May 2004

FDZ7064S 30V N-Channel PowerTrench[®] SyncFET[™] BGA MOSFET

General Description

This MOSFET is designed to replace a single MOSFET and parallel Schottky diode in synchronous DC:DC power supplies. Combining Fairchild's 30V PowerTrench SyncFET process with state of the art BGA packaging, the FDZ7064S minimizes both PCB space and R_{DS(ON)}. This BGA SyncFET embodies a breakthrough in both packaging and power MOSFET integration which enables the device to combine excellent thermal transfer characteristics, high current handling capability, ultra-low profile packaging, low gate charge, ultra-low reverse recovery charge and low R_{DS(ON)}.

Applications

DC/DC converters

	Ø	Ô	D	D	D	D
	D	S	S	S	S	D
	0	S	S	S	S	D
	0	S	S	S	S	D
Pin 1_	D	G	S	S	S	D

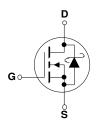
Features

area of SO-8

mounted to PCB

• 3.5 x 4 mm² Footprint

• 13.5 A, 30 V. $R_{DS(ON)} = 7 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$


 $R_{DS(ON)} = 9 \ m\Omega \ @ V_{GS} = 4.5 \ V$

• Occupies only 14 mm² of PCB area. Only 42% of the

• Ultra-thin package: less than 0.8 mm height when

• High power and current handling capability.

F7064S

Bottom

Тор

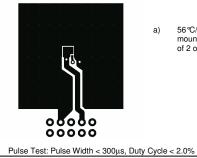
Absolute Maximum Ratings T_A=25°C unless otherwise noted

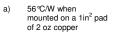
Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		30	V
V _{GSS}	Gate-Source Voltage		±16	V
ID	Drain Current – Continuous	(Note 1a)	13.5	A
	– Pulsed		60	
PD	Power Dissipation (Steady State)	(Note 1a)	2.2	W
T _J , T _{stg}	Operating and Storage Junction Temperature Range		-55 to +150	°C

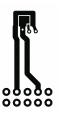
Thermal Characteristics

R∟JA	Thermal Resistance, Junction-to-Ambient	(Note 1a)	56	°C/W
R∟JB	Thermal Resistance, Junction-to-Ball	(Note 1)	4.5	
R∟Jc	Thermal Resistance, Junction-to-Case	(Note 1)	0.6	

Package Marking and Ordering Information

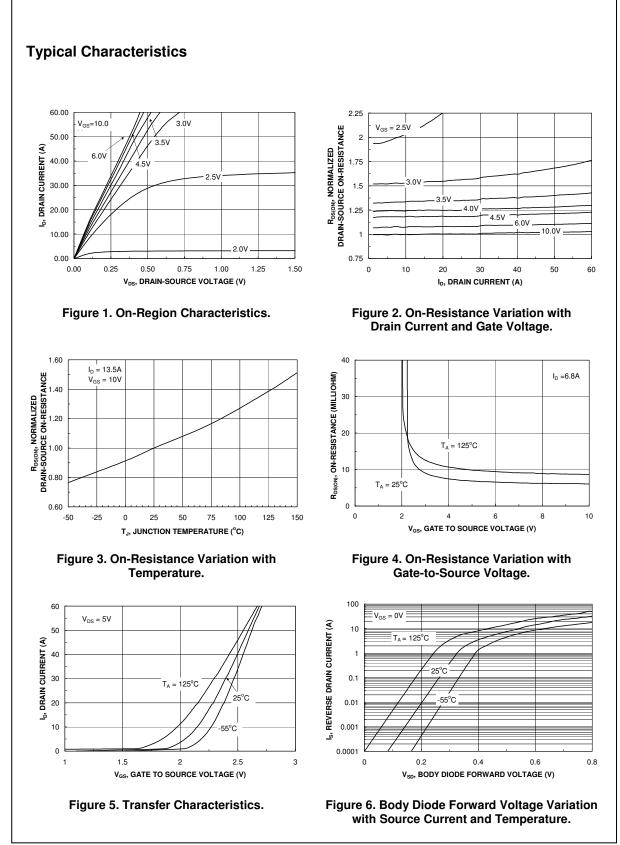

Device Marking	Device	Reel Size	Tape width	Quantity
7064S	FDZ7064S	13"	12mm	3000


Electrical Characteristics $T_A = 25 \ ^{\circ}C$ unless otherwise noted						
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					J
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 1mA$	30			V
$\frac{\Delta BV_{\text{DSS}}}{\Delta T_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	$I_D = 10mA$, Referenced to 25 °C		26		mV/℃
I _{DSS}	Zero Gate Voltage Drain Current	$V_{\text{DS}} = 24 \text{ V}, V_{\text{GS}} = 0 \text{ V}$			500	uA
I _{GSS}	Gate–Body Leakage	$V_{\text{GS}}=\pm 16~V,~V_{\text{DS}}=0~V$			±100	nA
On Chara	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, \qquad I_D = 1mA$	1	1.4	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 10mA$, Referenced to 25 °C		-0.5		mV/℃
$R_{\text{DS(on)}}$	Static Drain–Source On–Resistance	$ \begin{array}{l} V_{GS} = 10 \ V, I_D = 13.5 \ A \\ V_{GS} = 4.5 \ V, I_D = 12 \ A \\ V_{GS} = 10 \ V, I_D = 13.5 \ A, \ T_J = 125^\circ C \end{array} $		6 7 9	7 9 11	mΩ
g _{FS}	Forward Transconductance	$V_{DS} = 5 V$, $I_D = 13.5 A$		66		S
	Characteristics	56 5 , 5 5 5				_
Ciss	Input Capacitance	$V_{DS} = 15 V$, $V_{GS} = 0 V$,		2840		pF
Coss	Output Capacitance	f = 1.0 MHz		525		pF
C _{rss}	Reverse Transfer Capacitance			190		pF
R _G	Gate Resistance	$V_{GS} = 15 \text{ mV}, I_D = 6 \text{ A}$		1.9		Ω
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time	$V_{DS} = 15 V$, $I_{D} = 1 A$,		11	20	ns
t _r	Turn–On Rise Time	$V_{GS} = 10 \text{ V}, R_{GEN} = 6 \square$		12	22	ns
t _{d(off)}	Turn-Off Delay Time			50	80	ns
t _f	Turn-Off Fall Time	7		18	32	ns
Q _g	Total Gate Charge	$V_{DS} = 15 \text{ V}, I_D = 13.5 \text{ A},$		25	35	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 5 V$		7		nC
Q _{gd}	Gate-Drain Charge	7		6		nC
Drain-Sc	ource Diode Characteristics	-	•		•	
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \ V, I_S = 3.2 \ A (Note 1)$		0.4	0.7	V
t _{rr}	Diode Reverse Recovery Time	$I_F = 13.5 \text{ A}, d_{iF}/d_t = 300 \text{ A}/\mu\text{s}$		22		ns
Q _{rr}	Diode Reverse Recovery Charge	See Diode Characteristic, page 5		19		nC


Notes:

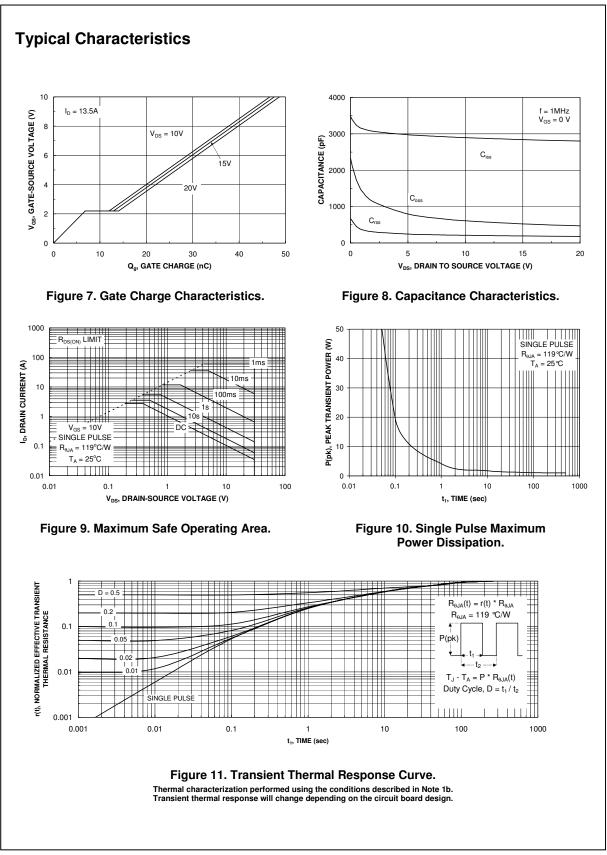
2.

R_{JJA} is determined with the device mounted on a 1 in² 2 oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. The thermal resistance from the junction to the circuit board side of the solder ball, R_{JJB} is defined for reference. For R_{JJC}, the thermal reference point for the case is defined as the top surface of the copper chip carrier. R_{JJC} and R_{JJB} are guaranteed by design while R_{JJA} is determined by the user's board design.



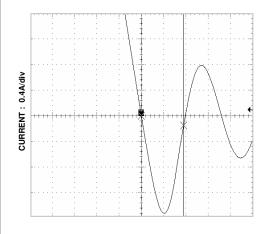
b) 119℃/W when mounted on a minimum pad of 2 oz copper

Scale 1 : 1 on letter size paper


©2004 Fairchild Semiconductor Corporation

FDZ7064S Rev. B2 (W)

FDZ7064S


FDZ7064S Rev B2 (W)

Typical Characteristics

SyncFET Diode Characteristics

Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 12 FDZ7064S.

Figure 12. FDZ7064S SyncFET body diode reverse recovery characteristic.

For comparison purposes, Figure 13 shows the reverse recovery characteristics of the body diode of an equivalent size MOSFET produced without SyncFET.

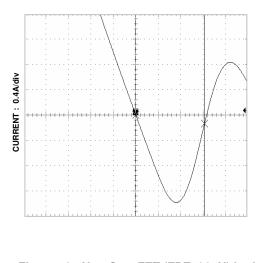
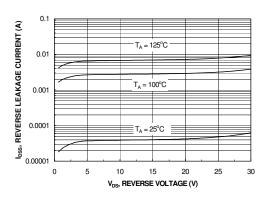
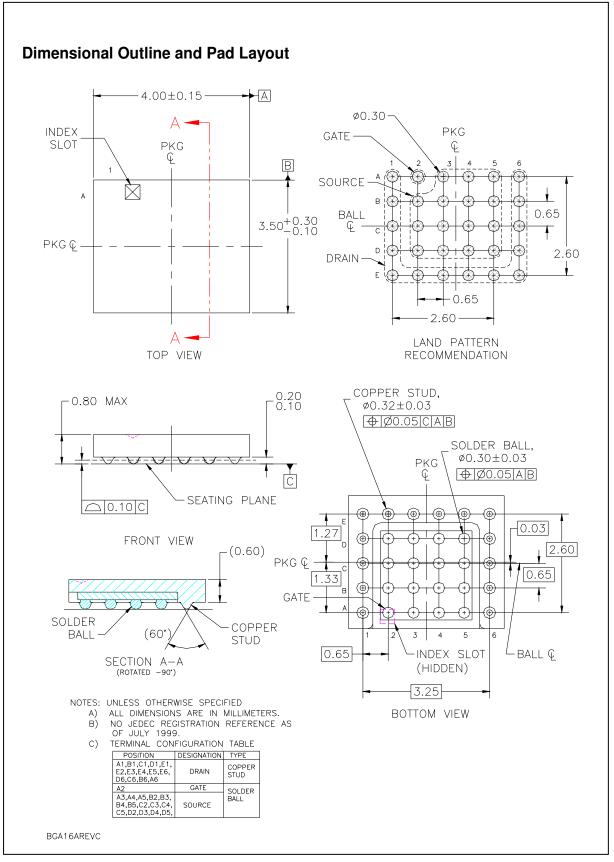




Figure 13. Non-SyncFET (FDZ7064N) body diode reverse recovery characteristic. Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

Figure 14. SyncFET diode reverse leakage versus drain-source voltage and temperature.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

	FAST®		Power247™	SuperFET™
ActiveArray™	FASTr™	LittleFET™	PowerSaver™	SuperSOT™-3
Bottomless™	FPS™	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-6
CoolFET™	FRFET™	MicroFET™	QFET [®]	SuperSOT™-8
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QS™	SyncFET™
DOME™	GTO™	MICROWIRE™	QT Optoelectronics [™]	TinyLogic [®]
EcoSPARK™	HiSeC™	MSX™	Quiet Series [™]	TINYOPTO™
E ² CMOS™	l²C™	MSXPro™	RapidConfigure™	TruTranslation™
EnSigna™	<i>i-Lo</i> ™	OCX™	RapidConnect™	UHC™
FACT™	ImpliedDisconnect [™]	OCXPro™	µSerDes™	UltraFET [®]
FACT Quiet Serie	es™	OPTOLOGIC [®]	SILENT SWITCHER®	VCX™
Across the board. Around the world.™		OPTOPLANAR™	SMART START™	
The Power Franchise [®]		PACMAN™	SPM™	
Programmable A		POP™	Stealth™	
i iogiainnabio/				

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		Rev. I11