽ ⊤	Output Unbalance (Note 4)	Vccl = VEE , RL = 450 Ω			0.02	0.4	V
lx+	Output Leakage Power Off	Vcc = VEE = 0V	Vo. 10 V			100	μÄ
Ix-			Vo10 V			-100	μΑ
ls+	Output Short Circuit Current (Note 6)	Vcc = VEE = Max Vo.0V	VIN . 2.4 V	-20	-80	-150	mA
Is-			VIN . 0.4 V	20	80	150	mA
lcc	Positive Supply Current	VIN = 0.4 V, RL = ∞, VCC = VEE = Max		18	30	mA	
IEE	Negative Supply Current	VIN = 0.4 V, RL = 1∞, VCC = VEE = Max			-10	-22	mA
lo	Off State (High Impedance)	Vcc = Max	Vo. 10 V			100	μΑ
	Output Current	Vccl = VEE = Max	Vo10 V			-100	μA
Vін	High Level Input Voltage	(Note 7)		2.0			V
VIL	Low Level Input Voltage	(Note 7)				0.8	V
						40	μA
Ін	High Level Input Current					100	μA
lı_	Low Level Input Current	VIN = 0.4 V, Vccl = VEE = Max			-30	-200	μA
Vı	Input Clamp Voltage	IIN = -12mA, Vcc = Min, VEE = Max				-1.5	V

DC CHARACTERISTICS over COMMERCIAL operating range unless otherwise specified

Notes:

1. Typical limits are at V_{CC}= 5.0 V, V_{EE} = -5.0 V, 25°C ambient and maximum loading.

2. Symbols and definitions correspond to EIA RS-423 where applicable.

3. Output voltage is +3.9 V minimum and -3.9 V minimum at -55°C.

4. This parameter is tested by forcing an equivalent current.

5. VEE = -5.0 V due to tester limitation.

6. Not more than one output should be shorted at a time. Duration of short circuit test should not exceed one second.

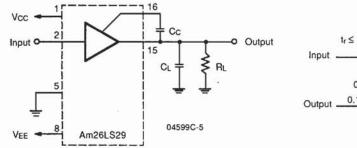
7. Input thresholds are tested during DC tests and may be done in combination with testing of other DC parameters.

D257525 0048271 785

SWITCHING CHARACTERISTICS ($T_A = +25^{\circ}C$, $V_{cc} = 5.0V$, $V_{EE} = -5.0V$)

Parameter Symbol	Parameter Description	Test Conditions		Min	Тур	Max	Unit
tr	Rise Time	$R_L = 450 \Omega$, $C_L = 500 pF$, Fig. 1	Cc = 50 pF		3.0		μs
			Cc = 0 pF		120	300	ns
tr	Fall Time	$R_L = 450 \ \Omega, \ C_L = 500 \ pF,$ Fig. 1	Cc = 50 pF		3.0		μs
			Cc = 0 pF		120	300	ns
1pdh	Output Propagation Delay	$R_L = 450 \Omega$, $C_L = 500 pF$, $C_C = 0 pF$	Tel: 2007221 13		180	300	ns
t _{pdi}	Output Propagation Delay	$R_L = 450 \Omega$, $C_L = 500 pF$, $C_C = 0 pF$			180	300	ns
tLZ		R _L = 100 Ω, C _L = 500 pF,			180	300	
tHZ	Output Enable to Output	$C_{C} = 0 \text{ pF}, \text{ Fig. 2}$			200	350] ns
tzL		$R_L = 100 \Omega$, $C_L = 500 pF$, $C_C = 0 pF$, Fig. 2			200	350] 115
tzH					180	300	

AC CHARACTERISTICS (TA = -55°C to +125°C, Vcc = 4.75 V to 5.5 V, VEE = 4.75 V to 5.5 V)


Parameter Symbol	Parameter Description	Test Conditions	Min	Тур	Max	Unit
tr	Rise Time	$R_L = 450 \Omega$, $C_L = 500 pF$, $C_C = 0 pF$			450	μs
tr	Fall Time	$R_L = 450 \Omega,$ $C_L = 500 \text{ pF}, \text{ Cc} = 0 \text{ pF}$			450	μs
tpdh	Output Propagation Delay	$R_L = 450 \Omega,$ $C_L = 500 \text{ pF}, C_C = 0 \text{ pF}$			450	ns
tpdl	Output Propagation Delay	$R_L = 450 \Omega$, $C_L = 500 pF$, $C_C = 0 pF$			450	ns
tLZ	- Output Enable to Output	$R_L = 100 \Omega$, $C_L = 500 \text{ pF}$, $C_C = 0 \text{ pF}$			400	ns
tHZ		$R_L = 100 \Omega,$ $C_L = 500 \text{ pF}, C_C = 0 \text{ pF}$			400	ns
tzL		$R_L = 100 \Omega,$ $C_L = 500 \text{ pF}, C_C = 0 \text{ pF}$			400	ns
tzн		$R_L = 100 \Omega$, $C_L = 500 \text{ pF}$, $C_C = 0 \text{ pF}$			400	ns

Am26LS29

6

SWITCHING TEST CIRCUIT

SWITCHING TEST WAVEFORM

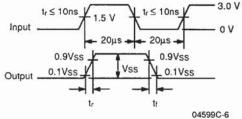
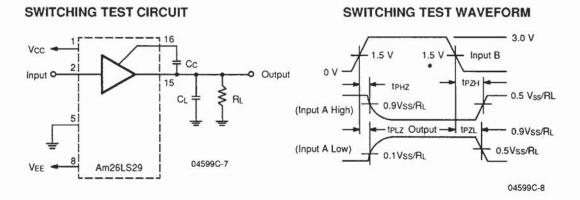
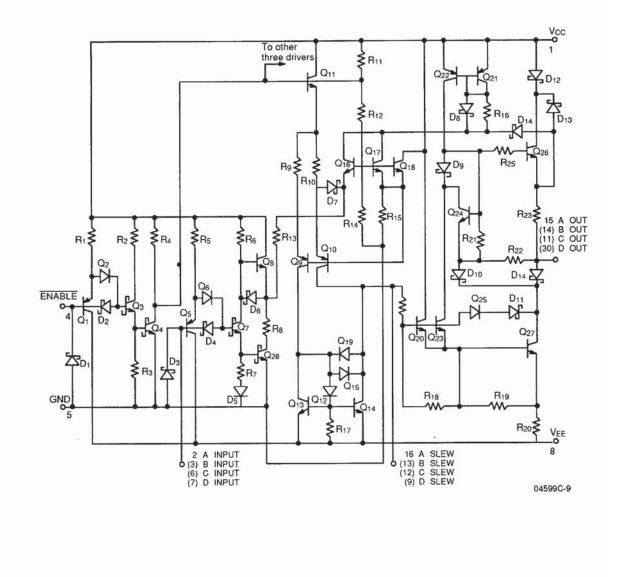
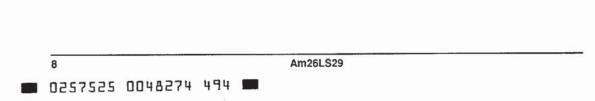
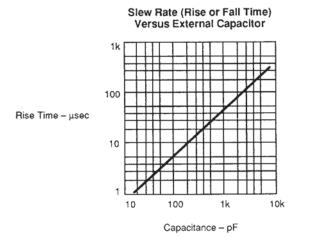
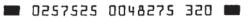


Figure 1. Rise Time Control

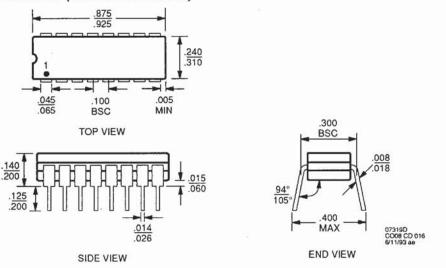





Figure 2. Three-State Delays

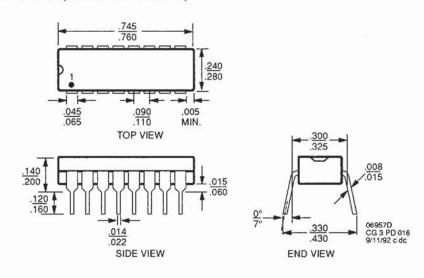
Am26LS29 EQUIVALENT CIRCUIT



TYPICAL PERFORMANCE CURVES

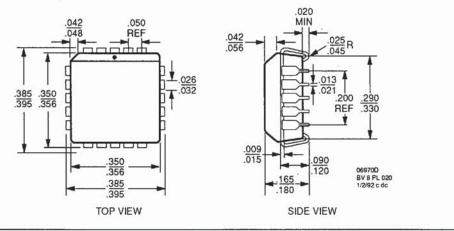


04599C-10

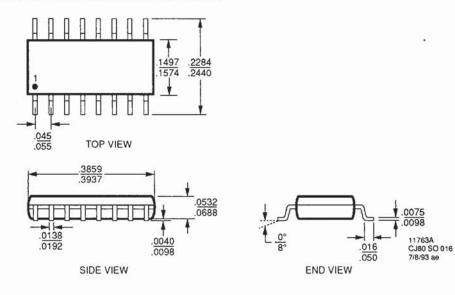

PHYSICAL DIMENSIONS*

CD 016 16-Pin Ceramic DIP (measured in inches)

PD 016


16-Pin Plastic DIP (measured in inches)

*For reference only. BSC is an ANSI standard for Basic Space Centering.



PHYSICAL DIMENSIONS PL 020 20-Pin Plastic Leadless Chip Carrier (measured in inches)

SO 016

16-Pin Small Outline (measured in inches)

Trademarks

Copyright © 1993 Advanced Micro Devices, Inc. All rights reserved. AMD is a registered trademark of Advanced Micro Devices, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.