LED Shunt

The HBL5006 Series are electronic shunts which provide a current bypass in the case of LEDs going into open circuit. LEDs are by nature quite fragile when subjected to transients and surge conditions. There are also many cases where high reliability of the LED lighting must be maintained such as in headlights, lighthouses, bridges, aircraft, runways and so forth. In these cases the low cost addition of the shunt device will provide full assurance that an entire string of LEDs will not extinguish should one LED fail open. The shunt device is also applicable to other loads where circuit continuity is required. The devices are designed to be used with LED string currents from 50 to 350 mA.

Features

- Protection for the Following IEC Standards: IEC 61000-4-2 (Level 4) ISO 10605
- Low ESD Clamping Voltage
- Automatically Resets Itself if the LED Heals Itself or is Replaced
- ON-State Voltage Typically 1.1 V
- OFF-State Current less than 1.0 µA
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Typical Applications

- LEDs where Preventive Maintenance is Impractical
- LED Headlights in Automobiles
- Automotive LED Applications
- LEDs with High Reliability Requirements
- Crowbar Protection for Open Circuit Conditions
- Overvoltage Protection for Sensitive Circuits

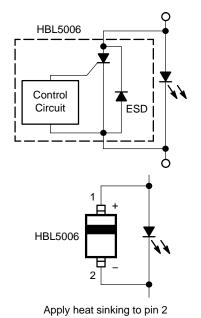
ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS

SOD-323 CASE 477

SOD-523 CASE 502



SOD-923 CASE 514AB

XX M = Specific Device Code

= Date Code

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
On–State Current, (T _A = 25°C) (Note 2)	SOD-323 (Note 1) SOD-323 (Note 2)	I _{T(AVG)}	250 200	mA
	SOD-523 (Note 1) SOD-523 (Note 2)		300 250	
	SOD-923 (Note 1) SOD-923 (Note 2)		350 300	
Thermal Resistance, Junction-to-Air (All Packages)	SOD-323 (Note 1) SOD-323 (Note 2)	$\theta_{\sf JA}$	435 550	°C/W
	SOD-523 (Note 1) SOD-523 (Note 2)		360 435	
	SOD-923 (Note 1) SOD-923 (Note 2)		285 360	
Operating Temperature Range	(Note 3)	TJ	-40 to 150	°C
Non-Operating Temperature Range		TJ	150	°C
Lead Temperature, Soldering (10 Sec)		TL	260	°C
IEC 61000-4-2 Contact (ESD) IEC 61000-4-2 Air (ESD)		ESD ESD	±15 ±15	kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Mounted onto a 2-layer, 1000 mm² per layer, 3 oz Cu, FR4 PCB with pin 2 connected to the heat sink and pin 1 only connected to a signal

trace. The heat sinking must be connected to pin 2, which is the LED cathode connection.

Normally this device would be mounted on the same copper heat sink and adjacent to the LED(s). If the LED(s) were to go open, then the

HBL shunt would now dissipate the power using the same copper heat sink. Since the shunt has a voltage that is nominally 30% of the LED, then the power dissipation would be much lower, and easily handled by the same heat sink as the LED.

Mounted onto a 2-layer, 50 mm² per layer, 1 oz Cu, FR4 PCB.
 Max operating temperature for DC conditions is 150°C, but not to exceed 175°C for pulsed conditions with low duty cycle or non-repetitive.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted: $T_A = 25^{\circ}C$)

Symbol	Characteristics	Package	Min	Тур	Max	Unit
V_{BR}	Breakdown Voltage: The minimum voltage across the device in or	SOD-323	6.2	7.0		V
	at the breakdown region. Measured at I _{BR} = 1 mA.	SOD-523	6.2	7.0		
		SOD-923	6.2	7.0		
I _H	Holding Current: The minimum current required to maintain the	SOD-323		25	40	mA
	device in the on-state.	SOD-523		25	40	
		SOD-923		25	40	
ΙL	Latching Current: The minimum current required to turn from the	SOD-323		9.0		mA
	off-state to the on-state.	SOD-523		9.0		
		SOD-923		9.0		
V_{BO}	Breakover Voltage: The voltage across the device in the breakover	SOD-323	6.5	7.2	8.0	V
	region.	SOD-523	6.5	7.2	8.0	1
		SOD-923	6.5	7.2	8.0	1
I _R	Off-State Current: The dc value of current that results from the	SOD-323			1.0	μΑ
	application of the off-state voltage. Measured at 3.3 V.	SOD-523			1.0	1
		SOD-923			1.0	
V _T	On-State Voltage. Measured at 100 mA.	SOD-323	0.9	1.1	1.3	V
		SOD-523	0.9	1.1	1.3	1
		SOD-923	0.9	1.1	1.3	
V _C	Clamping Voltage TLP (Note 4)	SOD-323		6.5 11.2		V
	I _{PP} = 8 A	SOD-523		6.5 11.2		
	$I_{PP} = 16 \text{ A}$ $\begin{cases} IEC 6100-4-2 \text{ Level 4 equivalent} \\ (\pm 8 \text{ kV Contact}, \pm 15 \text{ kV Air}) \end{cases}$	SOD-923		6.5 11.2		1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. ANSI/ESD STM5.5.1 – Electrostatic Discharge Sensitivity Testing using Transmission Line Pulse (TLP) Model TLP conditions: $Z_0 = 50 \Omega$,

 $t_p = 100$ ns, $t_r = 4$ ns, averaging window; $t_1 = 30$ ns to $t_2 = 60$ ns.

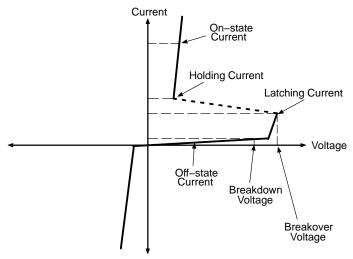
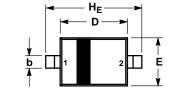


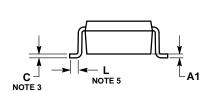
Figure 1. I-V Characteristics

TYPICAL APPLICATION CIRCUIT

Typical Application Circuit for HBL5006 Current Source HBL5006 Control Circuit ESD HBL5006 Control Circuit ESD HBL5006 Control Circuit ESD HBL5006 Control Circuit ESD

Figure 2. Typical Application Circuit


DEVICE ORDERING INFORMATION


Device	Marking	Package	Shipping [†]		
HBL5006HT1G	HD	SOD-323	3000 / Tape & Reel		
SZHBL5006HT1G*	HD	(Pb-Free)			
HBL5006XV2T1G	56		3000 / Tape & Reel 8000 / Tape & Reel		
SZHBL5006XV2T1G*	56	SOD-523 (Pb-Free)			
HBL5006XV2T5G	56				
SZHBL5006XV2T5G*	56				
HBL5006P2T5G	LD	SOD-923	0000 / Tana 8 Baal		
SZHBL5006P2T5G*	LD	(Pb-Free)	8000 / Tape & Reel		

[†]For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

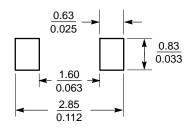
PACKAGE DIMENSIONS

SOD-323 CASE 477-02 ISSUE H

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETERS.

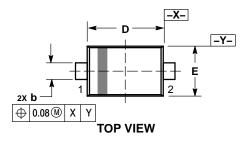

 3. LEAD THICKNESS SPECIFIED PER L/F DRAWING WITH SOLDER PLATING.

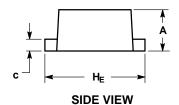
 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

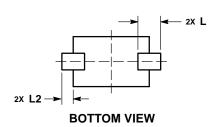
 5. DIMENSION L IS MEASURED FROM END OF RADIUS.

		MILLIMETERS			INCHES			
	DIM	MIN	NOM	MAX	MIN	NOM	MAX	
	Α	0.80	0.90	1.00	0.031	0.035	0.040	
	A1	0.00	0.05	0.10	0.000	0.002	0.004	
	A3	0.15 REF			0.006 REF			
	b	0.25	0.32	0.4	0.010	0.012	0.016	
	С	0.089	0.12	0.177	0.003	0.005	0.007	
Г	D	1.60	1.70	1.80	0.062	0.066	0.070	
Γ	Е	1.15	1.25	1.35	0.045	0.049	0.053	
	L	0.08			0.003			
	HE	2.30	2.50	2.70	0.090	0.098	0.105	

SOLDERING FOOTPRINT*

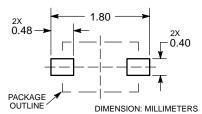



^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


^{*}SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP

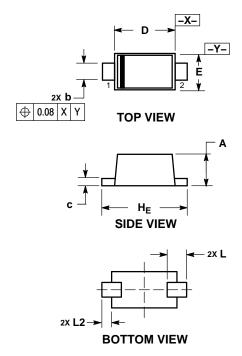
PACKAGE DIMENSIONS

SOD-523 **CASE 502** ISSUE E



- NOTES:
 6. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 7. CONTROLLING DIMENSION: MILLIMETERS.
 8. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
 MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF
 BASE MATERIAL.
 9. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

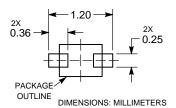
	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	0.50	0.60	0.70		
b	0.25	0.30	0.35 0.20		
С	0.07	0.14			
D	1.10	1.20	1.30		
E	0.70	0.80	0.90		
ΗE	1.50	1.60	1.70		
L	0.30 REF				
L2	0.15	0.20	0.25		


RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOD-923 CASE 514AB ISSUE C



NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.34	0.37	0.40	0.013	0.015	0.016
b	0.15	0.20	0.25	0.006	0.008	0.010
С	0.07	0.12	0.17	0.003	0.005	0.007
D	0.75	0.80	0.85	0.030	0.031	0.033
Е	0.55	0.60	0.65	0.022	0.024	0.026
HE	0.95	1.00	1.05	0.037	0.039	0.041
L	0.19 REF			0.007 REF		
L2	0.05	0.10	0.15	0.002	0.004	0.006

SOLDERING FOOTPRINT*

See Application Note AND8455/D for more mounting details

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Phone: 421 33 790 2910

Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative