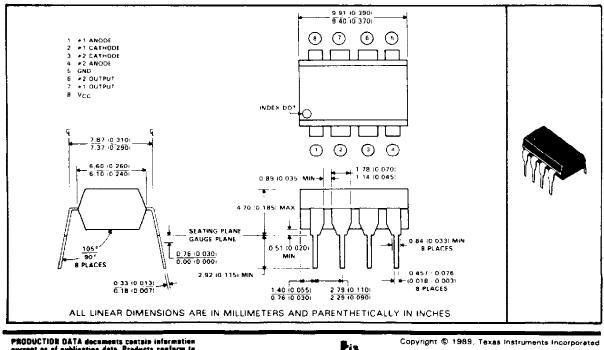
SOOS020 D3262, JUNE 1989

- Dual-Channel Optocouplers
- High Current Transfer Ratio . . . 1800% Typ at IF = 0.5 mA
- Low Input Current Requirement . . . 0.5 mA
- High-Speed Switching . . . 100 kbit/s Typ.
- High Common-Mode Transient Immunity . . . 500 V/µs Typ
- High-Voltage Electrical Insulation . . . 3000 V DC Min
- High Output Current Rating of 60 mA
- UL Recognized . . . File Number 65085

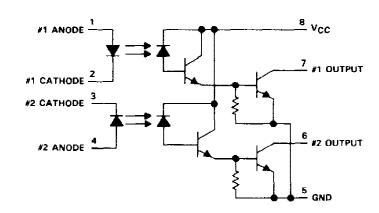
description


These devices are useful where large common-mode input signals exist, and in *applications* that require high-voltage isolation between circuits. Applications include line receivers, telephone ring detectors, power line monitors, high-voltage status indicators, and circuits that require isolation between input and output.

The HCPL2730 and HCPL2731 dual-channel high-gain optocouplers each consists of a pair of light-emitting diodes and integrated high-gain photon detectors. The VCC and output terminals may be tied together to achieve conventional photodarlington operation. An integrated emitter-base bypass resistor is provided for low leakage.

The HCPL2730 is designed for use primarily in TTL applications. An LED input current of 1.6 mA and a minimum current-transfer ratio of 300% from 0°C to 70°C allow operation with one TTL-load input and one TTL-load output utilizing a 2.2-k Ω pullup resistor.

The HCPL2731 is designed for use in CMOS, LSTTL, or other low-power applications. This device has a minimum current-transfer ratio of 400% for only 0.5-mA input current over an operating temperature range of 0°C to 70°C.



PRODUCTION DATA documents contain information current as of publication data. Products conform to apacifications par the torms of Taxas lastruments standard warranty. Production processing does not necessarily include testing of all parameters.

IEXAS V INSTRUMENTS POST OFFICE BOX 655303 - DALLAS, TEXAS 75265

schematic

absolute maximum ratings at 25 °C free-air temperature range (unless otherwise noted)

Supply and output voltage range, V _{CC} and V _O : HCPL27300.5 V to 7 V HCPL27310.5 to 18 V
Reverse input voltage
Peak input forward current per channel (pulse duration = 1 ms, 50% duty cycle)
Average forward input current per channel at (or below) 50 °C free-air
temperature (see Note 1)
Output current per channel at (or below) 35°C free-air temperature (see Note 2)
Input power dissipation per channel at (or below) 50 °C free-air temperature (see Note 3) 35 mW
Output power dissipation per channel at (or below) 35 °C free-air
temperature (see Note 4)
Operating temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds
NOTES: 1, Derate linearly above 50°C free-air temperature at a rate of 0.57 mA/°C.
 Derate linearly above 35 °C free-air temperature at a rate of 1.2 mA/ °C.
 Derate linearly above 50 °C free-air temperature at a rate of 1.0 mW/ °C.

4. Derate linearly above 35 °C free-air temperature at a rate of 2.0 mW/ °C.

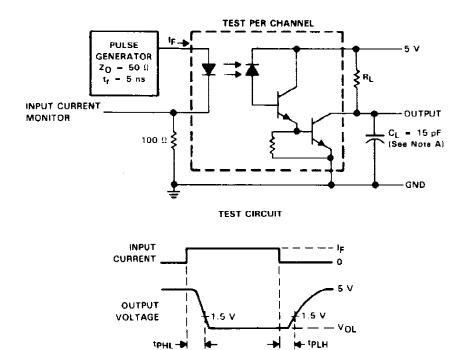
PARAMETER		TEAT 00				HCPL2730			HCPL2731		
		TEST CO				MIN TYPT MAX		MIN TYPT MAX			
٧F	Input forward voltage	I _F = 1.6 mA,	T _A = 25°C	T	1.5	1.7		1.5	1.7		
αVF	Temperature coefficient of forward voltage	l _F = 1.6 mA	· - · · · · · · · · · · · · · · · · · ·		- 1.8			- 1.8		mV/°(
VBR	input breakdown voltage	Aµ IR = 10 A.	T _A = 25°C	5			5			V	
	· · · · · · · · · · · · · · · · · · ·	V _{CC} = 4.5 V,		1		<u> </u>	1				
		IOL = 4.8 mA,	1 _B = 0		0.1	0.4					
		V _{CC} = 4.5 V.						0.1	0.4]	
V		i _{OL} = 8 mA,	+ _Β = 0					0.1	0.4		
VOL	Low-level output voltage	$V_{CC} = 4.5 V_{c}$	lp:=5mA,					0.1	0.4		
		i _{OL} = 15 mA,	IB = 0				1	0.1			
		$V_{\rm CC} = 4.5 \rm V,$	I _F = 12 mA,					0.2	0.4		
		$i_{OL} = 24 \text{ mA},$ $V_{CC} = 7 \text{ V}.$	I <mark>B</mark> = 0					0.2	0.4		
	High-level output current	$V_{CC} = 7 V_{.}$	$V_0 = 7 V_{.}$		0.1	250					
1		ι _F = 0,	I _B = 0		<u>v.</u> 1	2.50				μA	
юн		$V_{\rm CC} = 18 V$,	VO = 18 V,					0.05	100	1 ***	
		IF = 0,	I _B = 0					0.00	100		
		$V_{CC} = 7 V_{c}$	lo = 0,	1	4						
icour	Supply current,	$I_{\rm F} = 0,$ $V_{\rm CC} = 18 V,$	lg = 0							nA	
іссн	high-level output	V _{CC} = 18 V,	l ₀ = 0,					5			
		lr = 0,	lg = 0					ĭ	_	L	
	Supply current,	V _{CC} = 7 V,	l ₀ = 0,								
		I _{F1} = 1.6 mA,	$l_{F2} = 1.6 \text{ mA}$		0.4						
laat		lg = 0								mA	
CCL	low-level output	V _{CC} = 18 V,	I _O = 0,								
		IF1 = 1.6 mA.	lp2 = 1.6 mA					0.6			
		ig = 0					<u> </u>				
	Current transfer ratio	V _{CC} = 4.5 V,	•				1				
		I _F = 0.5 mA,	I <mark>B</mark> - 0,				400%	1800%			
CTR		See Note 5								4	
••••		$V_{\rm CC} = 4.5V,$									
		l⊨ ≖ 1.6 mA,	ί _Β = 0,	300%	1000%		500%	1600%			
		See Note 5					1			ļ	
4ii	Input-Input resistance	V _{ii} = 500 V			1011		_	1011		Ω	
^r 10	Input-output resistance	V _{io} = 500 V,			1012			1012		<u>n</u>	
¹ ii 1io	Input-input insulation	$V_{ii} = 500 V_{i}$	τ = ៦5,		0.005		1	0.005		μΑ	
	leakage current	RH = 45%		-		-	+				
	Input-output insulation	$V_{io} = 3000 V_{.}$								1.	
	leakage current	$T_A = 25 ^{\circ}C$	HH = 45%.			1	1		1	Aµ 1	
		See Note 6			• *						
С,	Input capacitance	Vp = 0.	f = 1 MHz		60		<u> </u>	60		pF	
Cii	Input-input capacitance	f = 1 MHz			0.25		+	0.25		pF	
CIO	Input-output capacitance	f = 1 MHz	See Note 6		0.6		l	0.6		pF	

electrical characteristics over operating free-air temperature range of 0 °C to 70 °C (unless otherwise noted)

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C, unless otherwise noted.

NOTES: 5. Current transfer ratio is defined as the ratio of output collector current I_O to the forward LED input current I_F times 100%. 6. These parameters are measured between pins 2 and 3 shorted together and pins 5, 6, 7 and 8 shorted together.

			TEST CONDITIONS		ICPL2730		HCPL2731			UNIT
	PARAMETER	TEST CO	INDITIONS	MIN TYP MAX		MIN TYP MAX				
		I _F = 1.6 mA, See Figure 1	$B_{L} = 2.2 k\Omega$,		2	20		2	20	
^t PHL	Propagation delay time, high-to-low level output		R _L = 4.7 kΩ					7	100	μs
		I _F = 12 mA. See Figure 1	R _L = 270 Ω,		0.4	2		0.4	2	
	Propagation delay time, low-to-high-level output	I _F = 1.6 mA. See Figure 1	$R_L = 2.2 k\Omega$		4	35		5	35	
^t PLH		·	ßL = 4.7 kΩ					6	60	μs
		I _F = 12 mA. See Figure 1	R _L = 270 Ω.		3	10		2	10	
dV <u>CM</u> (H) dt (H)	Common-mode input transient immunity, high-level output	VCM = 10 Vp-p, RL = 2.2 kΩ, See Figure 2	IF = 0, See Notes 7 and 8,		500			500		V/µs
dVCM dt (L)	Common-mode input transient immunity, low-level output	V _{CM} = 10 Vp-p, R _L = 2.2 kΩ, See Notes 7 and 8	See Figure 2		- 500			- 500		√/µ٤


switching characteristics at $V_{CC} = 5 V$, $T_A = 25 °C$

NOTES: 7. Common-mode transient immunity, high-level output, is the maximum rate of rise of the common-mode input voltage that does not cause the output voltage to drop below 2 V. Common-mode input transient immunity, low-level output, is the maximum rate of fall of the common-mode input voltage that does not cause the output voltage to rise above 0.8 V.

 In applications where dV/dt may exceed 50,000 V/µs (such as static discharge) a series resistor, R_{CC}, should be included to protect the detector IC from destructively high surge currents. The recommended value is:

$$R_{CC} \approx \frac{1}{0.15 \text{ IF (mA)}} \text{ k}\Omega$$

PARAMETER MEASUREMENT INFORMATION

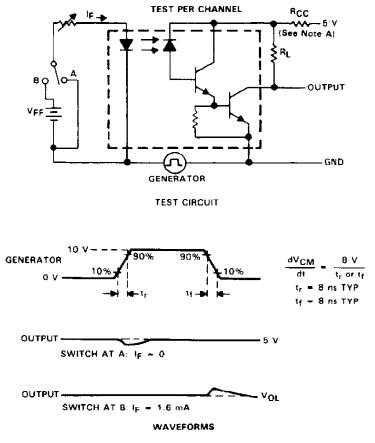

NOTE A: CL includes probe and stray capacitances.

FIGURE 1. SWITCHING TEST CIRCUIT AND WAVEFORMS

WAVEFORMS

tenl 📲

PARAMETER MEASUREMENT INFORMATION

NOTE A: In applications where dV/dt may exceed 50,000 V/µs (such as static discharge) a series resistor, R_{CC}, should be included to protect the detector IC from destructively high surge currents. The recommended value is:

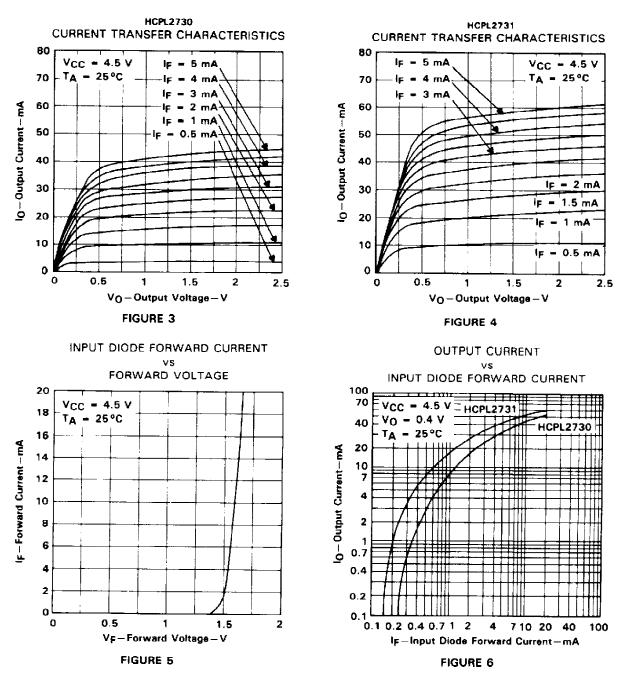
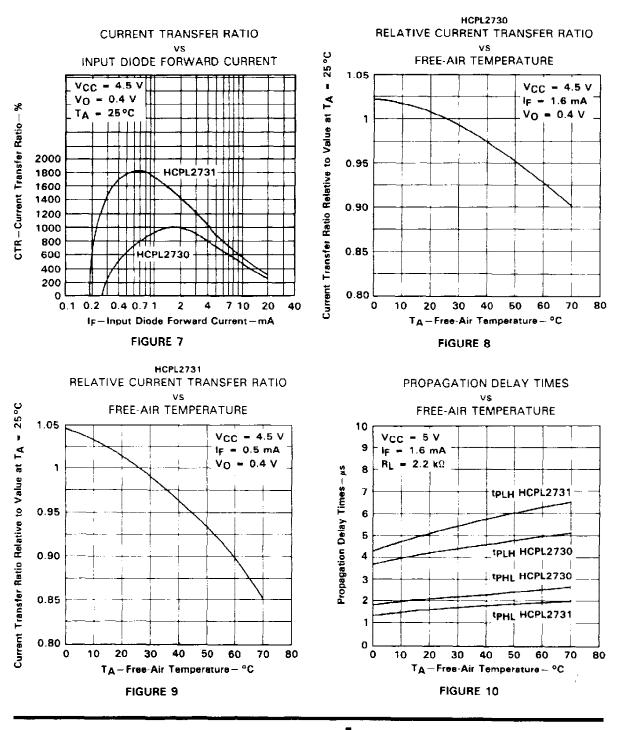
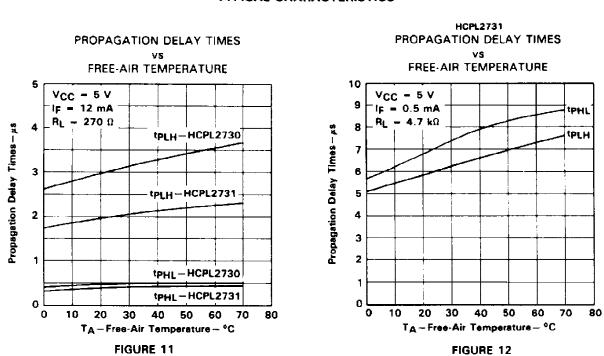

$$R_{CC} \approx \frac{1}{0.15 \text{ I}_{\text{F}} \text{ (mA)}} \text{ k}\Omega$$

FIGURE 2. TRANSIENT IMMUNITY TEST CIRCUIT AND WAVEFORMS




TEXAS VI INSTRUMENTS

- --

TYPICAL CHARACTERISTICS

TEXAS TEXAS

TYPICAL CHARACTERISTICS

_

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
HCPL2730	OBSOLETE	PDIP	Ν	8	TBD	Call TI	Call TI
HCPL2731	OBSOLETE	PDIP	Ν	8	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated