Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

General Description

The MAX2551 is a complete single-chip RF-to-bits and bits-to-RF radio transceiver. This device is in compliance with the 3GPP TS25.104 femtocell standard for Band II and V. It's equipped with multiple receive inputs and transmit outputs for low band, high band, and macro-cell monitoring (Table 1).

This fully integrated transceiver facilitates compact radio designs for dongle and standalone femtocell products by minimizing external component count. Maxim's MAX-PHY serial interface is used to drastically reduce IC pin count, while worldwide field-proven architecture accelerates time to product deployment.
The device features unparalleled receive blocker performance and the industry's lowest noise figure for higher data rates and range. Low-power operational modes are available to minimize power consumption. The transmitter is designed to deliver EVM far exceeding the standard requirement at 0 dBm .
The MAX2550-MAX2553 is a family of pin-compatible transceivers to cover all major WCDMA and cdma2000® bands. All parts are controlled by a 4-wire interface.
The MAX2551 is packaged in a compact $7 \mathrm{~mm} \times 7 \mathrm{~mm}$ TQFN and specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range. A complete radio reference design is available to facilitate custom designs.

Applications
WCDMA Band II and V Femtocells

Simplified Block Diagram appears at end of data sheet.
Ordering Information appears at end of data sheet.
For related parts and recommended products to use with this part, refer to www.maxim-ic.com/MAX2551,related.

Benefits and Features

\author{

- Single-Chip Femtocell Radio Transceiver
 - WCDMA/HSPA+ Band II and V Operation
 - TS25.104 Standard Compliant
 - Multiple LNA Inputs for WCDMA, PCS, and GSM Macrocell Monitoring
}
- High Level of Integration
\diamond On-Chip Fractional-N Frequency Synthesizers for LO Generation
\diamond No Tx SAW Filters Required
\diamond Integrated PA Drivers for Lower-Cost Power Amplifier Designs
\diamond 12-Bit AFC DAC to Control TCXO
\diamond On-Chip Temperature Sensor
\diamond Three General-Purpose Outputs
\diamond Reference Clock with Selectable CMOS and Low Swing Output
» PLL Lock-Detect Output Through GPO3
- Optimized Receiver Performance
\diamond Exceptional Receive Sensitivity
\diamond High Dynamic Range Sigma-Delta ADCs Allow Simple AGC Implementation with Switched Gain States
- Optimized Transmitter Performance
\triangleleft Factory Calibrated for Gain, Carrier Leakage, and Sideband Suppression
\diamond 10-Bit Gain Control Resolution for Better Power Accuracy
$\diamond 60 \mathrm{~dB}$ Gain Control Range
- Loopback Operating Mode from Tx Baseband Input to Rx Baseband Output
- MAX-PHY Serial Digital Interface
- SPI Read/Write Functionality
- Operation Controlled by 4-Wire Serial Interface
- Low-Cost 7mm x 7mm TQFN Package

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

ABSOLUTE MAXIMUM RATINGS

$V_{C C}$ to GND_{-} RXIN_, MIXIN_, LNAOUT_, to GND_	$\begin{aligned} &-0.3 \mathrm{~V} \text { to }+3.9 \mathrm{~V} \\ & \ldots-0.3 \mathrm{~V} \text { to }+1.2 \mathrm{~V} \end{aligned}$
All Pins Except $\mathrm{V}_{\text {CC_ }}$ to GND_...............-0.3	-0.3 V to ($\left.\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
AC Input Signals	1.0V Peak
Digital Input Current.	$\pm 10 \mathrm{~mA}$
Maximum VSWR Without Damage	8:1
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ TQFN Multilayer Board (derate $40 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	

Junction Temperature ... $+150^{\circ} \mathrm{C}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range............................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) $+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

TQFN
Junction-to-Ambient Thermal Resistance $\left(\theta_{\mathrm{JA}}\right) \ldots \ldots . .25^{\circ} \mathrm{C} / \mathrm{W} \quad$ Junction-to-Case Thermal Resistance $\left(\theta_{\mathrm{JC}}\right) \ldots1^{\circ} \mathrm{C} / \mathrm{W}$
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}-=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 50 \Omega$ system, $\mathrm{f}_{\mathrm{REFIN}}=19.2 \mathrm{MHz}$, typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Register settings as defined in tables following the specification tables.) (Note 2)

SPEC NO.	PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC1a	Supply Voltage	V_{CC}		3.0	3.3	3.6	V
DC19	Operating Supply Current WCDMA	${ }^{\text {I CC_ }}$	Full-duplex high band		312	410	mA
DC20			Full-duplex low band		290	400	
DC21			RXIN4 monitor		75	100	
DC22			RXIN5 monitor		88	120	
DC23			Tx only high band		227	315	
DC24			Tx only low band		218	315	
DC25			Idle Rx		48		
DC26			Idle Tx		48		
DC3	Operating Supply Current AFC-Only Mode	${ }^{\text {I CC_ }}$	AFC DAC and SPI only		175	1000	$\mu \mathrm{A}$
DC5	Operating Supply Current Reference Buffer Mode	${ }^{\text {I CC_ }}$	$\begin{aligned} & \text { REFOUT }=500 \Omega \text { \|\| 22pF, } \\ & \text { all else }=\text { off } \end{aligned}$		5.3	7.5	mA
DC6	Operating Supply Current Sleep Mode	${ }^{\text {I CC_ }}$	All functions off		14	1000	$\mu \mathrm{A}$
DC11	Digital Input Logic-High			1.3			V
DC12	Digital Input Logic-Low					0.4	V
DC13	Input Current for Digital Control Pins					10	$1 \mu \mathrm{Al}$
DC16	GPO Sink Current		$\mathrm{V}_{\text {OUT }}=0.35 \mathrm{~V}$, DOUT_DRV $=01$	1.0	1.8		mA
DC17	GPO Source Current		$\begin{aligned} & \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}-0.3 \mathrm{~V}, \\ & \text { DOUT_DRV }=01 \end{aligned}$	1.0	1.9		mA

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS

(MAX2551 MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables 20-51, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the output pin of the chip.) (Note 2)

Band II Duplexer Specifications

(Diplexer between antenna and duplexer loss: 0.3 dB (applies to all Rx modes).)

Antenna—Uplink Port (Applies to Uplink WCDMA Rx Mode on RXIN1)

BAND (MHz)	Uplink 1850 to 1910	1 to 1800	$\begin{gathered} 1930 \text { to } \\ 1995 \end{gathered}$	$\begin{gathered} 1980 \text { to } \\ 2020 \end{gathered}$	$\begin{gathered} 2020 \text { to } \\ 2200 \end{gathered}$	$\begin{gathered} 2300 \text { to } \\ 2500 \end{gathered}$	$\begin{gathered} 2500 \text { to } \\ 4500 \end{gathered}$	$\begin{gathered} 4500 \text { to } \\ 12750 \end{gathered}$
ATTENUATION (dB)	Attenuation	Minimum Attenuation						
	2	35	30	35	37	27	25	15
Rx SAW FILTER RESPONSE								
BAND (MHz)	Out of Band							
ATTENUATION (dB)	Required minimum attenuation relative to in-band							
	25							

Band II Uplink WCDMA Rx Mode on RXIN1 (Full Duplex)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Wb2fu-0	Frequency Band	WCDMA FDD Band II uplink (lowest to highest channel center frequency)	1852.4		1912.6	MHz
Wb2fu-1	Sensitivity 3GPP TS25.104 Section 7.2.1	Tx on at -27 dBm , LNA gain mid gain, PGA gain register set to 9 , assumed SNDR > -17.5 dB at sensitivity, using UL reference measurement channel (12.2kbps) as specified in A. 2 3GPP 25.104, tested by measurement of SNDR at output on CW input signal at -90dBm, SNDR at MAX-PHY filter output established with FFT, LNA linearity set to OdBm (Note 3)		-118	-107	dBm
Wb2fu-1a	Sensitivity with LNA in High-Gain Mode	Tx on at -27dBm, LNA gain high, PGA gain register set to 6, assumed SNDR > -17.5dB at sensitivity, using UL reference measurement channel (12.2 kbps) as specified in A. 2 3GPP 25.104, tested by measurement of SNDR at output on CW input signal at -90 dBm , SNDR at MAX-PHY filter output established with FFT, LNA linearity set to high		-121	-107	dBm
Wb2fu-3	High-Level EVM WCDMA	$P_{I N}=-20 \mathrm{dBm}$, LNA gain low, PGA gain register set to 1		4.5		\%

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS

(MAX2551 MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables 20-51, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the output pin of the chip.) (Note 2)

Band II Uplink WCDMA Rx Mode on RXIN1 (Full Duplex) (continued)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Wb2fu-4	Sensitivity with Adjacent Channel Interference 3GPP TS25.104 Section 7.4.1	Tx on at -27dBm; LNA gain high; PGA gain register set to 3; assumed SNDR > -17.5 dB at sensitivity; interfering signals at front-end input -28 dBm , at 5 MHz offset and -5 MHz offset and modulated as in 3GPP; using UL reference measurement channel (12.2 kbps) as specified in A. 2 3GPP 25.104; tested by measurement of SNDR at output on CW input signal at -90dBm; SNDR at MAX-PHY filter output established with FFT (Note 3)		-107	-91	dBm
Wb2fu-5	Sensitivity with In-Band Blocking Interference 3GPP TS25.104 Section 7.5	Tx on at -27dBm; LNA gain high; PGA gain register set to 6; assumed SNDR > -17.5dB at sensitivity; interfering signal at front-end input -30 dBm at 1900 MHz to 2000 MHz min, 10 MHz offset modulated as in 3GPP; using UL reference measurement channel (12.2 kbps) as specified in A. 2 3GPP 25.104; tested by measurement of SNDR at output on CW input signal at -90 dBm ; (test only worst case in production); SNDR at MAX-PHY filter output established with FFT (Note 3)		-120	-101	dBm
Wb2fu-6	Sensitivity with Out-of-Band Blocking Interference 3GPP TS25.104 Section 7.5.1	Front-end assumed response as above, Tx on at - 27 dBm , LNA high gain, PGA gain register set to 6 , assumed SNDR > -17.5 dB at sensitivity, interfering signal at front-end input -15 dBm CW, 1 MHz to 1830 MHz and 1930 MHz to 2750 MHz with 1 MHz steps, no exceptions allowed, (test only worst case in production), using UL reference measurement channel (12.2kbps) as specified in A. 2 3GPP 25.104, tested by measurement of SNDR at output on CW input signal at -90dBm, SNDR at MAX-PHY filter output established with FFT (Note 3)		-116	-101	dBm

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2551 MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables 20-51, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the output pin of the chip.) (Note 2)

Band II Uplink WCDMA Rx Mode on RXIN1 (Full Duplex) (continued)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Wb2fu-8	Sensitivity with Intermodulation Interference 3GPP TS25.104 Section 7.6.1	Tx on at -27dBm; LNA gain high; PGA gain register set to 6; assumed SNDR > -17.5dB at sensitivity; interfering signals at front-end input -38 dBm , at 10 MHz offset (CW) and 20 MHz offset (modulated) as in 3GPP; using UL reference measurement channel (12.2 kbps) as specified in A. 2 3GPP 25.104; tested by measurement of SNDR at output on CW input signal at -90dBm; SNDR at MAX-PHY filter output established with FFT (Note 3)		-118	-101	dBm
		30 MHz to 1 GHz , measured in 100 kHz BW		-100	-60	
Wb2fu-10	Spurious Emissions Out-of-Band 3GPP TS25.104 Section 7.7.1	1 GHz to 12.75 GHz , measured in 1 MHz BW , with the exception of frequencies between 12.5 MHz below the first carrier frequency and 12.5 MHz above the last carrier frequency used by the BS (Note 3)		-100	-50	dBm
Wb2fu-11	Spurious Emissions in Receive Bands 3GPP TS25. 104 Section 7.9.2	Front-end assumed response as above, 1850MHz to 1910 MHz (Note 3)		-95	-80	dBm
Wb2fu-12	Conversion Gain High LNA Gain	LNA high gain; PGA gain register set to 6; tested on CW input signal at -90 dBm ; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16-bit output	23	32	39	dB
Wb2fu-13	Conversion Gain Mid LNA Gain	LNA mid gain; PGA gain register set to 9; tested on CW input signal at -90 dBm ; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16-bit output	22	30.5	37	dB
Wb2fu-14	Conversion Gain Low LNA Gain	LNA gain low; PGA gain register set to 1; tested on CW input signal at -20 dBm ; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16-bit output	-13.5	-6.5	-3	dB

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2551 MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables 20-51, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the output pin of the chip.) (Note 2)

Antenna—Downlink Port (Applies to Downlink WCDMA Rx Mode on RXIN5)

BAND (MHz)	Downlink 1930 to 1990	1 to 1910	1850 to 1910	2050 to 3000	2255 to 12750
ATTENTUATION (dB)	Attenuation:	Minimum Attenuation (dB)			
	3.5	15	52	25	15

Band II Downlink WCDMA Rx MODE on RXIN5 (Monitor)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Wb2fd-0	Frequency Band		1932.4		1992.6	MHz
Wb2fd-1	Sensitivity 3GPP TS25.101 Section 7.3.1	LNA gain high, PGA gain register set to 11, assumed SNDR > -7dB at sensitivity, using UL reference measurement channel, (12.2 kbps) as specified in C.3.1 3GPP 25.101, tested by measurement of SNDR at output on CW input signal at -90dBm, SNDR at MAX-PHY filter output established with FFT, LNA linearity set to 0 dBm , specified data is for a manual built fcLGA using 2.7 pF filter caps		-110		dBm
Wb2fd-8	Spurious Emissions Out-of-Band 3GPP TS25.101 Section 7.9.1	30 MHz to 1000 MHz in 100 kHz bandwidth (Note 3)		-100	-60	dBm
		1000 MHz to 12750 MHz in 1 MHz bandwidth (Note 3)		-96	-50	
Wb2fd-9	Spurious Emissions in Receive Bands 3GPP TS25.101 section 7.9.2	Front-end assumed response as above, 1850 MHz to 1910 MHz and 1930 MHz to 1990MHz (Note 3)		-97	-80	dBm
Wb2fd-10	Conversion Gain High LNA Gain	LNA gain high; PGA gain register set to 11; tested on CW input signal at -90dBm; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16 -bit output	37	44.5	49	dB
Wb2fd-11	Conversion Gain Low LNA Gain	LNA gain low; PGA gain register set to 0; tested on CW input signal at -20 dBm ; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16 -bit output	-18	-12.7	-7.5	dB

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2551 MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables 20-51, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the output pin of the chip.) (Note 2)

PCS Band GMSK Rx Mode

The signal shares the same path as WCDMA Band II downlink. Losses applied are:

1) Diplexer: 0.3 dB
2) Band II duplexer, antenna to downlink port (same as WCDMA table)
3) SPDT: 0.3 dB

PCS Band Rx Mode on RXIN5

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
pcs-0	RF Frequency		1930.2		1994.8	MHz
pcs-1	Sensitivity 3GPP TS100.910 Section 6.2	LNA gain high, PGA gain register set to 12, assumed SNDR > 7dB at sensitivity, using static E-TCH/F as specified in 3GPP TS 100.910, tested by measurement of SNDR at ADC output on CW input signal at -102dBm, SNDR at MAX-PHY filter output established with FFT		-108		dBm

Band V Duplexer Specifications

Antenna—Uplink Port (Applies to Uplink WCDMA Rx Mode on RXIN3)

BAND (MHz)	Uplink 824 to 849	1 to 804	869 to 894	894 to 2500	2500 to 3000	3000 to 6000
ATTENUATION (dB)	Attenuation					
	2	32	43	32	22	15
RX SAW FILTER RESPONSE						
BAND (MHz)	Out-of-Band					
ATTENUATION (dB)	Required minimum attenuation relative to in-band					
	25					

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2551 MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables 20-51, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the output pin of the chip.) (Note 2)

Band V Uplink WCDMA Rx Mode on RXIN3 (Full Duplex)

| SPEC NO. | PARAMETER | CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | :--- | :--- | :--- | :--- | UNITS

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2551 MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables 20-51, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the output pin of the chip.) (Note 2)

Band V Uplink WCDMA Rx Mode on RXIN3 (Full Duplex) (continued)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Wb5fu-6	Sensitivity with Out-of-Band Blocking Interference 3GPP TS25.104 Section 7.5.1	Front-end assumed response as above; Tx on at -27 dBm ; LNA gain high; PGA gain register set to 6; assumed SNDR > -17.5dB at sensitivity; interfering signal at Front-end input -15 dBm CW; 1 MHz to 804 MHz and 869 MHz to 12750 MHz with 1 MHz steps; no exceptions allowed; (test only worst case in production); using UL reference measurement channel (12.2kbps) as specified in A. 2 3GPP 25.104; tested by measurement of SNDR at output on CW input signal at -90dBm; SNDR at MAX-PHY filter output established with FFT (Note 3)		-118	-101	dBm
Wb5fu-7	Sensitivity with Intermodulation Interference 3GPP TS25.104 Section 7.6.1	Tx on at -27dBm; LNA gain high; PGA gain register set to 6; assumed SNDR > -17.5dB at sensitivity; interfering signals at front-end input -38 dBm , at 10 MHz offset (CW) and 20 MHz offset (modulated) as in 3GPP; using UL reference measurement channel (12.2 kbps) as specified in A. 2 3GPP 25.104; tested by measurement of SNDR at output on CW input signal at -90dBm; SNDR at MAX-PHY filter output established with FFT (Note 3)		-117	-101	dBm
		30 MHz to 1 GHz , measured in 100 kHz BW		-100	-60	
Wb5fu-8	Spurious Emissions Out-of-Band 3GPP TS25.104 Section 7.7.1	1 GHz to 12.75 GHz , measured in 1 MHz BW , with the exception of frequencies between 12.5 MHz below the first carrier frequency and 12.5 MHz above the last carrier frequency used by the BS (Note 3)		-84	-50	dBm
Wb5fu-10	Conversion Gain High LNA Gain	LNA high gain; PGA gain register set to 6; tested on CW input signal at -90dBm; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16-bit output	25	32.5	37	dB
Wb5fu-11	Conversion Gain Mid LNA Gain	LNA mid gain; PGA gain register set to 9; tested on CW input signal at -90dBm; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16-bit output	23.5	30	35	dB

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2551 MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables 20-51, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the output pin of the chip.) (Note 2)

Band V Uplink WCDMA Rx Mode on RXIN3 (Full Duplex) (continued)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX
Wb5fu-12	LNA gain low; PGA gain register set to 1; tested Conversion Gain Low LNA Gain subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16-bit output	-14.5	-8	-4	dB

Antenna—Downlink Port (Applies to Downlink WCDMA Rx Mode on RXIN4)

BAND (MHz)	Downlink 869 to 894	1 to 804	824 to 849	914 to 3000	3000 to 6000
ATTENUATION (dB)	Attenuation:	Minimum Attenuation (dB)			
	3	37	51	35	20

Band V Downlink WCDMA Rx Mode on RXIN4 (Monitor)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Wb5fd-0	Frequency Band		867.4		891.6	MHz
Wb5fd-1	Sensitivity 3GPP TS25.101 Section 7.3.1	LNA gain high, PGA gain register set to 11, assumed SNDR > -7dB at sensitivity, using UL reference measurement channel (12.2 kbps) as specified in C.3.1 3GPP 25.101, tested by measurement of SNDR at output on CW input signal at -90dBm, SNDR at MAX-PHY filter output established with FFT, LNA linearity set to OdBm, specified data is for a manual built fcLGA using 2.7pF filter caps		-111.5	-104.7	dBm
Wb5fd-4	Sensitivity with Adjacent Channel Interference 3GPP TS25.101 Section 7.5.1	LNA gain high; PGA gain register set to 11; assumed SNDR > -7dB at sensitivity; interfering signals at front-end input -52 dBm , at 5 MHz offset and -5 MHz offset and modulated as in 3GPP; using UL reference measurement channel (12.2kbps) as specified in C.3.1 3GPP 25.101; tested by measurement of SNDR at output on CW input signal at -90dBm; SNDR at MAX-PHY filter output established with FFT		-111		dBm

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2551 MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables 20-51, $\mathrm{V}_{\mathrm{CC}_{-}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the output pin of the chip.) (Note 2)

Band V Downlink WCDMA Rx Mode on RXIN4 (Monitor) (continued)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Wb5fd-9	Spurious Emissions Out-of-Band 3GPP TS25.101 Section 7.9.1 (Note 3)	30 MHz to $1000 \mathrm{MHz}, 100 \mathrm{kHz}$ bandwidth		-100	-60	dBm
		1000 MHz to $12750 \mathrm{MHz}, 1 \mathrm{MHz}$ bandwidth		-98	-50	
Wb5fd-10	Spurious Emissions in Receive Bands 3GPP TS25.101 Section 7.9.2	Front-end assumed response as above, 824 MHz to 849 MHz and 869 MHz to 894 MHz (Note 3)		-95	-80	dBm
Wb5fd-11	Conversion Gain High LNA Gain	LNA gain high; PGA gain register set to 11; tested on CW input signal at -90dBm; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16-bit output	40	45	48	dB
Wb5fd-12	Conversion Gain Low LNA Gain	LNA gain low; PGA gain register set to 0 ; tested on CW input signal at -20 dBm ; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the16-bit output	-17.5	-13.5	-8.5	dB

GSM850 Band Rx Mode

The signal shares the same path as WCDMA Band V downlink. Losses applied are:

1) Diplexer: 0.3 dB
2) Band V duplexer, antenna to downlink port (same as WCDMA table)
3) SPDT: 0.3 dB

GSM850 Band GMSK Monitor on RXIN4

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
G850-0	RF Frequency		865.2		893.8	MHz
G850-1	Sensitivity 3GPP TS100.910 Section 6.2	LNA gain high, PGA gain register set to 12, assumed SNDR > 7dB at sensitivity (GSM), using static E-TCH/F as specified in 3GPP TS 100.910, tested by measurement of SNDR at output on CW input signal at -102dBm, SNDR at MAX-PHY filter output established with FFT		-110	-104	dBm

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Tx MODE AC ELECTRICAL CHARACTERISTICS

(MAX2551 MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, WCDMA downlink TM1 16 channels with -14 dBFs peak level into sigma-delta modulator inside baseband chip (see the Baseband Input Level section), registers set as described in Tables 20-51, $\mathrm{V}_{\text {CC_ }}=3.0 \mathrm{~V}$ to 3.6 V , $\mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}$, and mid-band, unless otherwise noted. Tx specifications are referred to the output pin of the chip.) (Note 2)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
W1	RF Frequency Range	Center of the WCDMA signal, Band II output (TXOUTH)	1932.4		1992.6	MHz
W1a		Band V output (TXOUTL)	867.4		891.6	MHz
W2	Linear Output Power	TX_GAIN = 1023	0			dBm
W3	Adjacent Channel Power Ratio	$\begin{aligned} & \text { Offset frequency }= \pm 5 \mathrm{MHz} \text { in } 3.84 \mathrm{MHz} \text { BW, } \\ & \text { Pout }=0 \mathrm{dBm} \text { (Note 3) } \end{aligned}$		-55	-50	dBc
W4	Alternate Channel Power Ratio	Offset frequency $= \pm 10 \mathrm{MHz}$ in 3.84 MHz BW , Pout $=0 \mathrm{dBm}$ (Note 3)		-70	-60	dBc
W5	Rx Band Noise Power, POUT $\leq 0 \mathrm{dBm}$	Noise measured at -80 MHz offset in 3.84 MHz BW, then convert to per Hz, Band II output		-153	-142	$\mathrm{dBm} / \mathrm{Hz}$
W5a		Noise measured at -45 MHz offset in 3.84 MHz BW, then convert to per Hz , Band V output		-152	-142	$\mathrm{dBm} / \mathrm{Hz}$
W6	EVM	Pout $=0 \mathrm{dBm}$		3.3		\%
W6a	RCDE	TM6, 8 channels at 0dBm		-28		dB
W7	Minimum Output Power	TX_GAIN = 0		-61	-50	dBm
W8	Output Power Deviation from $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$	TX_GAIN = 1023, high band	-0.5	+2	+3.5	dB
		Low band	-1	+0.5	+2.5	
W9	Output Power Deviation from $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TX_GAIN = 1023, high band	-4	-2	-1	dB
		Low band	-2.5	-1	0	
W10	Power Control Step Size Accuracy	Five calibration points over the power control range to create four linear regions, any linearly interpolated 1dB TX_GAIN step over the specified power range (W2 and W7) will produce 1 dB output power step within this error range.		± 0.25		dB
W11	Power Control Step Size Accuracy	Five calibration points over the power control range to create four linear regions, any linearly interpolated 10dB TX_GAIN step over the specified power range (W2 and W7) will produce 10dB output power step within this error range.		± 0.75		dB

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS: General

(MAX2551 MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables 20-51, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6V, $f_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
REFERENCE FREQUENCY INPUT							
R1	Input Level	Test condition	125		600	$m V_{P-P}$	
R2	Input Frequency	Reference divider set to divide-by-2 for frequencies higher than 26 MHz	13	19.2	40	MHz	
REFERENCE FREQUENCY OUTPUT							
RO1a	REFOUT Output Level, AC		110	320	500	$m V_{\text {P-P }}$	
RO1b	REFOUT Output Level, DC			0.8		V	
RO2	REFOUT Output Amplitude	500Ω \|	22pF load, REFOUT_LV_CMOS_SEL = 0	2.4	2.7		V_{P-P}
RO4	REFOUT Output Frequency	Matches REFIN frequency (FREF)	13	19.2	40	MHz	

Rx DIGITAL LOW-VOLTAGE DIFFERENTIAL SIGNALING OUTPUT INTERFACE

LV0	Output Bit Rate on Each I and Q	Test condition	153.6			Mbps
LV1	Output Common Mode		1.2			V
LV3	Output Differential Swing on Load	120Ω differential output load (Note 3)	100	140	220	mVPEAK
LV4	Differential Output Resistance			670		Ω

Tx BASEBAND INTERFACE

Bb1	Input Bit Rate, on Each I and Q	Test condition	153.6			Mbps
Bb8	Common Mode Input Voltage		1.25			V
Bb9	Differential Input Swing		112	140	500	$m V_{P-P}$
bb10	Differential Input Resistance (Note 3)	Bit TXINDACZI = 1	55	100	140	Ω
bb11		Bit TXINDACZI $=0$	140	220	340	

Rx RF PLL

RS1	Valid RF Main Division Ratio Range		62		147	
RS3	Valid Main Fractional Divider Programming Value	20-bit resolution	00000		FFFFF	hex
RS5	Charge-Pump Current Gain	Using 800 ${ }^{\text {A }}$ setting	0.5	0.82	1.0	mA
RS6a	VCO Tuning Gain	RXVCO, high band	21	65	111	MHz/V
RS6b		RXVCO, low band	38	127	216	
RS9	PLL Settling Time	50 kHz loop bandwidth	200			$\mu \mathrm{s}$

MAX2551

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS: General (continued)

(MAX2551 MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables $20-51, \mathrm{~V}_{\mathrm{C}} \mathrm{C}_{-}=3.0 \mathrm{~V}$ to 3.6V, $f_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 2)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Tx RF PLL						
TS2	Valid RF Main Division Ratio Range		66		153	
TS3	Valid Reference Division Ratios	Division ratios are 1 or 2	1		2	
TS4	Valid Main Fractional Divider Programming Value	20-bit resolution	00000		FFFFF	hex
TS5	Charge-Pump Current CP	800 $\mu \mathrm{A}$	0.5	0.82	1.0	mA
TS9	PLL Settling Time	50 kHz loop bandwidth		200		$\mu \mathrm{s}$
DAC1	Resolution	Monotonicity is production tested		12		Bits
AFC DAC						
DAC3	Output-Voltage High	Load > 200k 2 to GND, AFCDAC = all 1	2.55	2.68		V
DAC4	Output-Voltage Low	Load $>200 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {CC_ }}$, AFCDAC $=$ all 0		0.37	0.45	V
DAC5	Output Noise	Any code within 0.5 V to 2.5 V output level, 100 Hz to 20 kHz		6		$\mu \mathrm{V} / \mathrm{rtHz}$
DAC6	Settling Time	Step from 0.6V to 2 V , settling to $\pm 10 \mathrm{mV}$				$\mu \mathrm{s}$
DIGITAL TEMPERATURE SENSOR						
T1	Output Code vs. Temperature	$\mathrm{T}_{\text {A }}=-40^{\circ} \mathrm{C}$		5		\%code
T2		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		17		
T3		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		27		
T5	Code Slope	$\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		5		
ISOLATION						
M1	RXIN_ Pin-to-Pin Isolation	Between any RXIN_ pins, with one of the two ports disabled		30		dB
M2	TXOUT_ to RXIN_ Isolation	Between any TXOUT and RXIN_, with both ports on		60		dB

Note 2: Production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Cold and hot are guaranteed by design and characterization.
Note 3: Guaranteed by design and characterization.

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

General Comments

Abstract

MAX-PHY MAX-PHY is Maxim's solution for the digital interface system between the radio IC and the baseband/DSP. It is a multimode, software programmable, digital signal postprocessing engine that processes the data out of the radio IC and produces the digital filtered outputs for use in the DSP. It enables multimode operation of the radio through software control. Maxim offers an evaluation kit for the MAX2551 along with an FPGA-based MAX-PHY evaluation platform. The FPGA includes the recommended digital channel-selection filters. The Verilog code for these filters is also available for integration into the DSP. Contact Maxim for further information.

Additional Information

The specifications in the following pages calculate sensitivity with a specified front-end loss from a measured sig-nal-to-noise and distortion ratio (SNDR) and an assumed minimum output SNDR SENS needed for demodulation at sensitivity. The sensitivity values can be related to noise figure by the formula:

Noise Figure of MAX2551 (dB) = Sensitivity (dBm) -
Front-End Loss (dB) - SNDRSENS (dB) $+174 \mathrm{dBm} / \mathrm{Hz}-$
$10 \times$ LOG(bandwidth in Hz)
Low-noise amplifier (LNA) and programmable-gain amplifier (PGA) gain are set according to the Conditions column in the Electrical Characteristics table. The output SNDR is measured using MAX-PHY and the bandwidth of the measurement is defined by the digital filters in MAXPHY. DC at the output is excluded from the SNDR measurement. SNDR is calculated using an FFT of the output bytes with a typical FFT length of 2^{14} output samples.

Typical Operating Characteristics

(MAX2551 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and $21, \mathrm{~V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2551 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and $21, \mathrm{~V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

MAX2551
 Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2551 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and $21, \mathrm{~V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2551 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and 21, $\mathrm{V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

RXIN1 SENSITIVITY vs. FREQUENCY WITH -28dBm ADJACENT CHANNEL INTERFERENCE LNA GAIN = HIGH, PGA GAIN = 3

RXIN3 SENSITIVITY vs. FREQUENCY WITH -28dBm ADJACENT CHANNEL INTERFERENCE LNA GAIN = MID, PGA GAIN = 6

RXIN1 SENSITIVITY vs. FREQUENCY WITH
-28dBm ADJACENT CHANNEL INTERFERENCE LNA GAIN = MID, PGA GAIN = 6

RXIN3 SENSITIVITY vs. FREQUENCY WITH
-28dBm ADJACENT CHANNEL INTERFERENCE LNA GAIN = MAX, PGA GAIN = 3

RXIN3 EVM vs. FREQUENCY

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2551 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and 21, $\mathrm{V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2551 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and 21, $\mathrm{V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2551 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and 21, $\mathrm{V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

MAX2551

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2551 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and $21, \mathrm{~V}_{\text {CC_ }}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

MAX2551

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2551 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and $21, \mathrm{~V}_{\text {CC_ }}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2551 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and 21, $\mathrm{V}_{\text {CC_ }}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2551 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and 21, $\mathrm{V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2551 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and $21, \mathrm{~V}_{\text {CC_ }}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2551 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and $21, \mathrm{~V}_{\text {CC_ }}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

TIME (100 $\mu \mathrm{s} / \mathrm{div}$)

TIME ($0.15 \mathrm{~ms} / \mathrm{div}$)

RX TURN-ON FREQUENCY
SETTLING (LOW BAND)

TIME (100 $\mathrm{\mu s} / \mathrm{div}$)

Rx CHANNEL-SWITCH FREQUENCY SETTLING (HIGH BAND)

TIME ($0.15 \mathrm{~ms} / \mathrm{div}$)

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2551 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and 21, $\mathrm{V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2551 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and 21, $\mathrm{V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2551 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and 21, $\mathrm{V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	TXOUTL	Low-Band TXRF Output. Internally matched to 50Ω over the band of operation.
2	GND_TXL	Tx Ground. Connect directly to ground plane.
3	TXOUTH	High-Band TXRF Output. Internally matched to 50Ω over the band of operation.
4	GND_TXH	High-Band Tx Output Ground. Connect directly to ground plane.
5	DIN	Data Input of the 4-Wire Serial Interface
6	TXINI+	Transmitter Noninverting In-Phase Input. Accepts baseband sigma-delta modulated digital bit streams. Connect directly to the baseband processor.
7	TXINI-	Transmitter Inverting In-Phase Input. Accepts baseband sigma-delta modulated digital bit streams. Connect directly to the baseband processor.

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Pin Description (continued)

PIN	NAME	FUNCTION
8	TXINQ+	Transmitter Noninverting Quadrature Input. Accepts baseband sigma-delta modulated digital bit streams. Connect directly to the baseband processor.
9	TXINQ-	Transmitter Inverting Quadrature Input. Accepts baseband sigma-delta modulated digital bit streams. Connect directly to the baseband processor.
10	$\mathrm{V}_{\text {CC_TXBB }}$	Baseband Tx Path Supply. Connect to a regulated supply voltage. Bypass each supply to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
11	CPOUT_TX	Charge-Pump Output for Tx Synthesizer. Also used as the tuning voltage for Tx VCO. Connect to an external loop filter.
12	VCC_TXPLL	Tx Synthesizer Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
13	REFOUT	Reference Clock Buffer Output. Configurable by the REFEN pin and SPI. See the REFOUT Functionality section for details.
14	$\mathrm{V}_{\text {CC_REF }}$	Reference Buffer Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
15	REFIN	Reference Input Pin. Connected to TCXO. Requires a DC-blocking capacitor (1nF).
16	BYPASS_TX	Tx VCO Bias Bypass. Bypass to ground with a 470nF capacitor as close as possible.to the pin.
17	GND_TXVCO	Tx VCO Ground. Connect to the PCB ground plane with a separate via.
18	VCC_TXVCO	Tx VCO Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
19	AFC_OUT	AFC DAC Output. The DAC is controlled by the register TXLO_AFCDAC (Table 43).
20	RXOUTI+	Receiver Noninverting In-Phase Output. Digital sigma-delta modulated LVDS output. Connect directly to the baseband processor.
21	RXOUTI-	Receiver Inverting In-Phase Output. Digital sigma-delta modulated LVDS output. Connect directly to the baseband processor.
22	RXOUTQ+	Receiver Noninverting Quadrature Output. Digital sigma-delta modulated LVDS output. Connect directly to the baseband processor.
23	RXOUTQ-	Receiver Inverting Quadrature Output. Digital sigma-delta modulated LVDS output. Connect directly to the baseband processor.
24	$V_{\text {CC_RXBB }}$	Baseband Rx Path Supply. Regulated Power-Supply Input. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
25,44	N.C.	Leave Unconnected
26	VCC_CLKVCO	Clock Generation VCO Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Pin Description (continued)

PIN	NAME	FUNCTION
27	GND_CLKVCO	Clock Generation Synthesizer Ground. Connect clock generation synthesizer ground to the PCB ground plane with a separate via.
28	VCC_CLKPLL	Clock Generation Synthesizer Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
29	SCLK	SPI Interface Clock Input. Data is clocked in to the serial data input on the rising edge of SCLK. See Figure 4 for details.
30	VCC_RXPLL	Rx Synthesizer Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
31	CPOUT_RX	Rx Synthesizer Charge Pump Output. Also used as the tuning voltage for Rx VCO. Connect to an external loop filter.
32	BYPASS_RX	Rx VCO Bias Bypass. Bypass to ground with a 470nF capacitor as close as possible to the pin.
33	GND_RXVCO	Rx VCO Ground. Connect ground to the PCB ground plane with a separate via.
34	VCC_RXVCO	Rx VCO Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
35	DOUT	SPI Data Output
36	VCC_MXR	Rx Mixer Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
37	MIXINH	High-Band Rx Mixer Input. RF input to mixer from an external filter (optional). Internally DC-blocked and matched to 50Ω.
38	MININL	Low-Band Rx Mixer Input. RF input to mixer from an external filter (optional). Internally DC-blocked and matched to 50Ω.
39	GPO3	General-Purpose Output. Controlled by register 7 (Table 20). GPO3 can also be configure as a PLL lock-detect output.
40	VCC_LNA	LNA Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
41	LNAOUTL	Low-Band LNA Output. RF output from LNA 3 to external SAW filter. Internally DC-blocked and matched to 50Ω.
42	LNAOUTH	High-Band LNA Output. RF Output from LNA 1 to an external SAW filter. Internally DC-blocked and matched to 50Ω.
43	REFEN	Configuration for REFOUT. When REFEN $=0$, REFOUT can be configured for CMOS or low-voltage output by the SPI interface (see the REFOUT Functionality section). When REFEN $=1$, REFOUT is configured as REFIN buffer with CMOS output.
45	GND_LNAP	PCS LNA Ground. Connect directly to ground plane.
46	RXIN1	Low-Noise Amplifier Input 1. Requires AC-coupling and external matching.
47	GPO2	General-Purpose Output. Controlled by register 7<3:2>.

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Pin Description (continued)

PIN	NAME	FUNCTION
48	RXIN3	Low-Noise Amplifier Input 3. Requires AC-coupling and external matching.
49	GND_LNAC	Ground for Cellular LNA. Connect directly to the ground plane.
50	RXIN4	Low-Noise Amplifier Input 4. Requires AC-coupling and external matching.
51	GND_LNAI	IMT LNA Ground. Connect directly to the ground plane.
52	RXIN5	Low-Noise Amplifier Input 5. Requires AC-coupling and external matching.
53	GPO1	General-Purpose Output. Controlled by register 23<25:24>.
54	$\overline{\text { CS }}$	Serial-Interface Chip Select. See Figure 4.
55	VCC_TXRF	Tx Upconverter Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
56	VCC_PAD	PA Driver Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
-	EP	Exposed Pad. Connect to a large ground plane to maximize thermal performance.

Detailed Description

Quad RF Inputs

The MAX2551 features four independent RF inputs. RXIN1 and RXIN3 are used for receiving WCDMA Band II/Band V. Band II and Band V WCDMA/PCS downlink can be monitored (network listen) by programming the part to receive through the RXIN4 and RXIN5 inputs. This allows the base station to monitor surrounding cells to select the best operating conditions (transmit power, codes, frequency, capacity, etc.)

REFOUT Functionality

The MAX2551 features a reference oscillator buffered output that is configurable by the REFEN input and Register 29. REFOUT can be configured as CMOS or as a low-voltage output. Table 2 lists all REFOUT configurations.

Receiver System Gain Control

The device features programmable-gain LNAs and programmable variable-gain baseband amplifiers, allowing the system gain to be entirely controlled by the serial interface. RX1, RX3, and RX5 have three possible gain states: high gain, medium gain, and low gain. RX4 has
high and low gain modes. The gain state of the LNA in operation is programmed by the LNAGAIN bits in the RX_GAIN[15:14] register. Each LNA requires an external matching network to optimize system sensitivity. Table 3 provides S11 for each LNA input over the specified band of operation, Table 4 provides S11 of RXIN1 and RXIN3 LNA output, and Table 5 provides S11 of the mixer input. The receiver also features a separate dedicated receive path for the 1930 MHz to 1995 MHz band that enables monitoring.
The baseband amplifiers has 16 possible gain states with each LSB providing a gain step of 3 dB . The gain state of the baseband amplifiers is programmed by the PGAGAIN bits in the RX_GAIN[11:8] register. The dynamic range of the data converters when using the recommended sampling rates is sufficient to allow for minimal switching of system gain over varying input signal power. Table 6 and Table 7 provide suggested LNA and PGA settings for various input signal power ranges. Two possible LNA/ PGA gain settings are provided for the uplink band. Case 1 (Table 6) allows for 3GPP TS25. 104 compliance under all conditions while case 2 (Table 7) allows best sensitivity but compromises adjacent channel selectivity and intermodulation in high-gain LNA mode.

MAX2551

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 1. RF Input/Output Frequency Range

PIN	FUNCTION	FREQUENCY RANGE (MHz)
RXIN1	Band II WCDMA uplink Rx	1850 to 1915
RXIN3	Band V WCDMA uplink Rx	820 to 849
RXIN4	Band V WCDMA/GMSK monitor	865 to 894
RXIN5	Band II WCDMA/PCS monitor	1930 to 1995
TXOUTL	Band V WCDMA downlink Tx	865 to 894
TXOUTH	Band II WCDMA downlink Tx	1930 to 1995

Table 2. REFOUT Output Configurations

INPUT		OUTPUT	
REFEN INPUT	REFIN_ENOUT3 (TXLO_REF<14>)	REFOUT_LV_CMOS_SEL (TXLO_REF<23>)	OUTPUT TYPE
	0	X	Off
	1	0	CMOS
	1	x	X

Table 3. Typical RXIN1 (High Gain) S11 Parameters (Vcc_= $=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

FREQUENCY (MHz)	REAL	IMAGINARY
1810.0	35.4	-43.8
1815.0	35.5	-43.7
1820.0	35.6	-43.7
1825.0	35.6	-43.7
1830.0	35.7	-43.6
1835.0	35.8	-43.6
1840.0	35.9	-43.6
1845.0	36.0	-43.6
1850.0	36.1	-43.6
1855.0	36.1	-43.5
1860.0	36.2	-43.5
1865.0	36.3	-43.5
1870.0	36.4	-43.5
1875.0	36.4	-43.5
1880.0	36.5	-43.5

FREQUENCY (MHz)	REAL	IMAGINARY
1885.0	36.6	-43.5
1890.0	36.6	-43.5
1895.0	36.7	-43.6
1900.0	36.7	-43.6
1905.0	36.8	-43.6
1910.0	36.9	-43.6
1915.0	36.9	-43.6
1920.0	37.0	-43.6
1925.0	37.0	-43.7
1930.0	37.0	-43.7
1935.0	37.1	-43.7
1940.0	37.2	-43.7
1945.0	37.2	-43.8
1950.0	37.2	-43.8
1955.0	-43.9	

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 4. Typical RXIN3 (High Gain) S11
Parameters ($\mathrm{VCC}_{-}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

FREQUENCY (MHz)	REAL	IMAGINARY
795.0	38.2	-34.2
800.0	38.6	-33.8
805.0	39.0	-33.4
810.0	39.5	-33.1
815.0	39.9	-32.7
820.0	40.3	-32.4
825.0	40.8	-32.0
830.0	41.2	-31.7
835.0	41.6	-31.4
840.0	42.0	-31.2
845.0	42.5	-30.9
850.0	42.9	-30.6
855.0	43.3	-30.4
860.0	43.7	-30.2
865.0	44.2	-29.9
870.0	44.6	-29.7

Table 5. Typical RXIN4 (High Gain) S11
Parameters ($\mathrm{V} C \mathrm{C}_{-}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

FREQUENCY (MHz)	REAL	IMAGINARY
840.0	24.0	-57.8
845.0	24.5	-57.6
850.0	24.9	-57.4
855.0	25.3	-57.3
860.0	25.7	-57.2
865.0	26.1	-57.1
870.0	26.3	-57.0
875.0	26.6	-57.0
880.0	26.8	-56.9
885.0	26.9	-56.9
890.0	27.0	-56.8
895.0	27.1	-56.8
900.0	27.1	-56.7
905.0	27.1	-56.7
910.0	27.1	-56.6
915.0	27.0	-56.5

Table 6. Typical RXIN5 (High Gain) S11 Parameters ($\mathrm{V}_{\mathrm{CC}}^{-}=+\mathbf{3 . 3 V}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

FREQUENCY (MHz)	REAL	IMAGINARY
1890.0	17.4	-35.7
1895.0	17.4	-35.5
1900.0	17.4	-35.3
1905.0	17.5	-35.1
1910.0	17.5	-34.9
1915.0	17.5	-34.7
1920.0	17.6	-34.5
1925.0	17.6	-34.3
1930.0	17.7	-34.1
1935.0	17.7	-33.9
1940.0	17.7	-33.7
1945.0	17.8	-33.5
1950.0	17.8	-33.3
1955.0	17.9	-33.1
1960.0	17.9	-32.9

FREQUENCY (MHz)	REAL	IMAGINARY
1965.0	18.0	-32.7
1970.0	18.0	-32.5
1975.0	18.1	-32.3
1980.0	18.1	-32.1
1985.0	18.2	-31.9
1990.0	18.2	-31.8
1995.0	18.3	-31.6
2000.0	18.3	-31.4
2005.0	18.4	-31.2
2010.0	18.5	-31.0
2015.0	18.5	-30.8
2020.0	18.6	-30.6
2025.0	18.7	-30.4
2030.0	18.7	-30.2
2035.0	18.8	-30.0

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 7. Typical LNAOUTH (High Gain) S11 Parameters ($\mathrm{V}_{\mathrm{cc}} \mathrm{C}_{-}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

FREQUENCY (MHz)	REAL	IMAGINARY
1810.0	27.9	1.3
1815.0	28.1	1.8
1820.0	28.4	2.3
1825.0	28.7	2.8
1830.0	29.0	3.2
1835.0	29.3	3.7
1840.0	29.6	4.2
1845.0	29.9	4.7
1850.0	30.2	5.2
1855.0	30.5	5.7
1860.0	30.8	6.2
1865.0	31.1	6.6
1870.0	31.5	7.1
1875.0	31.8	7.6
1880.0	32.1	8.1

FREQUENCY (MHz)	REAL	IMAGINARY
1885.0	32.5	8.6
1890.0	32.8	9.1
1895.0	33.1	9.6
1900.0	33.5	10.1
1905.0	33.9	10.6
1910.0	34.2	11.1
1915.0	34.6	11.5
1920.0	35.0	12.0
1925.0	35.4	12.5
1930.0	35.7	13.0
1935.0	36.1	13.5
1940.0	36.5	14.0
1945.0	36.9	14.5
1950.0	37.3	15.0
1955.0	37.8	15.5

Digital I/Q Receive Interface
The baseband output of the MAX2551 is in the form of a digital I/Q interface. The received signals are sampled by a 1-bit sigma-delta modulator clocked at 153.6 MHz for WCDMA and 26 MHz for GSMK. The digital bitstream out of the converter is transported from the MAX2551 to the baseband processor by a low-voltage differential signaling (LVDS) interface. The output data is single-bit nonreturn-to-zero (NRZ). The MAX2551 does not perform any encoding of the data and no clock is exchanged between the MAX2551 and the baseband processor.
The MAX2551 performs limited analog filtering only to minimize aliasing; all channel filtering is realized entirely in the digital domain. The digital filtering removes undesired signals as well as the inherent quantization noise of the sigma-delta modulator. In addition, the MAX2551's analog filters include a pole at approximately half the channel bandwdith that must be equalized by the digital filters.
The differential outputs require a termination resistor at the digital baseband IC inputs. The output current of the

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Figure 1. Digital Baseband Receiver Interface

Figure 2. Baseband Input Example

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Baseband Input Level
The MAX2551 baseband input is in digital 1-bit sigmadelta converted format. There are internal 1-bit I/Q DACs that restore the level of the incoming digital signals to a repeatable analog level in the MAX2551. At a given TX_GAIN value, the RMS output power level depends on the density of the bit stream, not the voltage level of the LVDS digital signal. The density of the bit stream, in turn, depends on the input level of the sigma-delta converter, which resides in the baseband chip. The condition for the AC performance in the EC table calls for -4 dBFs peak, which means -4 dB relative to the full scale of the input of the sigma-delta converter. The sigma-delta converter, coded in Verilog, and implemented on FPGA has 10 bits (9 bits + sign) at the input. In this case, the full scale is ± 511, and -4 dBFs peak means ± 322 peak excursion. The RMS level is lower than this number, depending on the peak-average ratio of the signal. For TM1, the peakaverage is 10.6 dB at 0.01%, so the RMS level of the baseband signal is -14.6 dBFs , or ± 95.

DC Offset
While the inherent DC offset at the I/Q outputs is very low, it is expected that the baseband processor will digitally remove any DC offset.

Digital Filters/Sigma Delta Modulator
Verilog code is available for implementation of the sigmadelta modulator and digital filters in the baseband processor. Contact the factory for further information.

Fractional-N Synthesizers

The MAX2551 includes three fractional-N frequency synthesizers. One synthesizer is used to generate the receive RF local oscillator (LO), the second is used to generate the transmit RF local oscillator, while the third is used to generate the ADC sampling clock. The loop filter for the ADC sampling clock synthesizer is integrated onchip. RF synthesizers require an external loop filter. All synthesizers have 20 bits of fractional resolution.

RF Synthesizers
For the receiver the RF LO frequency is programmed by the RXLO_FRAC [19:0] (Fractional) register and the RXLO_SYN[7:0] (Integer) register. The synthesizer frequency is demonstrated by the following example.
Assume:

$$
\begin{gathered}
f_{\text {REFIN }}=f_{\text {COMPARISON }}=19.2 \mathrm{MHz} \\
f_{\text {LO }}=f_{\text {REFIN }} \times\left(\text { RXLO_SYN }+\frac{\text { RXLO_FRAC }}{2^{20}}\right) \times K
\end{gathered}
$$

where:
$K=1$ if RXIN1, RXIN3, RXIN5
$K=0.5$ if RXIN4
For the transmitter the RF LO frequency is programmed by the TXLO_FRAC [19:0] (Fractional) register and the TXLO_SYN[7:0] (Integer) register. The synthesizer frequency is demonstrated by the following example.
Assume:

$$
\begin{gathered}
f_{\text {REFIN }}=f_{\text {COMPARISON }}=19.2 \mathrm{MHz} \\
f_{L O}=f_{\text {REFIN }} \times\left(T X L O _S Y N+\frac{T X L O _F R A C}{2^{20}}\right) \times \mathrm{K}
\end{gathered}
$$

where:
$K=0.5$ for TXOUTL
$K=1$ for TXOUTH
Calculate the required divider ratio by dividing the LO frequency by the reference frequency.

$$
\text { Divider }=\frac{f_{\text {LO }} \times 2}{f_{\text {COMPARISON }}}=\frac{1910 \mathrm{MHz}}{19.2 \mathrm{MHz}}=99.479166
$$

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

The integer-N divider is equal to the integer portion of the divider ratio, 99 in this example. Convert the integer-N decimal value to binary and program into the RXLO_SYN bits.

$$
\begin{aligned}
\text { Integer-N Divider }=99 & =0 \times 63=01100011 \rightarrow \\
\text { RXLO_SYN } & =01100011
\end{aligned}
$$

The fractional- N divider is equal to the fractional portion of the divider ration, 0.479166 in this example. Convert the fractional portion of the divider to a 20-bit word by multiplying by 2^{20} and rounding to the nearest whole number. Then, convert the result to binary and program the bits into the RXLO_FRAC.

Fractional-N Divider $=0.479166 \times 2^{20}=502442=$ $0 \times 7 A A A A \rightarrow$ RXLO_FRAC $=0 \times 7 A A A A$

ADC Clock Synthesizer

The sampling clock frequency is controlled by the CINT (BBCLK_SYN[7:0]) and CFRAC (BBCLK_FRAC[19:0]) registers. The sampling clock synthesizer does not need to be repeatedly programmed during normal operation. The sampling clock frequency (f ${ }^{\text {ADCCLK }}$) is 153.6 MHz in WCDMA mode and 26 MHz in GSM mode. The dynamic range of the converters with this sampling frequency is sufficient to meet all system specifications with very minimal control of the PGA.
Assume:

$$
f_{\text {REFIN }}=f_{\text {COMPARISON }}=19.2 \mathrm{MHz}
$$

ADC Clock Synthesizer
 Fractional Frequency Correction

The MAX2551 ADC clock synthesizer uses a 20-bit frequency synthesizer and can be enhanced by a fractional error correction. Parameters PBYQ_RATUP and PBYQ_ RATDN implement the following function.

$$
\begin{gathered}
\text { Fadcclk }=\text { freFln } \times(\text { CINT }+(\text { CFRAC }+ \text { PBYQ_RATUP/ } \\
\left.(\text { PBYQ_RATUP }+ \text { PBYQ_RATDN })) / 2^{20}\right) \times K \\
\text { PBYQ_RATUP/(PBYQ_RATUP + PBYQ_RATDN })= \\
\left(f_{\text {ADCCLK/fREFIN }- \text { CINT }) \times 2^{20} \times K-\text { CFRAC }}\right.
\end{gathered}
$$

where:

$$
\begin{aligned}
& \mathrm{K}=8 \text { if WCDMA } \\
& \mathrm{K}=48 \text { if GSM/PCS/DCS }
\end{aligned}
$$

PBYQ_RATUP and PBYQ_RATDN should be chosen for the best fit.
This feature can be enabled or disabled through EN_ PBYQDIV (REG15<22>). Table 8 shows the PBYQ_ RATUP and PBYQ_RATDN with commonly used crystal oscillator frequencies.

Power-Down Modes
The MAX2551 features multiple power-down modes that can be controlled by hardware or software. Table 9 describes the various power-down modes.

Table 8. Typical LNAOUTL (High Gain) S11 Parameters ($\mathrm{VCC}_{-}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+\mathbf{2 5 ^ { \circ }} \mathrm{C}$)

FREQUENCY (MHz)	REAL	IMAGINARY
795.0	40.1	-4.0
800.0	40.8	-3.3
805.0	41.6	-2.6
810.0	42.3	-1.9
815.0	43.1	-1.2
820.0	43.9	-0.6
825.0	44.7	0.1
830.0	45.5	0.7

FREQUENCY (MHz)	REAL	IMAGINARY
835.0	46.4	1.3
840.0	47.2	1.9
845.0	48.1	2.5
850.0	49.0	3.1
855.0	49.9	3.7
860.0	50.8	4.2
865.0	51.7	4.8
870.0	52.6	5.3

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Carrier and Sideband Suppression

 OptimizationThe MAX2551 delivers a typical carrier suppression of -40 dBc and a sideband suppression of -45 dBc without any external calibration; however, if greater suppression is required, the MAX2551 is capable of overriding the factory settings and accepting manual calibration from the baseband processor.

RF Band Configuration
The MAX2551 has configurable VCO and LO generation to support BC0 and BC1 forward and reverse link operation. In transmit signal path, LC tank is also configurable to optimize performance in both bands. Table 10 shows the key difference in SPI settings.

General-Purpose Outputs

The MAX2551 is equipped with three general-purpose outputs. GPO3 can also be configured as a PLL lock detect for the Rx, Tx or Rx and Tx. See Table 20 for how to properly configure the general-purpose outputs.

Table 9. Typical MIXINH S11 Parameters (VCC_=+3.3V, $\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

FREQUENCY (MHz)	REAL	IMAGINARY
1810.0	30.3	-37.1
1815.0	30.5	-37.2
1820.0	30.7	-37.2
1825.0	30.9	-37.3
1830.0	31.1	-37.5
1835.0	31.3	-37.6
1840.0	31.5	-37.7
1845.0	31.7	-37.8
1850.0	31.9	-37.9
1855.0	32.0	-38.1
1860.0	32.2	-38.2
1865.0	32.3	-38.4
1870.0	32.4	-38.5
1875.0	32.6	-38.7
1880.0	32.7	-38.8

FREQUENCY (MHz)	REAL	IMAGINARY
1885.0	32.8	-39.0
1890.0	32.9	-39.1
1895.0	33.0	-39.3
1900.0	33.1	-39.5
1905.0	33.1	-39.6
1910.0	33.2	-39.8
1915.0	33.2	-40.0
1920.0	33.3	-40.1
1925.0	33.3	-40.3
1930.0	33.3	-40.5
1935.0	33.4	-40.6
1940.0	33.4	-40.8
1945.0	33.4	-40.9
1950.0	33.4	-41.1
1955.0	33.3	-41.3

Table 10. Typical MIXINL S11 Parameters ($\mathrm{VCC}_{-}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C}$)

FREQUENCY (MHz)	REAL	IMAGINARY
795.0	43.5	-24.0
800.0	45.1	-23.5
805.0	46.8	-23.1
810.0	48.5	-22.8
815.0	50.3	-22.6
820.0	52.1	-22.5
825.0	54.0	-22.5
830.0	55.9	-22.6

FREQUENCY (MHz)	REAL	IMAGINARY
835.0	57.9	-22.8
840.0	59.9	-23.2
845.0	61.8	-23.7
850.0	63.8	-24.4
855.0	65.8	-25.2
860.0	67.8	-26.2
865.0	69.7	-27.3
870.0	71.6	-28.6

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Power-On Reset (POR)

Recommended defaults are not guaranteed upon powerup and are provided for reference only. All registers must be written with the proper values no earlier than $100 \mu \mathrm{~s}$ after power-up. Figure 3 displays the time it takes for Tx/Rx PLL lock detect (GPO3) to become active after power-up and enabling the correct registers for proper operation. All reserved registers should only be written with default values.

Temperature Sensor
An on-chip temperature sensor is enabled by programming RX_ENABLE<14> = 1. To trigger temperature sensor ADC reading, program RX_MISC2<6> from 0 to 1. The ADC acquires the 5 -bit logic output in 2μ; the temperature sensor needs to be on (RX_ENABLE<14> = 1) to maintain the ADC logic output. To read the 5-bit logic output through the DOUT pin, apply 4-wire SPI readout programming sequence to RX_MISC2<11:7>.

4-Wire Serial Interface

The MAX2551 includes 32 programmable 26-bit registers. The most significant bit (MSB) is the read/write selection bit (R/W in Figure 4). The next 5 bits are register address (A[4:0] in Figure 4). The 26 least significant bits (LSBs) are register data (D[25:0] in Figure 4). Register data is loaded through the 4-wire SPI/MICROWIRE ${ }^{\text {TM }}$-compatible serial interface. MSB of data at the DIN pin is shifted in first and is framed by $\overline{\mathrm{CS}}$. When $\overline{\mathrm{CS}}$ is low, input data is shifted at the rising edge of the clock at the SCLK pin. At $\overline{\mathrm{CS}}$ rising edge, the 26-bit data bits are latched into the register selected by the address bits. See Figure 4. There is no power-on SPI register self-reset functionality in the MAX2551; the user must program all register values after power-up. During the read mode, register data selected by address bits is shifted out to the DOUT pin at the falling edges of the clock.

Figure 3. POR PLL Lock-Detect Time
MICROWIRE is a trademark of National Semiconductor Corp.

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 11. Typical TXOUTL S11 Parameters ($\mathrm{V}_{\mathrm{CC}} \mathrm{C}_{-}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

FREQUENCY (MHz)	REAL	IMAGINARY
700.0	25.5	63.9
750.0	52.3	76.8
800.0	103.7	59.2
850.0	107.4	-9.9
900.0	64.8	-32.6
950.0	39.6	-27.2
1000.0	27.2	-18.9
1050.0	20.7	-11.8
1100.0	16.9	-6.1
1150.0	14.5	-1.3
1200.0	12.9	2.7
1250.0	11.8	6.3
1300.0	11.1	9.4
1350.0	10.5	12.3
1400.0	10.1	15.0

1450.0	9.9	17.6
1500.0	9.7	20.1
1550.0	9.6	22.5
1600.0	9.6	24.8
1650.0	9.6	27.1
1700.0	9.7	29.4
1750.0	9.8	31.6
1800.0	10.0	33.9
1850.0	10.2	36.2
1900.0	10.4	38.6
1950.0	10.7	41.0
2000.0	11.0	43.5
2050.0	11.3	46.0
2100.0	11.7	48.6
2150.0	12.2	51.4
2200.0	12.7	54.2

Table 12. Typical TXOUTH S11 Parameters ($\mathrm{V}_{\mathrm{CC}}^{-}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

FREQUENCY (MHz)	REAL	IMAGINARY
700.0	3.7	21.9
750.0	3.9	23.9
800.0	4.2	26.0
850.0	4.5	28.2
900.0	4.8	30.5
950.0	5.2	33.1
1000.0	5.8	35.8
1050.0	6.4	38.9
1100.0	7.2	42.2
1150.0	8.3	45.8
1200.0	9.7	50.0
1250.0	11.5	54.6
1300.0	14.0	60.0
1350.0	17.5	66.1
1400.0	22.5	73.2
1450.0	29.9	81.2

FREQUENCY (MHz)	REAL	IMAGINARY
1500.0	41.1	89.9
1550.0	58.2	98.0
1600.0	83.9	101.3
1650.0	117.3	91.2
1700.0	146.2	58.0
1750.0	149.1	10.8
1800.0	126.3	-24.1
1850.0	97.4	-38.3
1900.0	74.0	-39.5
1950.0	57.4	-35.4
2000.0	45.8	-29.5
2050.0	37.8	-23.5
2100.0	32.0	-17.8
2150.0	27.8	-12.6
2200.0	24.7	-7.8

MAX2551

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 13. LNA and PGA Gain Settings for 1850MHz to 1915MHz Uplink Band (Case 1: Use LNA Mid and Low Gain)

	ESTIMATED INPUT POWER AT LNA INPUT, PIN				
	$<-\mathbf{- 9 2 d B m}$	$\boldsymbol{>} \mathbf{- 9 2 d B m}$	$>\mathbf{- 8 5 d B m}$	$\boldsymbol{>} \mathbf{- 6 7 d B m}$	$>\mathbf{- 4 2 d B m}$
LNA Gain Register Setting	Medium	Medium	Medium	Low	Low
PGA Gain Register Setting	9	8	6	6	0
Estimated Sensitivity (dBm)	-118	-113	-110	-97	-83
Estimated Maximum Wanted Modulated Signal (dBm)	-43	-36	-31	-20	-6

Table 14. Suggested LNA and PGA Gain Settings for 1850MHz to 1915MHz Uplink Band (Case 2: Use LNA in All Three Modes)

	ESTIMATED INPUT POWER AT LNA INPUT, PIN				
	<-92dBm	$\boldsymbol{>} \mathbf{- 9 2 d B m}$	$\mathbf{> - 8 5 d B m}$	$\boldsymbol{>} \mathbf{- 6 7 d B m}$	$\boldsymbol{>} \mathbf{- 4 2 d B m}$
LNA Gain Register Setting	High	Medium	Medium	Low	Low
PGA Gain Register Setting	6	8	6	6	0
Estimated Sensitivity (dBm)	-121	-113	-110	-97	-83
Estimated Maximum Wanted Modulated Signal (dBm)	-44	-36	-31	-20	-6

Table 15. PBYQ_RATUP and PBYQ_RATDN Commonly Used Crystal Oscillator Frequencies

STANDARD	$\mathrm{f}_{\text {REFIN }}$ (MHz)	CINT REG15 <7:0>	$\begin{aligned} & \text { CFRAC } \\ & \text { REG1 } \\ & <19: 0> \end{aligned}$	$\begin{gathered} \hline \text { PBYQ_RATUP } \\ \text { REG16 } \\ <7: 0> \end{gathered}$	$\begin{gathered} \text { PBYQ_RATDN } \\ \text { REG16 } \\ <15: 8> \end{gathered}$	CINT REG15 <7:0>	CFRAC REG14 <19:0>	PBYQ_RATUP REG16<7:0>	PBYQ_RATDN REG16<15:8>
	Reference Frequency	Integer Divide Ratio (dec)	Fractional Divide Ratio (dec)	Fractional LSB Dither Up (dec)	Fractional LSB Dither Down (dec)	Integer Divide Ratio (hex)	Fractional Divide Ratio (hex)	Fractional LSB Dither Up (hex)	Fractional LSB Dither Down (hex)
WCDMA	13	94	548485	59	6	5E	85E85	3B	6
	15.36	80	0	0	0	50	0	0	0
	19.2	64	0	0	0	40	0	0	0
	20	61	461373	11	14	3D	70A3D	B	E
	26	47	274242	62	3	2 F	42F42	3E	3
GSM	13	96	0	0	0	60	0	0	0
	15.36	81	262144	0	0	51	40000	0	0
	19.2	65	0	0	0	41	0	0	0
	20	62	419430	2	3	3E	66666	2	3
	26	48	0	0	0	30	0	0	0

MAX2551

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 16. Power-Down Modes

OPERATING MODE	$\begin{gathered} \text { REFEN PIN, } \\ \text { REG29<14:12> } \end{gathered}$	BLOCKS ENABLE REG00<18:0>	BIAS ENABLE REG20<24>	$\begin{gathered} \text { AFCDAC } \\ \text { ENABLE } \\ \text { REG30<19> } \end{gathered}$	CDR DIVIDER ENABLE REG16<20>	CDR ENABLE REG24<18>
Sleep	0000	00000	0	0	0	0
AFC Only	0000	00000	0	1	0	0
Reference Buffer Only	1 xxx or 0100	00000	0	1	0	0
Idle RX	1xxx or 0x11	00840	1	1	0	0
Idle TX	1xxx or 0x11	01000	1	1	1	1
RXIN1/TXOUTH Full Duplex	1 xxx or 0x11	79BFF	1	1	1	1
RXIN1 Only	1 xxx or 0x11	009FF	1	1	0	0
RXIN3/TXOUTL Full Duplex	1xxx or 0x11	79BFF	1	1	1	1
RXIN3 Only	1 xxx or 0x11	009FF	1	1	0	0
RXIN4 Monitor	1 xxx or 0x11	009FF	1	1	0	0
RXIN5 Monitor	1 xxx or 0x11	009FF	1	1	0	0
TXOUTL Only	1 xxx or 0x11	79240	1	1	1	1
TXOUTH Only	1xxx or 0x11	79240	1	1	1	1

Table 17. RF Band Configuration

INPUT PIN	RF RANGE (MHz)	VCO SELECT REG03<20:19>	VCO ROH BAND REG03<22:21>	VCO DIVIDER REG03<18:17>	LNA/MIXER SELECT REG01<5:0>	RXIN4_HB REG06<16>
RXIN1	1850 to 1915	10	01	10	18	X
RXIN3	820 to 849	01	$X X$	01	01	X
RXIN4	865 to 894	01	$X X$	01	15	0
RXIN5	1930 to 1995	10	00	10	$2 A$	X

OUTPUT PIN	RF RANGE (MHz)	$\begin{aligned} & \text { VCO } \\ & \text { SELECT } \\ & \text { REG28 } \\ & \text { <15:14> } \end{aligned}$	$\begin{gathered} \text { VCO ROH } \\ \text { BAND } \\ \text { REG28 } \\ <17: 16> \end{gathered}$	$\begin{aligned} & \text { VCO } \\ & \text { DIVIDER } \\ & \text { REG28 } \\ & \text { <13:12> } \end{aligned}$	PAD BAND REG19 <1:0>	PAD CTUNE REG19 <6:2>	$\begin{gathered} \text { TXLO_ } \\ \text { IQ_GAIN } \\ \text { REG20 } \\ \text { <19> } \end{gathered}$	$\begin{gathered} \text { UCX_ } \\ \text { CSW } \\ \text { REG21 } \\ <5: 2> \end{gathered}$	$\begin{gathered} \text { T_UCX_ } \\ \text { RSW } \\ \text { REG22 } \\ <20: 17> \end{gathered}$	$\begin{gathered} \text { T_UCX_- } \\ \text { BAND_SEL } \\ \text { REG22 } \\ \text { <23:22> } \end{gathered}$
TX_OUTL	865 to 894	01	XX	01	00	00100	1	1101	XXXX	01
TX_OUTH	$\begin{gathered} 1930 \text { to } \\ 1995 \end{gathered}$	10	00	10	11	00000	0	0000	0100	11

MAX2551

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Figure 4. SPI Timing
Table 18. SPI Serial Interface Timing

SPEC NO.	PARAMETER	SYMBOL	TYP	UNITS
SPI1	SCLK Rising Edge to $\overline{\mathrm{CS}}$ Falling Edge Wait Time	$\mathrm{t}_{\mathrm{CSO}}$	6	ns
SPI2	Falling Edge of $\overline{\overline{C S}}$ to Rising Edge of First SCLK Time	$\mathrm{t}_{\mathrm{CSS}}$	6	ns
SPI3	DIN to SCLK Setup Time	t_{DS}	6	ns
SPI4	DIN to SCLK Hold Time	t_{DH}	6	ns
SPI5	SCLK Pulse-Width High	t_{CH}	6	ns
SPI6	SCLK Pulse-Width Low	t_{CL}	6	ns
SPI7	Last Rising Edge of SCLK to Rising Edge of $\overline{\mathrm{CS}}$	$\mathrm{t}_{\mathrm{CSH}}$	6	ns
SPI8	$\overline{\mathrm{CS}}$ High Pulse Width	$\mathrm{t}_{\mathrm{CSW}}$	50	ns
SPI9	Time Between Rising Edge of $\overline{\mathrm{CS}}$ and the Next Rising Edge of SCLK	$\mathrm{t}_{\mathrm{CS} 1}$	6	ns
SPI10	SCLK Frequency	$\mathrm{f}_{\mathrm{CLK}}$	40	MHz
SPI11	Rise Time	t_{R}	2.5	ns
SPI12	Fall Time	t_{F}	2.5	ns
SPI13	SCLK Falling Edge to Valid DOUT	t_{D}	12.5	ns

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Register and Bit Descriptions (If Applicable)

The operating mode of the MAX2551 is completely controlled by 32 on-chip registers.

Recommended defaults are not guaranteed upon powerup and are provided for reference only. All registers must be written with the proper values no earlier than 10 $\mu \mathrm{s}$ after power-up (once $\mathrm{V}_{\mathrm{CC}_{-}}$is 90% of final value). All reserved registers should only be written with default values.

Table 19. Brief Register Map

REGISTER NO.	REGISTER NAME	ADDRESS	FUNCTION
0	RX_ENABLE	00000	Enable bits for various internal functions
1	RX_GAIN	00001	Gain control of LNA and PGA
2	Reserved	00010	-
3	RX_LNA	00011	LNA bias, Rx synthesizer configuration
4	Reserved	00100	-
5	Reserved	00101	-
6	RX_LPF	00110	RXLPF configuration
7	GPO_CONFIG	00111	Configuration of GPOs
8	Reserved	01000	-
9	Reserved	01001	-
10	RXLO_FRAC	01010	Receive synthesizer fractional division ratio
11	RXLO_SYN	01011	Configuration of Rx synthesizer
12	BBCLK_OUT	01100	ADC configuration
13	Reserved	01101	-
14	BBCLK_FRAC	01110	ADC clock generator fractional division ratio
15	BBCLK_SYN	01111	Configuration of clock generator synthesizer
16	BBCLK_MISC	10000	Dithering clock generator synthesizer
17	BBCLK_SPARE	10001	Miscellaneous setting for clock generator
18	TX_LPF	10010	LPF settings for Tx path
19	TX_PAD	10011	PA driver settings
20	TX_UPX1	10100	Tx upconverter bias
21	TX_UPX2	10101	Tx upconverter bias adjustment and V2I attenuation
22	TX_UPX3	10110	Tx upconverter DC offset adjustment
23	TX_GAIN1	10111	Tx path gain setting
24	TX_GAIN2	11000	Tx path gain curve adjustment
25	Reserved	11001	-
26	Reserved	11010	-
27	TXLO_FRAC	11011	Transmit synthesizer fractional division ratio
28	TXLO_SYN	11100	Configuration of Tx synthesizer
29	TXLO_REF	11101	Configuring REFOUT and REFIN
30	TXLO_AFCDAC	11110	AFC DAC Word
31	Reserved	11111	-

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 20. RX_ENABLE Register 0 (Address = 00000)

BIT	BIT ID	NAME	DEFINITION	BIT		$\begin{aligned} & \searrow \\ & \underset{Z}{z} \\ & 0 \\ & \text { n } \\ & \underset{x}{x} \end{aligned}$			$\begin{aligned} & \searrow \\ & \vdots \\ & \vdots \\ & \text { Z } \\ & \text { x } \end{aligned}$			$\stackrel{\text { O }}{\text { O }}$	$\begin{aligned} & \text { 山ِ } \\ & \underline{\underline{x}} \\ & \underset{\text { x }}{x} \end{aligned}$	$\begin{aligned} & \text { 륻 } \\ & \underline{\underline{x}} \end{aligned}$	$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & 0 \\ & 0 \\ & \text { U } \end{aligned}$		足
0	LNAEN	LNA Enable	$\begin{aligned} & 0=\text { Disable, } \\ & 1=\text { Enable } \end{aligned}$	0	1	1	1	1	0	0	1	1	0	0	0	0	0
1	RXMXREN	Rx Mixer Enable	$\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0	1	1	1	1	0	0	1	1	0	0	0	0	0
2	RXLPFEN	Rx LPF Enable	$\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0	1	1	1	1	0	0	1	1	0	0	0	0	0
3	PGAQEN	Rx Q PGA Enable	$\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0	1	1	1	1	0	0	1	1	0	0	0	0	0
4	PGAIEN	RxIPGA Enable	$\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0	1	1	1	1	0	0	1	1	0	0	0	0	0
5	ADCEN	ADC Enable	$\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0	1	1	1	1	0	0	1	1	0	0	0	0	0
6	ADCCLKEN	ADC Clock Enable	$\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0	1	1	1	1	1	1	1	1	1	1	0	0	0
7	LVDSQ	Rx Q LVDS Enable	$\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0	1	1	1	1	0	0	1	1	0	0	0	0	0
8	LVDSI	RxILVDS Enable	$\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0	1	1	1	1	0	0	1	1	0	0	0	0	0
9	TXVGCEN	Tx VGC Enable	$\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0	0	0	0	0	1	1	1	1	0	0	0	0	0
10	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	RXSYNEN	Rx SYN Enable	$\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0	1	1	1	1	0	0	1	1	1	0	0	0	0
12	TXSYNEN	Tx SYN Enable	$\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0	0	0	0	0	1	1	1	1	0	1	0	0	0
13	BBLBEN	BB Loopback Enable	$\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	TSEN	Temperature Sensor Enable	$\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	PADEN	PA Driver Enable	$\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0	0	0	0	0	1	1	1	1	0	0	0	0	0
16	TXLPFEN	Tx LPF Enable	$\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0	0	0	0	0	1	1	1	1	0	0	0	0	0

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 20. RX_ENABLE Register 0 (Address = 00000) (continued)

Table 21. RX_GAIN Register 1 (Address = 00001)

BIT	BIT ID	NAME	DEFINITION	BIT													足
0	$\begin{aligned} & \text { LNASEL } \\ & <2: 0> \end{aligned}$	LNA Selection	$\begin{aligned} & <2: 0>=000=\text { RXIN1 (PCS) } \\ & <2: 0>=001=\text { RXIN3 (CELL) } \\ & <2: 0>=101=\text { RXIN4 (GSM) } \\ & <2: 0>=\text { X10 }=\text { RXIN5 (IMT) } \end{aligned}$	0	0	1	1	0	0	1	0	1	0	0	1	1	1
1				1	0	0	0	1	0	0	0	0	0	0	0	0	0
2				2	0	0	1	0	0	0	0	0	0	0	0	0	0
3	BandSel_Mix	Rx Mixer Select	$\begin{aligned} & 0=\text { CEL mixer (default) } \\ & 1=\text { PCS mixer } \end{aligned}$	0	1	0	0	1	1	0	1	0	1	1	0	0	0

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 21. RX_GAIN Register 1 (Address = 00001) (continued)

BIT	BIT ID	NAME	DEFINITION	BIT		$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & 0 \\ & \text { n } \\ & \text { 2 } \\ & \end{aligned}$				$\begin{aligned} & \searrow \\ & \underset{0}{\lambda} \\ & \frac{1}{x} \\ & \end{aligned}$					$\begin{aligned} & \grave{y} \\ & \underset{Z}{2} \\ & 0 \\ & \text { U } \end{aligned}$		-
4	$\begin{aligned} & \text { MX_SW } \\ & <1: 0> \end{aligned}$	Rx Mixer Input Select	$\begin{aligned} & \text { If BandSel_Mix = } 0 \text { (CELL) } \\ & \text { X0 }=\text { CELL input } \\ & \text { X1 = GSM input } \\ & \text { If BandSel_Mix }=1 \text { (PCS) } \\ & 00=\text { DCS input } \\ & 01=\text { PCS input } \\ & 10=\text { IMT input } \\ & 11=\text { None } \end{aligned}$	0	1	0	1	0	1	0	1	0	1	1	0	0	0
5				1	0	0	0	1	0	0	0	0	0	0	0	0	0
6	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7				1	0	0	0	0	0	0	0	0	0	0	0	0	0
8	$\begin{aligned} & \text { PGAGAIN } \\ & <3: 0> \end{aligned}$	Rx PGA Gain Control	$\begin{aligned} & <3: 0>=0000=\text { Min gain } \\ & \text { (default) } \\ & <3: 0>=0001=\text { Min gain }+ \\ & 3 \mathrm{~dB} \\ & \cdots \\ & <3: 0>=1110=\text { Max gain }- \\ & 3 \mathrm{~dB} \\ & <3: 0>=1111 \text { = Max gain } \end{aligned}$	0	0	0	1	1	0	0	0	0	0	0	0	0	0
9				1	1	1	1	1	0	0	1	1	1	0	0	0	0
10				2	1	1	0	0	0	0	1	1	1	0	0	0	0
11				3	0	0	1	1	0	0	0	0	0	0	0	0	0
12	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13				1	0	0	0	0	0	0	0	0	0	0	0	0	0
14	LNAGAIN<1:0>	LNA Gain Control	$\begin{aligned} & <1: 0>=00=\text { Low gain } \\ & <1: 0>=01=\text { Mid gain (not } \\ & \text { available for RXIN4) } \\ & <1: 0>=10=\text { High gain } \\ & \text { (default) } \\ & <1: 0>=11 \text { = Do not use } \end{aligned}$	0	0	0	0	0	1	1	0	0	0	1	1	1	1
15				1	1	1	1	1	0	0	1	1	1	0	0	0	0
16	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17				1	0	0	0	0	0	0	0	0	0	0	0	0	0
18				3	0	0	0	0	0	0	0	0	0	0	0	0	0
19				4	0	0	0	0	0	0	0	0	0	0	0	0	0
20				5	0	0	0	0	0	0	0	0	0	0	0	0	0
21				6	0	0	0	0	0	0	0	0	0	0	0	0	0
22				7	0	0	0	0	0	0	0	0	0	0	0	0	0
23				8	0	0	0	0	0	0	0	0	0	0	0	0	0
24				9	0	0	0	0	0	0	0	0	0	0	0	0	0
25				10	0	0	0	0	0	0	0	0	0	0	0	0	0

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 22．Reserved Register $2($ Address＝00010）

BIT	BIT ID	NAME	DEFINITION	BIT	$\begin{aligned} & \underset{y}{z} \\ & \underset{Z}{z} \\ & \underset{x}{z} \\ & \underset{\sim}{x} \end{aligned}$			$\begin{aligned} & \underset{y}{z} \\ & \underset{y}{z} \\ & \text { ne } \\ & \underset{x}{x} \end{aligned}$							$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & \text { U } \\ & \text { U } \end{aligned}$		$\begin{aligned} & \text { 邑 } \\ & \text { 山゙ } \\ & \hline \end{aligned}$
0	Reserved	Reserved	－	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0
8				8	0	0	0	0	0	0	0	0	0	0	0	0	0
9				9	0	0	0	0	0	0	0	0	0	0	0	0	0
10				10	0	0	0	0	0	0	0	0	0	0	0	0	0
11				11	0	0	0	0	0	0	0	0	0	0	0	0	0
12				12	0	0	0	0	0	0	0	0	0	0	0	0	0
13				13	0	0	0	0	0	0	0	0	0	0	0	0	0
14				14	0	0	0	0	0	0	0	0	0	0	0	0	0
15				15	0	0	0	0	0	0	0	0	0	0	0	0	0
16				16	0	0	0	0	0	0	0	0	0	0	0	0	0
17				17	0	0	0	0	0	0	0	0	0	0	0	0	0
18				18	1	1	1	1	1	1	1	1	1	1	1	1	1
19				19	0	0	0	0	0	0	0	0	0	0	0	0	0
20				20	0	0	0	0	0	0	0	0	0	0	0	0	0
21				21	0	0	0	0	0	0	0	0	0	0	0	0	0
22				22	0	0	0	0	0	0	0	0	0	0	0	0	0
23				23	1	1	1	1	1	1	1	1	1	1	1	1	1
24				24	1	1	1	1	1	1	1	1	1	1	1	1	1
25				25	0	0	0	0	0	0	0	0	0	0	0	0	0

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 23. RX_LNA Register 3 (Address = 00011)

BIT	BIT ID	NAME	DEFINITION	BIT		$\begin{aligned} & \searrow \\ & \underset{Z}{z} \\ & 0 \\ & \text { m } \\ & \underset{x}{x} \end{aligned}$									$\begin{aligned} & خ \\ & \vdots \\ & \text { Z } \\ & 0 \\ & \text { U } \\ & \text { un } \end{aligned}$	$\begin{array}{\|l} \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{\underset{\sim}{u}} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \hline \end{array}$	足
0	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	1	1	1	1	1	1	1	1	1	1	1	1	1
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0
3				3	1	1	1	1	1	1	1	1	1	1	1	1	1
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	1	1	1	1	1	1	1	1	1	1	1	1	1
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0
7				7	1	1	1	1	1	1	1	1	1	1	1	1	1
8				8	1	1	1	1	1	1	1	1	1	1	1	1	1
9				9	1	1	1	1	1	1	1	1	1	1	1	1	1
10				10	0	0	0	0	0	0	0	0	0	0	0	0	0
11	$\begin{aligned} & \text { RXSYN_ } \\ & \text { RBYP } \end{aligned}$	Rx RF PLL Loop Filter	Rx RF PLL Loop Filter Adjust $\begin{aligned} & 0=\text { WCDMA } \\ & 1=\text { Not used } \end{aligned}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13				1	0	0	0	0	0	0	0	0	0	0	0	0	0
14				2	1	1	1	1	1	1	1	1	1	1	1	1	1
15				3	1	1	1	1	1	1	1	1	1	1	1	1	1
16				4	1	1	1	1	1	1	1	1	1	1	1	1	1
17	$\begin{gathered} \text { RVCO_DIV2 } \\ <1: 0> \end{gathered}$	Rx RF VCO Prescaler Divider	Rx RF VCO Prescaler Divide Ratio Configuration$\begin{aligned} & <1: 0\rangle=01=\mathrm{CELL} \\ & <1: 0\rangle=10=\mathrm{PCS} \end{aligned}$	0	0	1	1	0	0	1	0	1	0	0	1	1	1
18				1	1	0	0	1	1	0	1	0	1	1	0	0	0
19	$\begin{gathered} \text { RVCO_SEL } \\ <1: 0> \end{gathered}$	Rx RF VCO Selection	$\begin{aligned} & <1: 0\rangle=00=\text { Disable } \\ & <1: 0\rangle=01=\text { ROL (CELL) } \\ & <1: 0>=10=\text { ROH (PCS) } \\ & <1: 0>=11=\text { Not used } \end{aligned}$	0	0	1	1	0	0	1	0	1	0	0	1	1	1
20				1	1	0	0	1	1	0	1	0	1	1	0	0	0
21	$\begin{aligned} & \text { RVCOTUNE } \\ & \text { <1:0> } \end{aligned}$	Rx RF VCO ROH Band Selection	$\begin{aligned} & <1: 0>=00=\text { band2 (CELL) } \\ & <1: 0>=01=\text { band3 (PCS) } \\ & <1: 0>=11 \text { = Not used } \end{aligned}$	0	1	1	0	0	1	1	1	1	1	1	1	1	1
22				1	0	0	0	0	0	0	0	0	0	0	0	0	0
23	Reserved	Reserved	-	0	1	1	1	1	1	1	1	1	1	1	1	1	1
24				1	0	0	0	0	0	0	0	0	0	0	0	0	0
25				2	0	0	0	0	0	0	0	0	0	0	0	0	0

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 24. Reserved Register 4 (Address = 00100)

BIT	BIT ID	NAME	DEFINITION	BIT				$\begin{aligned} & \searrow \\ & \vdots \\ & \vdots \\ & 0 \\ & \text { ne } \\ & x \\ & x \end{aligned}$							$\begin{aligned} & \underset{2}{2} \\ & \underset{2}{2} \\ & 0 \\ & \frac{1}{4} \end{aligned}$		
0	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	1	1	1	1	1	1	1	1	1	1	1	1	1
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0
8				8	0	0	0	0	0	0	0	0	0	0	0	0	0
9				9	1	1	1	1	1	1	1	1	1	1	1	1	1
10				10	0	0	0	0	0	0	0	0	0	0	0	0	0
11				11	1	1	1	1	1	1	1	1	1	1	1	1	1
12				12	1	1	1	1	1	1	1	1	1	1	1	1	1
13				13	0	0	0	0	0	0	0	0	0	0	0	0	0
14				14	0	0	0	0	0	0	0	0	0	0	0	0	0
15				15	1	1	1	1	1	1	1	1	1	1	1	1	1
16				16	0	0	0	0	0	0	0	0	0	0	0	0	0
17				17	1	1	1	1	1	1	1	1	1	1	1	1	1
18				18	1	1	1	1	1	1	1	1	1	1	1	1	1
19				19	0	0	0	0	0	0	0	0	0	0	0	0	0
20				20	0	0	0	0	0	0	0	0	0	0	0	0	0
21				21	0	0	0	0	0	0	0	0	0	0	0	0	0
22				22	1	1	1	1	1	1	1	1	1	1	1	1	1
23				23	1	1	1	1	1	1	1	1	1	1	1	1	1
24				24	0	0	0	0	0	0	0	0	0	0	0	0	0
25				25	0	0	0	0	0	0	0	0	0	0	0	0	0

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 25. Reserved Register 5 (Address = 00101)

Table 26. RX_LPF Register 6 (Address = 00110)

BIT	BIT ID	NAME	DEFINITION	BIT						$\begin{aligned} & \searrow \\ & \underset{2}{2} \\ & \frac{1}{x} \end{aligned}$					$\begin{aligned} & \searrow \\ & 2 \\ & 0 \\ & 0 \\ & \text { U } \end{aligned}$		足
0	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	1	1	1	1	1	1	1	1	1	1	1	1	1
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0
7				7	1	1	1	1	1	1	1	1	1	1	1	1	1
8				8	0	0	0	0	0	0	0	0	0	0	0	0	0
9				9	0	0	0	0	0	0	0	0	0	0	0	0	0
10				10	1	1	1	1	1	1	1	1	1	1	1	1	1
11				11	0	0	0	0	0	0	0	0	0	0	0	0	0
12				12	0	0	0	0	0	0	0	0	0	0	0	0	0
13				13	1	1	1	1	1	1	1	1	1	1	1	1	1
14				14	0	0	0	0	0	0	0	0	0	0	0	0	0
15				15	1	1	1	1	1	1	1	1	1	1	1	1	1
16				16	0	0	0	0	0	0	0	0	0	0	0	0	0
17	LPFBYPASS	Rx LPF Bypass	$0=$ Normal operation 1 = Bypass Rx LPF	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19				1	0	0	0	0	0	0	0	0	0	0	0	0	0
20				2	0	0	0	0	0	0	0	0	0	0	0	0	0
21				3	0	0	0	0	0	0	0	0	0	0	0	0	0
22				4	0	0	0	0	0	0	0	0	0	0	0	0	0
23	BBMODE	Rx LPF Bandwidth Select	$\begin{aligned} 000 & =\text { WCDMA } \\ 011 & =\text { GSM } \end{aligned}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24				1	0	0	0	0	0	0	0	0	0	0	0	0	0
25				2	0	0	0	0	0	0	0	0	0	0	0	0	0

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 27. GPO_CONFIG Register 7 (Address = 00111)

BIT	BIT ID	NAME	DEFINITION	BIT											$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & 0 \\ & \text { U } \\ & 4 \end{aligned}$		㟔
0	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	$\begin{aligned} & \text { GPO3_LD_- } \\ & \text { RD_sel_LSB } \end{aligned}$		GPO3 Output Mux Select LSB MSB in REG7<17> $00=\text { RXPLL LD }$ 01 = TXPLL LD $10=$ Output selected by GPO3<1:0> 11 = RXPLL LD and TXPLL LD and CLKPLL LD	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	GPO2<1:0>	GPO2 Output Select	$\begin{aligned} & <1: 0>=00=\text { High }-Z \\ & <1: 0>=01=\text { High }-Z \\ & <1: 0>=10=\text { Low- } Z \text { low } \\ & <1: 0>=11 \text { = Low }-Z \text { high } \end{aligned}$	0	1	1	1	1	1	1	1	1	1	1	1	1	1
3				1	0	0	0	0	0	0	0	0	0	0	0	0	0
4	GPO3<1:0>	GPO3 Output Select	$\begin{aligned} & <1: 0\rangle=00=\text { High-Z } \\ & <1: 0\rangle=01=\text { High-Z } \\ & <1: 0\rangle=10=\text { Low-Z low } \\ & <1: 0\rangle=11 \text { = Low- } Z \text { high } \end{aligned}$	0	1	1	1	1	1	1	1	1	1	1	1	1	1
5				1	0	0	0	0	0	0	0	0	0	0	0	0	0
6	TS_TRIG	Temperature Sensor Reading Trigger	$0=$ Not trigger reading 1 = Trigger reading	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	Temp_out	Temperature Sensor Output	To be read at DOUT pin through SPI readback	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8				1	0	0	0	0	0	0	0	0	0	0	0	0	0
9				2	0	0	0	0	0	0	0	0	0	0	0	0	0
10				3	0	0	0	0	0	0	0	0	0	0	0	0	0
11				4	0	0	0	0	0	0	0	0	0	0	0	0	0
12	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13				1	0	0	0	0	0	0	0	0	0	0	0	0	0
14				2	1	1	1	1	1	1	1	1	1	1	1	1	1
15				3	0	0	0	0	0	0	0	0	0	0	0	0	0
16				4	1	1	1	1	1	1	1	1	1	1	1	1	1

MAX2551

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 27. GPO_CONFIG Register 7 (Address = 00111) (continued)

BIT	BIT ID	NAME	DEFINITION	BIT			$\begin{aligned} & \text { Z } \\ & \text { Z } \\ & 0 \\ & \text { Z } \\ & \text { Z } \\ & \underset{\sim}{x} \end{aligned}$		$\begin{aligned} & \searrow \\ & \text { Z } \\ & 0 \\ & \text { I } \\ & \text { ㅂ } \end{aligned}$							$\begin{array}{\|l} \mathbf{u} \\ \underset{\sim}{u} \\ \hline \end{array}$	岂
17	$\begin{gathered} \text { GPO3_LD_ } \\ \text { RD_sel_MSB } \end{gathered}$		GPO3 Output Mux Select MSB LSB in REG7<1> $00=\text { RXPLL LD }$ 01 = TXPLL LD $10=$ Output selected by GPO3<0:1> $11=$ RXPLL LD and TXPLL LD and CLKPLL LD	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	Reserved	Reserved	-	0	1	1	1	1	1	1	1	1	1	1	1	1	1
19				1	1	1	1	1	1	1	1	1	1	1	1	1	1
20	$\begin{aligned} & \text { DOUT_DRV } \\ & <1: 0> \end{aligned}$	DOUT Drive Strength	$\begin{aligned} & <1: 0\rangle=00=1 x \\ & <1: 0>=01=2 x \\ & <1: 0>=10=3 x \\ & <1: 0>=11=4 x \end{aligned}$	0	1	1	1	1	1	1	1	1	1	1	1	1	1
21				1	1	1	1	1	1	1	1	1	1	1	1	1	1
22	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				1	0	0	0	0	0	0	0	0	0	0	0	0	0
24				2	0	0	0	0	0	0	0	0	0	0	0	0	0
25				3	0	0	0	0	0	0	0	0	0	0	0	0	0

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 28. Reserved Register 8 (Address = 01000)

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 29. Reserved Register 9 (Address = 01001)

BIT	BIT ID	NAME	DEFINITION	BIT			$\begin{aligned} & \searrow \\ & \underset{Z}{z} \\ & 0 \\ & \underset{X}{Z} \\ & \underset{\sim}{X} \end{aligned}$	$\begin{aligned} & \searrow \\ & \text { Z } \\ & 0 \\ & \text { n } \\ & \text { n } \\ & \text { x } \end{aligned}$		$\begin{aligned} & \searrow \\ & \underset{0}{2} \\ & \frac{1}{x} \\ & \hdashline \end{aligned}$					$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & 0 \\ & \text { U } \\ & \text { un } \end{aligned}$		$\begin{aligned} & \text { 吕 } \\ & \text { ש } \end{aligned}$
0	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0
8				8	0	0	0	0	0	0	0	0	0	0	0	0	0
9				9	0	0	0	0	0	0	0	0	0	0	0	0	0
10				10	0	0	0	0	0	0	0	0	0	0	0	0	0
11				11	0	0	0	0	0	0	0	0	0	0	0	0	0
12				12	0	0	0	0	0	0	0	0	0	0	0	0	0
13				13	0	0	0	0	0	0	0	0	0	0	0	0	0
14				14	0	0	0	0	0	0	0	0	0	0	0	0	0
15				15	0	0	0	0	0	0	0	0	0	0	0	0	0
16				16	0	0	0	0	0	0	0	0	0	0	0	0	0
17				17	0	0	0	0	0	0	0	0	0	0	0	0	0
18				18	0	0	0	0	0	0	0	0	0	0	0	0	0
19				19	0	0	0	0	0	0	0	0	0	0	0	0	0
20				20	0	0	0	0	0	0	0	0	0	0	0	0	0
21				21	0	0	0	0	0	0	0	0	0	0	0	0	0
22				22	0	0	0	0	0	0	0	0	0	0	0	0	0
23				23	0	0	0	0	0	0	0	0	0	0	0	0	0
24				24	0	0	0	0	0	0	0	0	0	0	0	0	0
25				25	0	0	0	0	0	0	0	0	0	0	0	0	0

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 30. RXLO_FRAC Register 10 (Address = 01010)

BIT	BIT ID	NAME	DEFINITION	BIT		$\begin{aligned} & \searrow \\ & \underset{Z}{z} \\ & 0 \\ & \text { m } \\ & \underset{x}{x} \end{aligned}$									$\begin{aligned} & \grave{y} \\ & \text { Z } \\ & 0 \\ & \text { U } \\ & 4 \end{aligned}$	$\begin{aligned} & \underset{\sim}{u} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{u} \end{aligned}$	$\begin{aligned} & \text { 邑 } \\ & \text { ๗ } \end{aligned}$
0	$\begin{aligned} & \text { RFFRAC } \\ & <19: 0> \end{aligned}$	Receiver RF Synthesizer Fractional Division Ratio	See the RF Synthesizers section	0	1	0	0	0	1	1	1	0	1	1	0	0	0
1				1	0	0	0	0	1	1	0	0	0	1	0	0	0
2				2	1	0	0	0	0	0	1	0	1	0	0	0	0
3				3	0	0	0	0	1	1	0	0	0	1	0	0	0
4				4	1	0	0	0	0	0	1	0	1	0	0	0	0
5				5	0	0	0	0	1	1	0	0	0	1	0	0	0
6				6	1	0	0	0	0	0	1	0	1	0	0	0	0
7				7	0	0	0	0	1	1	0	0	0	1	0	0	0
8				8	1	0	0	0	0	0	1	0	1	0	0	0	0
9				9	0	0	0	0	1	1	0	0	0	1	0	0	0
10				10	1	0	0	0	0	0	1	1	1	0	0	0	0
11				11	0	0	0	0	1	1	0	0	0	1	0	0	0
12				12	1	0	0	0	0	0	1	0	1	0	0	0	0
13				13	0	0	0	0	1	1	0	0	0	1	0	0	0
14				14	1	0	0	0	0	0	1	0	1	0	0	0	0
15				15	1	0	0	1	1	1	1	0	1	1	1	1	1
16				16	1	1	0	0	0	1	1	1	1	0	1	1	1
17				17	0	1	1	0	1	1	0	1	0	1	1	1	1
18				18	0	0	1	1	1	1	0	0	0	1	0	0	0
19				19	1	0	1	1	1	1	1	0	1	1	1	1	1
20	Reserved	-	-	0	1	1	1	1	1	1	1	1	1	1	1	1	1
21				1	0	0	0	0	0	0	0	0	0	0	0	0	0
22				2	0	0	0	0	0	0	0	0	0	0	0	0	0
23				3	0	0	0	0	0	0	0	0	0	0	0	0	0
24				4	0	0	0	0	0	0	0	0	0	0	0	0	0
25				5	1	1	1	1	1	1	1	1	1	1	1	1	1

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 31. RXLO_SYN Register 11 (Address = 01011)

BIT	BIT ID	NAME	DEFINITION	BIT		$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & 0 \\ & \text { m } \\ & \underset{x}{x} \end{aligned}$									$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & 0 \\ & 0 \\ & \text { U } \end{aligned}$		足
0	RINT<7:0>	Rx RF PLL Integer Divide Ratio	See the RF Synthesizers section	0	1	0	0	1	1	0	1	0	1	1	0	0	0
1				1	1	0	0	1	0	1	1	0	1	0	1	1	1
2				2	0	0	1	1	0	1	0	0	0	0	1	1	1
3				3	0	1	1	0	0	0	0	1	0	0	0	0	0
4				4	0	1	1	0	0	1	0	1	0	0	1	1	1
5				5	1	0	0	1	1	0	1	0	1	1	0	0	0
6				6	1	1	1	1	1	1	1	1	1	1	1	1	1
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0
8	RRD	Rx Reference Divide Ratio	$\begin{aligned} & 0=\text { Divide-by-1 } \\ & 1=\text { Divide-by-2 } \end{aligned}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	Reserved	Reserved	-	0	1	1	1	1	1	1	1	1	1	1	1	1	1
10				1	1	1	1	1	1	1	1	1	1	1	1	1	1
11				2	1	1	1	1	1	1	1	1	1	1	1	1	1
12				3	0	0	0	0	0	0	0	0	0	0	0	0	0
13				4	0	0	0	0	0	0	0	0	0	0	0	0	0
14				5	0	0	0	0	0	0	0	0	0	0	0	0	0
15				6	0	0	0	0	0	0	0	0	0	0	0	0	0
16				7	0	0	0	0	0	0	0	0	0	0	0	0	0
17				8	0	0	0	0	0	0	0	0	0	0	0	0	0
18	RCPI<2:0>	Rx PLL ChargePump Current	Rx RF PLL Charge-Pump Current$\begin{aligned} 000 & =\text { Not used } \\ 001 & =200 \mu \mathrm{~A} \\ 011 & =600 \mu \mathrm{~A} \\ 110 & =1200 \mu \mathrm{~A} \end{aligned}$	0	1	1	1	1	1	1	1	1	1	1	1	1	1
19				1	1	1	1	1	1	1	1	1	1	1	1	1	1
20				2	0	0	0	0	0	0	0	0	0	0	0	0	0
21	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22				1	0	0	0	0	0	0	0	0	0	0	0	0	0
23				2	1	1	1	1	1	1	1	1	1	1	1	1	1
24				3	1	1	1	1	1	1	1	1	1	1	1	1	1
25				4	0	0	0	0	0	0	0	0	0	0	0	0	0

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 32. BBCLK_OUT Register 12 (Address = 01100)

BIT	BIT ID	NAME	DEFINITION	BIT			$\begin{aligned} & \searrow \\ & Z \\ & Z \\ & Z \\ & Z \\ & X \\ & X \end{aligned}$					$\stackrel{\text { O }}{\text { O }}$	$\begin{aligned} & \text { 山ِ } \\ & \underline{\underline{x}} \\ & \underset{x}{x} \end{aligned}$		$\begin{aligned} & \lambda \\ & z \\ & \vdots \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$		岂
0	ADF<2:0>	ADC Clock Divide Ratio	$000=1$ for WCDMA $001=$ Not used $010=$ Not used 011 = 6 for GSM 100~111 = Not used	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0
3	Reserved	Reserved	-	0	1	1	1	1	1	1	1	1	1	1	1	1	1
4				1	0	0	0	0	0	0	0	0	0	0	0	0	0
5				2	0	0	0	0	0	0	0	0	0	0	0	0	0
6				3	0	0	0	0	0	0	0	0	0	0	0	0	0
7				4	0	0	0	0	0	0	0	0	0	0	0	0	0
8				5	0	0	0	0	0	0	0	0	0	0	0	0	0
9	LVDSI_2X	RxBB LVDS 2X Current Enable	$\begin{aligned} & 0=220 \Omega \text { load } \\ & 1=100 \Omega \text { load } \end{aligned}$	0	1	1	1	1	1	1	1	1	1	1	1	1	1
10	Reserved	Reserved	-	0	1	1	1	1	1	1	1	1	1	1	1	1	1
11				1	1	1	1	1	1	1	1	1	1	1	1	1	1
12				2	0	0	0	0	0	0	0	0	0	0	0	0	0
13				3	0	0	0	0	0	0	0	0	0	0	0	0	0
14				4	0	0	0	0	0	0	0	0	0	0	0	0	0
15				5	0	0	0	0	0	0	0	0	0	0	0	0	0
16				6	0	0	0	0	0	0	0	0	0	0	0	0	0
17				7	0	0	0	0	0	0	0	0	0	0	0	0	0
18				8	0	0	0	0	0	0	0	0	0	0	0	0	0
19				9	0	0	0	0	0	0	0	0	0	0	0	0	0
20				10	1	1	1	1	1	1	1	1	1	1	1	1	1
21				11	0	0	0	0	0	0	0	0	0	0	0	0	0
22				12	0	0	0	0	0	0	0	0	0	0	0	0	0
23				13	0	0	0	0	0	0	0	0	0	0	0	0	0
24				14	0	0	0	0	0	0	0	0	0	0	0	0	0
25				15	1	1	1	1	1	1	1	1	1	1	1	1	1

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 33. Reserved Register 13 (Address = 01101)

BIT	BIT ID	NAME		DEFINITION	BIT					$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & \text { O } \\ & \text { r } \\ & \end{aligned}$						$\begin{aligned} & \grave{y} \\ & \underset{Z}{2} \\ & 0 \\ & \text { U } \end{aligned}$	$\begin{aligned} & \underset{\sim}{u} \\ & \underset{\sim}{u} \end{aligned}$	足
0	Reserved	Reserved	-		0	0	0	0	0	0	0	0	0	0	0	0	0	0
1					1	0	0	0	0	0	0	0	0	0	0	0	0	0
2					0	1	1	1	1	1	1	1	1	1	1	1	1	1
3					1	0	0	0	0	0	0	0	0	0	0	0	0	0
4					2	0	0	0	0	0	0	0	0	0	0	0	0	0
5					3	1	1	1	1	1	1	1	1	1	1	1	1	1
6					0	1	1	1	1	1	1	1	1	1	1	1	1	1
7					1	0	0	0	0	0	0	0	0	0	0	0	0	0
8					2	0	0	0	0	0	0	0	0	0	0	0	0	0
9					3	0	0	0	0	0	0	0	0	0	0	0	0	0
10					4	0	0	0	0	0	0	0	0	0	0	0	0	0
11					5	1	1	1	1	1	1	1	1	1	1	1	1	1
12					0	1	1	1	1	1	1	1	1	1	1	1	1	1
13					0	1	1	1	1	1	1	1	1	1	1	1	1	1
14					0	1	1	1	1	1	1	1	1	1	1	1	1	1
15					1	1	1	1	1	1	1	1	1	1	1	1	1	1
16					2	0	0	0	0	0	0	0	0	0	0	0	0	0
17					0	1	1	1	1	1	1	1	1	1	1	1	1	1
18					1	1	1	1	1	1	1	1	1	1	1	1	1	1
19					2	0	0	0	0	0	0	0	0	0	0	0	0	0
20					0	0	0	0	0	0	0	0	0	0	0	0	0	0
21					0	0	0	0	0	0	0	0	0	0	0	0	0	0
22					0	0	0	0	0	0	0	0	0	0	0	0	0	0
23					0	0	0	0	0	0	0	0	0	0	0	0	0	0
24					0	0	0	0	0	0	0	0	0	0	0	0	0	0
25					0	0	0	0	0	0	0	0	0	0	0	0	0	0

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 34. BBCLK_FRAC Register 14 (Address = 01110)

BIT	BIT ID	NAME	DEFINITION	BIT		$\begin{aligned} & \searrow \\ & \vdots \\ & \vdots \\ & 0 \\ & \text { m } \\ & \underset{x}{x} \end{aligned}$							$\begin{aligned} & \text { w } \\ & \underline{a} \\ & \underset{x}{x} \\ & x \end{aligned}$			$\begin{aligned} & \underset{\sim}{\underset{\sim}{u}} \underset{\underset{\sim}{u}}{\underset{\sim}{\underset{\sim}{u}}} \underset{\sim}{\underset{\sim}{u}} \\ & \underset{\sim}{\underset{\sim}{u}} \\ & \underset{\sim}{u} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 邑 } \\ & \underset{\sim}{\mathbf{\omega}} \end{aligned}$
0	$\begin{aligned} & \text { CFRAC } \\ & <19: 0> \end{aligned}$	ADC Clock PLL Fractional Divide Ratio	WCDMA: For freFIN = $13.0 \mathrm{MHz}=85 \mathrm{E} 85$ (hex) $15.36 \mathrm{MHz}=00000$ (hex) $19.2 \mathrm{MHz}=00000$ (hex) $26.0 \mathrm{MHz}=42 \mathrm{~F} 4 \mathrm{~s}$ (hex) GSM: For frefin = $13.0 \mathrm{MHz}=00000$ (hex) $15.36 \mathrm{MHz}=40000$ (hex) $19.2 \mathrm{MHz}=00000$ (hex) $26.0 \mathrm{MHz}=00000$ (hex)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0
8				8	0	0	0	0	0	0	0	0	0	0	0	0	0
9				9	0	0	0	0	0	0	0	0	0	0	0	0	0
10				10	0	0	0	0	0	0	0	0	0	0	0	0	0
11				11	0	0	0	0	0	0	0	0	0	0	0	0	0
12				12	0	0	0	0	0	0	0	0	0	0	0	0	0
13				13	0	0	0	0	0	0	0	0	0	0	0	0	0
14				14	0	0	0	0	0	0	0	0	0	0	0	0	0
15				15	0	0	0	0	0	0	0	0	0	0	0	0	0
16				16	0	0	0	0	0	0	0	0	0	0	0	0	0
17				17	0	0	0	0	0	0	0	0	0	0	0	0	0
18				18	0	0	0	0	0	0	0	0	0	0	0	0	0
19				19	0	0	0	0	0	0	0	0	0	0	0	0	0
20	Reserved	Reserved	-	0	1	1	1	1	1	1	1	1	1	1	1	1	1
21				1	0	0	0	0	0	0	0	0	0	0	0	0	0
22				2	0	0	0	0	0	0	0	0	0	0	0	0	0
23				3	0	0	0	0	0	0	0	0	0	0	0	0	0
24				4	0	0	0	0	0	0	0	0	0	0	0	0	0
25				5	1	1	1	1	1	1	1	1	1	1	1	1	1

MAX2551
Band II and V WCDMA Femtocell
Transceiver with GSM Monitoring
Table 35. BBCLK SYN Register 15 (Address = 01111)

BIT	BIT ID	NAME	DEFINITION	BIT					$\begin{aligned} & \searrow \\ & \vdots \\ & \text { Z } \\ & \frac{1}{x} \\ & \vdots \end{aligned}$						$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & \text { O } \\ & \text { U } \end{aligned}$		足
0	CINT<7:0>	ADC Clock PLL Integer Divide Ratio	WCDMA: For fREFIN $=$ $13.0 \mathrm{MHz}=5 \mathrm{E}$ (hex) $15.36 \mathrm{MHz}=50$ (hex) $19.2 \mathrm{MHz}=40$ (hex) 26.0MHz = 2F (hex) GSM: For freFIN = $13.0 \mathrm{MHz}=60$ (hex) $15.36 \mathrm{MHz}=51$ (hex) $19.2 \mathrm{MHz}=41$ (hex) $26.0 \mathrm{MHz}=30$ (hex)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	1	1	1	1	1	1	1	1	1	1	1	1	1
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0
8	CRD	ADC Clock PLL Reference Divide Ratio	$\begin{aligned} & 0=\text { Divide-by }-1 \text { (default) } \\ & 1=\text { Divide-by-2 } \end{aligned}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10				1	1	1	1	1	1	1	1	1	1	1	1	1	1
11				2	1	1	1	1	1	1	1	1	1	1	1	1	1
12				3	0	0	0	0	0	0	0	0	0	0	0	0	0
13				4	0	0	0	0	0	0	0	0	0	0	0	0	0
14				5	0	0	0	0	0	0	0	0	0	0	0	0	0
15				6	0	0	0	0	0	0	0	0	0	0	0	0	0
16				7	0	0	0	0	0	0	0	0	0	0	0	0	0
17				8	0	0	0	0	0	0	0	0	0	0	0	0	0

MAX2551

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 35. BBCLK SYN Register 15 (Address = 01111) (continued)

BIT	BIT ID	NAME	DEFINITION	BIT						$\begin{aligned} & \underset{1}{\lambda} \\ & \underset{2}{0} \\ & \frac{1}{x} \end{aligned}$					$\begin{aligned} & \underset{~ خ}{2} \\ & 0 \\ & 0 \\ & \underset{4}{4} \end{aligned}$		足
18	CCPI<2:0>	ADC Clock PLL Charge Pump Current	$\begin{aligned} & 000=0 \mu \mathrm{~A}, \text { do not use } \\ & 001=25 \mu \mathrm{~A} \\ & 010=50 \mu \mathrm{~A}\left(\text { f }_{\text {REFIN }}=26 \mathrm{MHz}\right) \\ & 011=75 \mu \mathrm{~A}\left(\text { f }_{\text {REFIN }}=19.2 \mathrm{MHz}\right. \\ & 100=100 \mu \mathrm{~A}\left(\text { f }_{\text {REFIN }}=\right. \\ & 13 \mathrm{MHz}) \\ & 111=175 \mu \mathrm{~A} \end{aligned}$	0	1	1	1	1	1	1	1	1	1	1	1	1	1
19				1	1	1	1	1	1	1	1	1	1	1	1	1	1
20				2	0	0	0	0	0	0	0	0	0	0	0	0	0
21	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22	EN_ PBYQDIV	ADC Clock PLL P/Q Rational Division Enable	ADC Clock PLL P/Q Rational Division Enable $0 \text { = Disabled }$ $1 \text { = Enable }$	1	1	1	1	1	1	1	1	1	1	1	1	1	1
23	CINTB	ADC Clock PLL Integer/ Fractional Mode	ADC Clock Integer/Fractional Mode $0=$ Integer mode 1 = Fractional mode	1	1	1	1	1	1	1	1	1	1	1	1	1	1
24	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				1	1	1	1	1	1	1	1	1	1	1	1	1	1

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 36. BBCLK_MISC Register 16 (Address = 10000)

BIT	BIT ID	NAME	DEFINITION	BIT					$\begin{aligned} & \searrow \\ & \text { Z } \\ & 0 \\ & \frac{1}{x} \\ & \end{aligned}$					$\begin{aligned} & \text { ü } \\ & \underline{\underline{I}} \\ & \underset{x}{x} \end{aligned}$	$\begin{aligned} & \nearrow \\ & \text { Z } \\ & 0 \\ & 0 \\ & \text { U } \\ & \text { U } \end{aligned}$	$\begin{array}{\|l} \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \end{array}$	㟔
0	$\begin{gathered} \text { PBYQ_ } \\ \text { RATUP<7:0> } \end{gathered}$	ADC Clock Fractional LSB Dither Up Number of Cycles LSB Is High	WCDMA: For frEFIN = $13.0 \mathrm{MHz}=3 \mathrm{~B}$ (hex) $15.36 \mathrm{MHz}=00$ (hex) $19.2 \mathrm{MHz}=00$ (hex) 20.0MHz = OB (hex) 26.0MHz = 3E (hex) GSM: For freFIN = $13.0 \mathrm{MHz}=00$ (hex) $15.36 \mathrm{MHz}=00$ (hex) $19.2 \mathrm{MHz}=00$ (hex) $26.0 \mathrm{MHz}=00$ (hex)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0
8	$\begin{gathered} \text { PBYQ_- }^{2} \\ \text { RATDN }<7: 0> \end{gathered}$	ADC Clock Fractional LSB Dither Down Number of Cycles LSB Is Low	DC Clock Fractional LSB Dither Down. Number of cycles LSB is low. WCDMA: For freFIN = $\begin{aligned} & 13.0 \mathrm{MHz}=06 \text { (hex) } \\ & 15.36 \mathrm{MHz}=00 \text { (hex) } \\ & 19.2 \mathrm{MHz}=00 \text { (hex) } \\ & 20.0 \mathrm{MHz}=0 E \text { (hex) } \\ & 26.0 \mathrm{MHz}=03 \text { (hex) } \end{aligned}$ GSM: For frefin = $\begin{aligned} & 13.0 \mathrm{MHz}=00 \text { (hex) } \\ & 15.36 \mathrm{MHz}=00 \text { (hex) } \\ & 19.2 \mathrm{MHz}=00 \text { (hex) } \\ & 26.0 \mathrm{MHz}=00 \text { (hex) } \end{aligned}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9				1	0	0	0	0	0	0	0	0	0	0	0	0	0
10				2	0	0	0	0	0	0	0	0	0	0	0	0	0
11				3	0	0	0	0	0	0	0	0	0	0	0	0	0
12				4	0	0	0	0	0	0	0	0	0	0	0	0	0
13				5	0	0	0	0	0	0	0	0	0	0	0	0	0
14				6	0	0	0	0	0	0	0	0	0	0	0	0	0
15				7	0	0	0	0	0	0	0	0	0	0	0	0	0
16	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17				1	0	0	0	0	0	0	0	0	0	0	0	0	0
18				2	1	1	1	1	1	1	1	1	1	1	1	1	1
19				3	1	1	1	1	1	1	1	1	1	1	1	1	1
20	$\frac{\text { CDR_DIV2_ }}{\text { EN }}$	CLK VCO to CDR Divide-by-2 Enable	CLK VCO to CDR Divide-by-2 Enable $0=\text { Disable }$ $1 \text { = Enable }$	0	0	0	0	0	1	1	1	1	0	0	0	0	0
21	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22				1	0	0	0	0	0	0	0	0	0	0	0	0	0
23				2	0	0	0	0	0	0	0	0	0	0	0	0	0
24				3	0	0	0	0	0	0	0	0	0	0	0	0	0
25				4	0	0	0	0	0	0	0	0	0	0	0	0	0

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 37. BBCLK_SPARE Register 17 (Address = 10001)

BIT	BIT ID	NAME	DEFINITION	BIT	$\begin{aligned} & \underset{y}{z} \\ & \underset{Z}{2} \\ & \underset{x}{z} \\ & \underset{x}{x} \end{aligned}$									$\begin{aligned} & \text { 름 } \\ & \underline{\underline{x}} \\ & \underset{x}{n} \end{aligned}$			足
0	Reserved	Reserved	-	0	1	1	1	1	1	1	1	1	1	1	1	1	1
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0
8				8	0	0	0	0	0	0	0	0	0	0	0	0	0
9				9	0	0	0	0	0	0	0	0	0	0	0	0	0
10				10	0	0	0	0	0	0	0	0	0	0	0	0	0
11				11	1	1	1	1	1	1	1	1	1	1	1	1	1
12				12	1	1	1	1	1	1	1	1	1	1	1	1	1
13				13	0	0	0	0	0	0	0	0	0	0	0	0	0
14				14	0	0	0	0	0	0	0	0	0	0	0	0	0
15				15	0	0	0	0	0	0	0	0	0	0	0	0	0
16				16	0	0	0	0	0	0	0	0	0	0	0	0	0
17				17	0	0	0	0	0	0	0	0	0	0	0	0	0
18	DIE_ID_sel	Die ID Readout Select	$\begin{aligned} & \text { Affect REG17<25:19> } \\ & 0=\text { Read register value } \\ & 1=\text { Read die ID } \end{aligned}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	DIE_ID<6:0>	Die ID Readout Bits at DOUT pin	$\begin{aligned} & \text { DIE_ID<2:0> } \\ & 001=1 Z \\ & 010=2 Z \\ & 011=3 Z \end{aligned}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20				1	0	0	0	0	0	0	0	0	0	0	0	0	0
21				2	0	0	0	0	0	0	0	0	0	0	0	0	0
22				3	0	0	0	0	0	0	0	0	0	0	0	0	0
23				4	0	0	0	0	0	0	0	0	0	0	0	0	0
24				5	0	0	0	0	0	0	0	0	0	0	0	0	0
25				6	0	0	0	0	0	0	0	0	0	0	0	0	0

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 38. TX_LPF Register 18 (Address = 10010)

BIT	BIT ID	NAME	DEFINITION	BIT					$\begin{aligned} & \underset{\Sigma}{\searrow} \\ & \vdots \\ & 0 \\ & \frac{1}{x} \end{aligned}$			$\begin{aligned} & \text { 楍 } \\ & \stackrel{\rightharpoonup}{x} \\ & \underset{\sim}{x} \\ & \underset{\sim}{x} \end{aligned}$			$\begin{aligned} & \grave{y} \\ & \text { Z } \\ & 0 \\ & 0 \\ & \text { U } \end{aligned}$		邑
0	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	1	1	1	1	1	1	1	1	1	1	1	1	1
3				3	1	1	1	1	1	1	1	1	1	1	1	1	1
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0
5	$\begin{aligned} & \text { TXLPFB } \\ & <2: 0> \end{aligned}$	TXLPF Bandwidth	$\begin{aligned} & 000=\text { Do not use } \\ & 001=\text { WCDMA } \\ & 010=\text { Do not use } \\ & 011=\text { Do not use } \\ & 100 \sim 111 \text { = Do not use } \end{aligned}$	0	1	1	1	1	1	1	1	1	1	1	1	1	1
6				1	0	0	0	0	0	0	0	0	0	0	0	0	0
7				2	0	0	0	0	0	0	0	0	0	0	0	0	0
8	$\begin{aligned} & \text { TXLPFMD } \\ & <1: 0> \end{aligned}$	TXLPF Operating Mode	$\begin{aligned} & <1: 0>=00=\text { Shut down } \\ & <1: 0>=01=\text { LPF bypass } \\ & <1: 0>=10=\text { Do not use } \\ & <1: 0>=11=\text { Normal } \\ & \text { operation (WCDMA) } \end{aligned}$	0	1	1	1	1	1	1	1	1	1	1	1	1	1
9				1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	BBLB	TXLPF Baseband Loopback	0 = Enable loopback 1 = Normal operation	0	1	1	1	1	1	1	1	1	1	1	1	1	1
11	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12				1	1	1	1	1	1	1	1	1	1	1	1	1	1
13				2	1	1	1	1	1	1	1	1	1	1	1	1	1
14				3	0	0	0	0	0	0	0	0	0	0	0	0	0
15				4	1	1	1	1	1	1	1	1	1	1	1	1	1
16				5	1	1	1	1	1	1	1	1	1	1	1	1	1
17				6	1	1	1	1	1	1	1	1	1	1	1	1	1
18				7	1	1	1	1	1	1	1	1	1	1	1	1	1
19				8	0	0	0	0	0	0	0	0	0	0	0	0	0
20				9	1	1	1	1	1	1	1	1	1	1	1	1	1
21				10	0	0	0	0	0	0	0	0	0	0	0	0	0
22				11	1	1	1	1	1	1	1	1	1	1	1	1	1
23				12	0	0	0	0	0	0	0	0	0	0	0	0	0
24				13	0	0	0	0	0	0	0	0	0	0	0	0	0
25	TXINDACF	Tx DAC Bandwidth Select	Tx DAC Bandwidth $1=15 \mathrm{MHz}$	0	1	1	1	1	1	1	1	1	1	1	1	1	1

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 39. TX_PAD Register 19 (Address = 10011)

BIT	BIT ID	NAME	DEFINITION	BIT			$\begin{aligned} & \text { Z } \\ & \text { Z } \\ & \text { O } \\ & \text { Z } \\ & \underset{\text { ® }}{2} \end{aligned}$			$\begin{aligned} & \underset{2}{2} \\ & \underset{0}{x} \\ & \stackrel{1}{x} \end{aligned}$					$\begin{aligned} & \vdots \\ & \underset{0}{z} \\ & 0 \\ & \text { U } \end{aligned}$		足
0	$\begin{gathered} \text { PAD_BAND } \\ <2: 0> \end{gathered}$	PA Driver Frequency Band	$\begin{aligned} & <1: 0\rangle=00=\text { CELL } \\ & <1: 0>=01=\text { Do not use } \\ & <1: 0>=10=\text { PCS } \\ & <1: 0>=11 \text { = Do not use } \end{aligned}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	1	0	0	1	1	0	1	0	1	1	0	0	0
2	$\begin{gathered} \text { PAD_CTUNE } \\ <4: 0> \end{gathered}$	PA Driver Center Frequency Select	$\begin{aligned} & \text { CELL = } 00100 \\ & \text { PCS }=10001 \end{aligned}$	0	1	0	0	1	1	0	1	0	1	1	0	0	0
3				1	0	0	0	0	0	0	0	0	0	0	0	0	0
4				2	0	1	1	0	0	1	0	1	0	0	1	1	1
5				3	0	0	0	0	0	0	0	0	0	0	0	0	0
6				4	1	0	0	1	1	0	1	0	1	1	0	0	0
7	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8				1	0	0	0	0	0	0	0	0	0	0	0	0	0
9				2	1	1	1	1	1	1	1	1	1	1	1	1	1
10				3	1	1	1	1	1	1	1	1	1	1	1	1	1
11				4	0	0	0	0	0	0	0	0	0	0	0	0	0
12				5	0	0	0	0	0	0	0	0	0	0	0	0	0
13				6	1	1	1	1	1	1	1	1	1	1	1	1	1
14				7	0	0	0	0	0	0	0	0	0	0	0	0	0
15				8	1	1	1	1	1	1	1	1	1	1	1	1	1
16				9	1	1	1	1	1	1	1	1	1	1	1	1	1
17				10	1	1	1	1	1	1	1	1	1	1	1	1	1
18				11	1	1	1	1	1	1	1	1	1	1	1	1	1
19				12	0	0	0	0	0	0	0	0	0	0	0	0	0
20				13	0	0	0	0	0	0	0	0	0	0	0	0	0
21				14	0	0	0	0	0	0	0	0	0	0	0	0	0
22				15	0	0	0	0	0	0	0	0	0	0	0	0	0
23				16	0	0	0	0	0	0	0	0	0	0	0	0	0
24				17	0	0	0	0	0	0	0	0	0	0	0	0	0
25				18	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 40. TX_UPX1 Register 20 (Address = 10100)

BIT	BIT ID	NAME	DEFINITION	BIT									$\begin{aligned} & \text { w } \\ & \underline{\underline{a}} \\ & \bar{x} \\ & \underset{\sim}{x} \end{aligned}$		$\begin{aligned} & \lambda \\ & \underset{Z}{1} \\ & 0 \\ & 0 \\ & 4 \end{aligned}$		足
0	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	1	1	1	1	1	1	1	1	1	1	1	1	1
2				2	1	1	1	1	1	1	1	1	1	1	1	1	1
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	1	1	1	1	1	1	1	1	1	1	1	1	1
5				5	1	1	1	1	1	1	1	1	1	1	1	1	1
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0
7				7	1	1	1	1	1	1	1	1	1	1	1	1	1
8				8	1	1	1	1	1	1	1	1	1	1	1	1	1
9				9	0	0	0	0	0	0	0	0	0	0	0	0	0
10				10	0	0	0	0	0	0	0	0	0	0	0	0	0
11				11	0	0	0	0	0	0	0	0	0	0	0	0	0
12				12	1	1	1	1	1	1	1	1	1	1	1	1	1
13				13	1	1	1	1	1	1	1	1	1	1	1	1	1
14				14	1	1	1	1	1	1	1	1	1	1	1	1	1
15				15	1	1	1	1	1	1	1	1	1	1	1	1	1
16				16	1	1	1	1	1	1	1	1	1	1	1	1	1
17				17	0	0	0	0	0	0	0	0	0	0	0	0	0
18				18	0	0	0	0	0	0	0	0	0	0	0	0	0
19	$\begin{gathered} \text { TXLO_IQ_ } \\ \text { GAIN } \end{gathered}$	TXLO IQ Phase Adjust Slope	$\begin{aligned} & 0=\text { PCS bands } \\ & 1=\text { CELL band } \end{aligned}$	0	0	1	1	0	0	1	0	1	0	0	1	1	1
20	Reserved	Reserved	-	0	1	1	1	1	1	1	1	1	1	1	1	1	1
21				1	0	0	0	0	0	0	0	0	0	0	0	0	0
22				2	0	0	0	0	0	0	0	0	0	0	0	0	0
23				3	0	0	0	0	0	0	0	0	0	0	0	0	0
24	BIAS_EN	Master Bias Enable	$\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0	1	1	1	1	1	1	1	1	1	1	0	0	0
25	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 41．TX＿UPX2 Register 21 （Address＝10101）

BIT	BIT ID	NAME	DEFINITION	BIT			$\begin{aligned} & \underset{Z}{Z} \\ & \underset{Z}{Z} \\ & \vdots \\ & \underset{Z}{Z} \\ & X \end{aligned}$			$\xrightarrow{\searrow}$			$\begin{aligned} & \text { w } \\ & \underline{\text { ® }} \\ & \underset{㐅}{㐅} \end{aligned}$		$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & 0 \\ & \text { U } \\ & \text { U } \end{aligned}$		足
0	Reserved	Reserved	－	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	$\begin{aligned} & \text { UCX_CSW } \\ & \text { <3:0> } \end{aligned}$	UCX Tank Frequency Adjust	$\begin{aligned} & 0000=\text { PCS } \\ & 1101=\text { CELL } \end{aligned}$	0	0	1	1	0	0	1	0	1	0	0	1	1	1
3				1	0	0	0	0	0	0	0	0	0	0	0	0	0
4				2	0	1	1	0	0	1	0	1	0	0	1	1	1
5				3	0	1	1	0	0	1	0	1	0	0	1	1	1
6	Reserved	Reserved	－	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7				1	0	0	0	0	0	0	0	0	0	0	0	0	0
8				2	0	0	0	0	0	0	0	0	0	0	0	0	0
9				3	0	0	0	0	0	0	0	0	0	0	0	0	0
10				4	0	0	0	0	0	0	0	0	0	0	0	0	0
11				5	0	0	0	0	0	0	0	0	0	0	0	0	0
12				6	1	1	1	1	1	1	1	1	1	1	1	1	1
13				7	0	0	0	0	0	0	0	0	0	0	0	0	0
14				8	0	0	0	0	0	0	0	0	0	0	0	0	0
15				9	1	1	1	1	1	1	1	1	0	0	0	0	0
16				10	0	0	0	0	0	0	0	0	0	0	0	0	0
17				11	0	0	0	0	0	0	0	0	0	0	0	0	0
18				12	1	1	1	1	1	1	1	1	1	1	1	1	1
19				13	0	0	0	0	0	0	0	0	0	0	0	0	0
20				14	1	1	1	1	1	1	1	1	1	1	1	1	1
21				15	0	0	0	0	0	0	0	0	0	0	0	0	0
22				16	0	0	0	0	0	0	0	0	0	0	0	0	0
23				17	0	0	0	0	0	0	0	0	0	0	0	0	0
24				18	0	0	0	0	0	0	0	0	0	0	0	0	0
25				19	1	1	1	1	1	1	1	1	1	1	1	1	1

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 42. TX_UPX3 Register 22 (Address = 10110)

BIT	BIT ID	NAME	DEFINITION	BIT											$\begin{aligned} & \grave{y} \\ & \underset{Z}{2} \\ & \text { U } \\ & \frac{U}{4} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\underset{\sim}{u}} \underset{\underset{\sim}{u}}{\underset{\sim}{\underset{\sim}{u}}} \underset{\sim}{\underset{\sim}{u}} \\ & \underset{\sim}{\underset{\sim}{u}} \\ & \hline \end{aligned}$	
0	Reserved	Reserved	-	0	1	1	1	1	1	1	1	1	1	1	1	1	1
1				1	1	1	1	1	1	1	1	1	1	1	1	1	1
2				2	1	1	1	1	1	1	1	1	1	1	1	1	1
3				3	1	1	1	1	1	1	1	1	1	1	1	1	1
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	1	1	1	1	1	1	1	1	1	1	1	1	1
6				6	1	1	1	1	1	1	1	1	1	1	1	1	1
7				7	1	1	1	1	1	1	1	1	1	1	1	1	1
8				8	1	1	1	1	1	1	1	1	1	1	1	1	1
9				9	0	0	0	0	0	0	0	0	0	0	0	0	0
10				10	0	0	0	0	0	0	0	0	0	0	0	0	0
11				11	1	1	1	1	1	1	1	1	1	1	1	1	1
12				12	0	0	0	0	0	0	0	0	0	0	0	0	0
13				13	0	0	0	0	0	0	0	0	0	0	0	0	0
14				14	0	0	0	0	0	0	0	0	0	0	0	0	0
15				15	1	1	1	1	1	1	1	1	1	1	1	1	1
16				16	0	0	0	0	0	0	0	0	0	0	0	0	0
17				17	0	0	0	0	0	0	0	0	0	0	0	0	0
18				18	0	0	0	0	0	0	0	0	0	0	0	0	0
19				19	1	1	1	1	1	1	1	1	1	1	1	1	1
20				20	0	0	0	0	0	0	0	0	0	0	0	0	0
21				21	0	0	0	0	0	0	0	0	0	0	0	0	0
22	$\begin{gathered} \text { T_UCX_- } \\ \text { BAND_SEL } \\ <1: 0> \end{gathered}$	Upconverter Band Select	$\begin{aligned} & <1: 0>=00=\text { Do not use } \\ & <1: 0>=01=\text { CELL band } \\ & <1: 0>=10=\text { Do not use } \\ & <1: 0>=11=\text { PCS band } \end{aligned}$	0	1	1	1	1	1	1	1	1	1	1	1	1	1
23				1	1	0	0	1	1	0	1	0	1	1	0	0	0
24	$\begin{gathered} \text { UCX_V2I_ } \\ \text { MODE_F } \\ <1: 0> \end{gathered}$	Upconverter V2I Bandwidth	$\begin{aligned} & <1: 0>=00=\text { Do not use } \\ & <1: 0>=01 \text { = WCDMA } \\ & <1: 0>=10=\text { Do not use } \\ & <1: 0>=11 \text { = Do not use } \end{aligned}$	0	1	1	1	1	1	1	1	1	1	1	1	1	1
25				1	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 43．TX＿GAIN1 Register 23 （Address＝10111）

BIT	BIT ID	NAME	DEFINITION	BIT		$\begin{aligned} & \underset{\sim}{z} \\ & \underset{\sim}{z} \\ & \underset{\sim}{n} \\ & \underset{\sim}{x} \\ & \hline \end{aligned}$							$\begin{aligned} & \text { w } \\ & \underline{\underline{x}} \\ & \underset{㐅}{㐅} \end{aligned}$	$\begin{aligned} & \text { 山 } \\ & \underline{\underline{O}} \\ & \text { 돚 } \end{aligned}$	$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & 0 \\ & 0 \\ & \text { U } \end{aligned}$		
0	$\begin{gathered} \text { TX_GAIN } \\ <9: 0> \end{gathered}$	Tx Gain	$\begin{aligned} & 000(\text { hex })=\text { Minimum gain } \\ & \text { 3FF (hex) }=\text { Maximum gain } \end{aligned}$	0	1	1	1	1	1	1	1	1	1	1	1	1	1
1				1	1	1	1	1	1	1	1	1	1	1	1	1	1
2				2	1	1	1	1	1	1	1	1	1	1	1	1	1
3				3	1	1	1	1	1	1	1	1	1	1	1	1	1
4				4	1	1	1	1	1	1	1	1	1	1	1	1	1
5				5	1	1	1	1	1	1	1	1	1	1	1	1	1
6				6	1	1	1	1	1	1	1	1	1	1	1	1	1
7				7	1	1	1	1	1	1	1	1	1	1	1	1	1
8				8	1	1	1	1	1	1	1	1	1	1	1	1	1
9				9	1	1	1	1	1	1	1	1	1	1	1	1	1
10	Reserved	Reserved	－	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11				1	1	1	1	1	1	1	1	1	1	1	1	1	1
12				2	0	0	0	0	0	0	0	0	0	0	0	0	0
13				3	0	0	0	0	0	0	0	0	0	0	0	0	0
14				4	1	1	1	1	1	1	1	1	1	1	1	1	1
15				5	1	1	1	1	1	1	1	1	1	1	1	1	1
16				6	0	0	0	0	0	0	0	0	0	0	0	0	0
17				7	0	0	0	0	0	0	0	0	0	0	0	0	0
18				8	0	0	0	0	0	0	0	0	0	0	0	0	0
19				9	0	0	0	0	0	0	0	0	0	0	0	0	0
20				10	0	0	0	0	0	0	0	0	0	0	0	0	0
21				11	1	1	1	1	1	1	1	1	1	1	1	1	1
22				12	0	0	0	0	0	0	0	0	0	0	0	0	0
23				13	0	0	0	0	0	0	0	0	0	0	0	0	0
24	GPO1＜1：0＞	GPO1 Output Select	$\begin{aligned} & <1: 0>=00=\text { High- }-2 \\ & <1: 0>=01=\text { High }-Z \\ & <1: 0>=10=\text { Low }-Z \text { low } \\ & <1: 0>=11 \text { = Low }-Z \text { high } \end{aligned}$	0	1	1	1	1	1	1	1	1	1	1	1	1	1
25				1	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 44. TX_GAIN2 Register 24 (Address = 11000)

BIT	BIT ID	NAME	DEFINITION	BIT		$\begin{aligned} & \searrow \\ & \underset{Z}{z} \\ & 0 \\ & \text { m } \\ & \underset{x}{x} \end{aligned}$								$\begin{aligned} & \text { w } \\ & \underline{\underline{I}} \\ & \text { 진 } \end{aligned}$	$\begin{aligned} & \lambda \\ & \underset{Z}{z} \\ & 0 \\ & 0 \\ & \text { U } \end{aligned}$	$\begin{aligned} & \underset{\sim}{\underset{\sim}{u}} \\ & \underset{\sim}{\sim} \\ & \stackrel{\sim}{\sim} \\ & \underset{\sim}{u} \\ & \underset{\sim}{u} \\ & \underset{\sim}{u} \\ & \hline \end{aligned}$	
0	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	1	1	1	1	1	1	1	1	1	1	1	1	1
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0
6	$\begin{gathered} \text { TXINDACI } \\ <5: 0> \end{gathered}$	TXBB DAC Bias Current	TXBB DAC Bias Current 010100 = WCDMA	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7				1	0	0	0	0	0	0	0	0	0	0	0	0	0
8				2	1	1	1	1	1	1	1	1	1	1	1	1	1
9				3	0	0	0	0	0	0	0	0	0	0	0	0	0
10				4	1	1	1	1	1	1	1	1	1	1	1	1	1
11				5	0	0	0	0	0	0	0	0	0	0	0	0	0
12	TXINDACZI	TXBB Differential Input Impedance	$\begin{aligned} & 0=220 \Omega \\ & 1=100 \Omega \end{aligned}$	0	1	1	1	1	1	1	1	1	1	1	1	1	1
13	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14				1	0	0	0	0	0	0	0	0	0	0	0	0	0
15				2	0	0	0	0	0	0	0	0	0	0	0	0	0
16				3	0	0	0	0	0	0	0	0	0	0	0	0	0
17				4	0	0	0	0	0	0	0	0	0	0	0	0	0
18	CDR_EN	CDR Enable	CDR Enable $0=$ Disable 1 = Enable	0	0	0	0	0	1	1	1	1	0	0	0	0	0
19	Reserved	Reserved	-	0	1	1	1	1	1	1	1	1	1	1	1	1	1
20				1	1	1	1	1	1	1	1	1	1	1	1	1	1
21	$\begin{gathered} \text { TXBB_LVDS_ } \\ \text { DDR3 } \end{gathered}$	TXBB Input LVDS/DDR3 Select	TXBB Input LVDS/DDR3 Select $\begin{aligned} & 0=\text { LVDS } \\ & 1=\text { DDR3 } \end{aligned}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				1	0	0	0	0	0	0	0	0	0	0	0	0	0
24				2	0	0	0	0	0	0	0	0	0	0	0	0	0
25				3	0	0	0	0	0	0	0	0	0	0	0	0	0

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 45. Reserved Register 25 (Address = 11001)

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 46. Reserved Register 26 (Address = 11010)

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 47. TXLO_FRAC Register 27 (Address = 11011)

BIT	BIT ID	NAME	DEFINITION	BIT		$\begin{aligned} & \underset{y}{z} \\ & \underset{y}{z} \\ & \underset{y}{n} \\ & \underset{x}{x} \end{aligned}$									$\begin{aligned} & \grave{y} \\ & \vdots \\ & 0 \\ & 0 \\ & \text { U } \end{aligned}$		$\begin{aligned} & \text { 邑 } \\ & \text { ๗ } \end{aligned}$
0	$\begin{aligned} & \text { TFRAC } \\ & <19: 0> \end{aligned}$	Tx RF PLL Fractional Divide Ratio	AAAAB (hex) = CELL band 36AAB (hex) = PCS band	0	0	0	0	0	0	0	0	0	0	1	1	1	1
1				1	0	0	0	0	0	0	0	0	0	0	1	1	1
2				2	0	0	0	0	0	0	0	0	0	1	0	0	0
3				3	0	0	0	0	0	0	0	0	0	0	1	1	1
4				4	0	0	0	0	0	0	0	0	0	1	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	1	1	1
6				6	0	0	0	0	0	0	0	0	0	1	0	0	0
7				7	0	0	0	0	0	0	0	0	0	0	1	1	1
8				8	0	0	0	0	0	0	0	0	0	1	0	0	0
9				9	0	0	0	0	0	0	0	0	0	0	1	1	1
10				10	0	0	0	0	0	0	0	0	0	1	0	0	0
11				11	0	0	0	0	0	0	0	0	0	0	1	1	1
12				12	0	0	0	0	0	0	0	0	0	1	0	0	0
13				13	0	0	0	0	0	0	0	0	0	0	1	1	1
14				14	0	0	0	0	0	0	0	0	0	1	0	0	0
15				15	1	0	0	1	1	0	1	0	1	0	1	1	1
16				16	0	0	0	0	0	0	0	0	0	1	0	0	0
17				17	0	1	1	0	1	1	0	1	0	0	1	1	1
18				18	1	1	1	1	1	1	1	1	1	0	0	0	0
19				19	1	1	1	1	1	1	1	1	1	0	1	1	1
20	Reserved	Reserved	-	0	1	1	1	1	1	1	1	1	1	1	1	1	1
21				1	0	0	0	0	0	0	0	0	0	0	0	0	0
22				3	0	0	0	0	0	0	0	0	0	0	0	0	0
23				4	0	0	0	0	0	0	0	0	0	0	0	0	0
24				5	0	0	0	0	0	0	0	0	0	0	0	0	0
25				6	1	1	1	1	1	1	1	1	1	1	1	1	1

MAX2551
 Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 48. TXLO_SYN Register 28 (Address = 11100)

BIT	BIT ID	NAME	DEFINITION	BIT	$\begin{aligned} & \searrow \\ & \underset{Z}{z} \\ & 0 \\ & \underset{X}{X} \\ & X \end{aligned}$				$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & \text { O } \\ & \text { x } \\ & \end{aligned}$						$\begin{aligned} & \text { خ } \\ & \underset{Z}{z} \\ & 0 \\ & 0 \\ & \text { U } \end{aligned}$		邑
0	TINT<7:0>	Tx RF PLL Integer Divide Ratio	$\begin{aligned} & 5 B(\text { hex }=\text { CELL } \\ & 66 \text { (hex) }=\text { PCS } \end{aligned}$	0	1	0	0	1	1	0	1	0	1	0	1	1	1
1				1	1	0	0	1	1	0	1	0	1	1	1	1	1
2				2	1	1	1	1	1	1	1	1	1	1	0	0	0
3				3	0	1	1	0	0	1	0	1	0	0	1	1	1
4				4	0	1	1	0	0	1	0	1	0	0	1	1	1
5				5	1	0	0	1	1	0	1	0	1	1	0	0	0
6				6	1	1	1	1	1	1	1	1	1	1	1	1	1
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0
8	TRD	Tx Reference Divide Ratio	$\begin{aligned} & 0=\text { Divide-by-1 } \\ & 1=\text { Divide-by-2 } \end{aligned}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	Reserved	Reserved	-	0	1	1	1	1	1	1	1	1	1	1	1	1	1
10				1	1	1	1	1	1	1	1	1	1	1	1	1	1
11				2	1	1	1	1	1	1	1	1	1	1	1	1	1
12	$\begin{gathered} \text { TVCO_DIV2 } \\ <1: 0> \end{gathered}$	Tx RF VCO Prescaler Divide Ratio Configuration	$\begin{aligned} & <1: 0>=01=\mathrm{CELL} \\ & <1: 0>=10=\mathrm{PCS} \end{aligned}$	0	0	1	1	0	0	1	0	1	0	0	1	1	1
13				1	1	0	0	1	1	0	1	0	1	1	0	0	0
14	$\begin{gathered} \text { TVCO_SEL } \\ <1: 0> \end{gathered}$	Tx RF VCO Selection	$\begin{aligned} & <1: 0>=00=\text { Disable } \\ & <1: 0>=01=\text { ROL } \\ & <1: 0>=10=\text { ROH } \\ & <1: 0>=11=\text { Not used } \end{aligned}$	0	0	1	1	0	0	1	0	1	0	0	1	1	1
15				1	1	0	0	1	1	0	1	0	1	1	0	0	0
16	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17				1	0	0	0	0	0	0	0	0	0	0	0	0	0
18	TCPI<2:0>	Tx RF PLL Charge Pump Current	$\begin{aligned} & 000=0 \mu \mathrm{~A}, \\ & 001=200 \mu \mathrm{~A} \\ & \cdots \\ & 100=800 \mu \mathrm{~A} \\ & \cdots \\ & 110=1200 \mu \mathrm{~A} \end{aligned}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19				1	0	0	0	0	0	0	0	0	0	0	0	0	0
20				2	1	1	1	1	1	1	1	1	1	1	1	1	1
21	Reserved	Reserved	-	0	1	1	1	1	1	1	1	1	1	1	1	1	1
22				1	0	0	0	0	0	0	0	0	0	0	0	0	0
23				2	1	1	1	1	1	1	1	1	1	1	1	1	1
24				3	1	1	1	1	1	1	1	1	1	1	1	1	1
25				4	0	0	0	0	0	0	0	0	0	0	0	0	0

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 49. TXLO_REF Register 29 (Address = 11101)

BIT	BIT ID	NAME	DEFINITION	BIT									$\begin{array}{\|l} \text { w } \\ \underline{\underline{a}} \\ \underset{\sim}{x} \\ \underset{\sim}{x} \end{array}$		$\begin{aligned} & \searrow \\ & Z \\ & \vdots \\ & 0 \\ & U \\ & \vdots \end{aligned}$	$\begin{array}{\|l} \underset{\sim}{\underset{\sim}{u}} \\ \underset{\sim}{u} \\ \underset{\sim}{\underset{\sim}{u}} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \hline \end{array}$	足
0	Reserved	Reserved	-	0	1	1	1	1	1	1	1	1	1	1	1	1	1
1				1	1	1	1	1	1	1	1	1	1	1	1	1	1
2				2	1	1	1	1	1	1	1	1	1	1	1	1	1
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0
8				8	1	1	1	1	1	1	1	1	1	1	1	1	1
9				9	1	1	1	1	1	1	1	1	1	1	1	1	1
10				10	0	0	0	0	0	0	0	0	0	0	0	0	0
11				11	0	0	0	0	0	0	0	0	0	0	0	0	0
12	REFIN ENOUT1	Reference Rx PLL Output Enable	Reference for Rx PLL Enable $\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0	1	1	1	1	1	1	1	1	1	1	1	1	1
13	REFIN_ ENOUT2	Reference Tx PLL Output Enable	Reference for Tx PLL Enable $\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0	1	1	1	1	1	1	1	1	1	1	0	0	0
14	REFIN_ ENOUT3	REFOUT Enable	$\begin{aligned} & \text { REFOUT Enable } \\ & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0	1	1	1	1	1	1	1	1	1	1	0	1	0
15	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16				1	0	0	0	0	0	0	0	0	0	0	0	0	0
17				2	0	0	0	0	0	0	0	0	0	0	0	0	0
18				3	1	1	1	1	1	1	1	1	1	1	1	1	1
19				4	0	0	0	0	0	0	0	0	0	0	0	0	0
20				5	1	1	1	1	1	1	1	1	1	1	1	1	1
21	REFOUT_ DRV<1:0>	REFOUT Buffer Drive Strength	REFOUT Drive Strength$\begin{aligned} & 00=1 x \\ & 01=2 x \\ & 10=3 x \\ & 11=4 x \end{aligned}$	0	1	1	1	1	1	1	1	1	1	1	1	1	1
22				1	1	1	1	1	1	1	1	1	1	1	1	1	1
23	REFOUT_LV_ CMOS_SEL		$\begin{aligned} & 0=\text { CMOS } \\ & 1=\text { Low voltage } \end{aligned}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				1	0	0	0	0	0	0	0	0	0	0	0	0	0

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 50. TXLO_AFCDAC Register 30 (Address = 11110)

BIT	BIT ID	NAME	DEFINITION	BIT													足
0	$\begin{aligned} & \text { AFCDAC } \\ & <11: 0> \end{aligned}$	AFCDAC Output Voltage	800 (hex) $\mathrm{V}_{\text {AFCOUT }}=0.4+(2.5-0.4) \mathrm{x}$ AFCDAC/2 ${ }^{12}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0
8				8	0	0	0	0	0	0	0	0	0	0	0	0	0
9				9	0	0	0	0	0	0	0	0	0	0	0	0	0
10				10	0	0	0	0	0	0	0	0	0	0	0	0	0
11				11	1	1	1	1	1	1	1	1	1	1	1	1	1
12	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13				1	0	0	0	0	0	0	0	0	0	0	0	0	0
14				2	0	0	0	0	0	0	0	0	0	0	0	0	0
15				3	0	0	0	0	0	0	0	0	0	0	0	0	0
16				4	0	0	0	0	0	0	0	0	0	0	0	0	0
17				5	0	0	0	0	0	0	0	0	0	0	0	0	0
18				6	0	0	0	0	0	0	0	0	0	0	0	0	0
19	AFCDAC_EN	AFCDAC Enable	$\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0	1	1	1	1	1	1	1	1	1	1	1	1	0
20	Reserved	Reserved	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21				1	0	0	0	0	0	0	0	0	0	0	0	0	0
22				2	0	0	0	0	0	0	0	0	0	0	0	0	0
23				3	0	0	0	0	0	0	0	0	0	0	0	0	0
24				4	0	0	0	0	0	0	0	0	0	0	0	0	0
25				5	0	0	0	0	0	0	0	0	0	0	0	0	0

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Table 51. Reserved Register 31 (Address = 11111)

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Applications Information

Layout Considerations

The EV kit and reference design serve as a guide for PCB layout. Keep RF signal lines as short as possible to minimize losses and radiation. Use controlled impedance on
all high-frequency traces. The exposed paddle must be soldered evenly to the board's ground plane for proper operation. Use abundant ground vias between RF traces to minimize undesired coupling. Bypass each V_{CC} pin to ground with capacitors placed as close as possible to the pin.

Simplified Block Diagram

Ordering Information

PART	BAND	TEMP RANGE	PIN- PACKAGE
MAX2551ETN +	II and V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	56 TQFN

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed paddle.

Package Information

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
56 TQFN	$T 5677+2$	$\underline{\underline{21-0144}}$	$\underline{\underline{90-0043}}$

MAX2551

Band II and V WCDMA Femtocell Transceiver with GSM Monitoring

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$12 / 11$	Initial release	-

maxim
integrated $^{\text {w }}$

