

TUSB6015 USB 2.0 High Speed Peripheral Controller Data Sheet

FEATURES

- USB 2.0 High-Speed (HS) Compliant Peripheral Controller Core
 - USB-IF TID # 40630005
- Integrated USB 2.0 PHY
- NOR FLASH Like External Host Interface
- DP/DM lines are high impedance when the device is not powered
- Six physical endpoints
 - Each endpoint is configurable as IN or OUT with dedicated 1K buffer
- NOR Flash Interface Access modes:
 - Asynchronous 16-bit single access
 - Asynchronous 32-bit single access
 - Asynchronous 16x16 burst access w/ DMA
 - Synchronous 16x16 burst access with DMA (Max GPMC clock is 65 MHz)
- Interrupt on DP/DM line state change for CEA-936-A detect
- VBUS MAX Voltage rating will be 6V for USB Charging
- RoHS Complaint 80 Terminal BGA MICROSTAR JUNIOR Package

DESCRIPTION

The TUSB6015 is a USB 2.0 HS Peripheral Controller designed for seamless interface to an external Host processor through the NOR FLASH-like interface.

The NOR FLASH-like interface is a 16-bit, multiplexed address/data, interface with support for synchronous burst and single asynchronous read/write access. Configuration registers are accessible via the asynchronous chip select only; the End Point FIFO's are accessible via both the synchronous and asynchronous chip selects.

The device also has eight user configurable general purpose I/0 interface pins. The GPIO can be configured as an interrupt or wakeup source. Some GPIO have secondary NOR-flash DMA Request functionality.

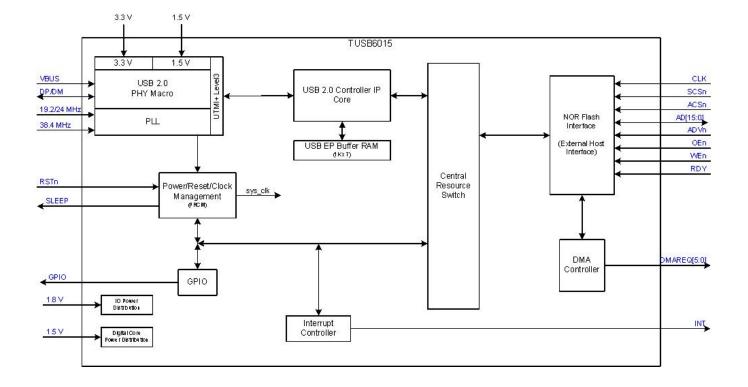
The device is fully compliant with the Universal Serial Bus Specification Rev. 2.0.

The ESD protection level is 2KV HBM (JESD22-A114D), 500V CDM (JESD22-C101C).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appear at the end of this data sheet.

Ordering Information¹

PACKAGED DEVICES	PACKAGE ²	MARKING
TUSB6015IZQE	ZQE	TUSB6015I
TUSB6015IZQER•3	ZQE	TUSB6015I


¹ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at <u>www.ti.com</u>.

² Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at <u>www.ti.com/sc/package</u>. ³The tape and reel option is available for TUSB6015IZQE by adding an R suffix.

SLLS937 REVISION 1.4 SEPTEMBER 10, 2008

Device Block Diagram

SLLS937 REVISION 1.4 SEPTEMBER 12, 2008

Electrical Characteristics

Absolute Maximum Ratings¹

3.3V Supply Voltage, VDDA3P3 1.8V Supply Voltage VDD18	
1.5V Supply Voltage, VDD15, VDDD1P5, VDDCM1P5, VDDA1P5	
USB VBUS Supply Voltage ²	0 V to 6.0 V
Input voltage, V, 3.3V USB ³	
Output voltage, V _o , 3.3V USB	
Input clamp current, I _{IK}	±20 mA
Output clamp current, I _{ok}	±20 mA
Storage temperature range, Tstg	65°C to 150°C

Recommended Operating Conditions

	PARAMETER			ТҮР	MAX	UNIT
VDDA3P3	Supply voltage for PHY A	3	3.3	3.6	V	
VDD18	Supply voltage for Digital I/O		1.62	1.8	1.98	V
VDD15	Supply voltage for Digital Core					
VDDD1P5	Supply voltage for PHY Digital		1.05	1.5	1.65	v
VDDCM1P5	M1P5 Supply voltage for PHY Common Module		1.35			V
VDDA1P5	Supply voltage for PHY Analog					
T _A	Operating Temperature				85	°C

¹Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.

²VBUS can tolerate 6V for the lifetime of the device. It can handle 6.5V for 36 hours.

³TUSB6015 complies with short circuit withstand and AC stress conditions as described in Chapter 7.1.1 of the USB 2.0 specification.

SLLS937 REVISION 1.4 SEPTEMBER 10, 2008

Electrical Characteristics for the Digital I/O
$T_A = -30^{\circ}C - 85^{\circ}C$, $V_{DD18} = 1.8 V \pm 10\%$, $V_{ss} = 0 V$ (Unless otherwise noted)

	P	ARAMETER	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT
VI	Input voltage	LVCMOS		0		VDD18	V
V _o	Output voltage	LVCMOS		0		VDD18	V
$V_{_{\rm IH}}$	High–level input voltage	LVCMOS		0.7 x VDD18		VDD18	V
V _{IL}	Low-level input voltage	LVCMOS		0		0.3 x VDD18	V
V _{oh}	High–level output voltage	LVCMOS	I _{OH} = 8mA	0.8 × VDD18			V
		LVCMOS open-drain	$I_{OL} = 4mA$			0.22 x VDD18	V
$V_{\rm ol}$	Low-level output voltage	LVCMOS	I _{ol} = 8mA			0.22 x VDD18	v
		LVCMOS (1.5V_SWEN, 3.3V_SWEN only)	I _{oL} = 100uA		10		mV
I _H	High–level input current	LVCMOS	$V_1 = V_1 max$			±1	uA
I _⊫	Low–level input current	LVCMOS	$V_1 = V_1 \min$			±1	uA
I _{oz}	Z Output leakage current (high–Z)		$V_1 = V_1 \max or$ V_{ss}			±20	uA
C,	C _i Input Capacitance (1.8V NOR Interface)					2.43	pF
t _r , t _f	Input rise/fall time			0		25	ns

SLLS937 REVISION 1.4 SEPTEMBER 12, 2008

Vbus - Electrical Characteristics for the Integrated USB 2.0 Transceiver,

 $T_{_{A}}=-30^{\circ}C-85^{\circ}C, V_{_{DD15}}=1.5v\pm10\%, \ V_{_{DD18}}=1.8V\pm10\%, \ V_{_{DDA1P5}}=1.5\ V\ \pm10\%,$

 $V_{\text{DDA3P3}} = 3.3 \pm 10\%, V_{\text{DDD1P5}} = 1.5 \text{ V} \pm 10\%, V_{\text{DDCM1P5}} = 1.5 \pm 10\%, V_{\text{ss}} = 0 \text{ V} \text{ (unless)}$

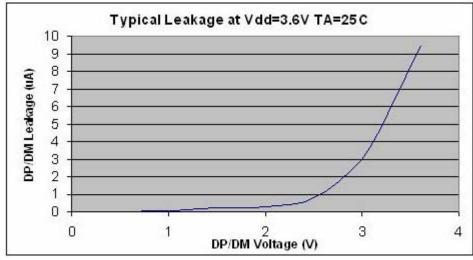
otherwise noted)[†]

PARAMETER	MIN	TYP	MAX	UNIT
Input Levels	·			•
Vbus Input Impedance	360		690	kΩ
Vbus Valid Comparator	4.4		4.75	V
Vbus leakage current (when device is powered off)			11	uA

†Characterization only. Limits approved by design.

DP and DM - Electrical Characteristics for the Integrated USB 2.0 Transceiver $T_A = -30^{\circ}C - 85^{\circ}C, V_{DD15} = 1.5v \pm 10\%, V_{DD18} = 1.8V \pm 10\%, V_{DDA1P5} = 1.5 V \pm 10\%, V_{DDA3P3} = 3.3$ $\pm 10\%, V_{DDD1P5} = 1.5, V \pm 10\%, V_{DDCM1P5} = 1.5 \pm 10\%, V_{ss} = 0 V$ (unless otherwise noted)[†]

	PARAMETER	MIN	ТҮР	МАХ	UNIT
Input Levels f			· · · · · ·		
V _{DI}	Full-speed differential input threshold	0.2			V
V _{CM}	Input (was differential) common mode range	0.8		2.5	V
Input Levels f	or High Speed				
V(HSSQ)	High-speed squelch detection threshold (differential signal amplitude)	100		150	mV
VDI	High-speed differential input threshold voltage	100			mV
CHSLOAD	Capacitance to ground on each line			5.5	pF
Output Levels	for Full Speed				
VOL	Low-level output voltage	0		0.3	V
VOH	High-level output voltage (driven)	2.8		3.6	V
VO(SE1)	Output voltage on SE1	0.8			V
VO(CRS)	Output signal crossover voltage	1.3		2	V
Output Levels	for High Speed				
V(HSOI)	High-speed idle level	-10		10	mV
V(HSOH)	I) High-speed data signaling high			440	mV
V(HSOL)	High-speed data signaling low	-10		10	mV
VID(CHIRPJ)	Chirp J level (differential voltage)	700		1100	mV
VID(CHIRPK)	Chirp K level (differential voltage)	-900		-500	mV
Driver Charac	teristics (Full Speed)	•			
tr	Full-speed rise time	4		20	ns
tf	Full-speed fall time	4		20	ns
t(RFM)	Full-speed rise/fall time matching	90%		110%	
Driver Charac	teristics (High Speed)				
tr	Rise time (10%-90%)	500			ps
tf	Fall time (10%-90%)	500			ps
ro(HSDRV)	Driver output resistance (serves as a high-speed termination)	40.5		49.5	Ω
t(FRFM)	Differential rise and fall time matching	90%		111.11%	
Clock Timing	8				
t(HSDRAT)	High-speed data rate	479.76		480.24	Mb/s
Single-Ended	Receiver				
VIT+	Positive-going input threshold voltage			2.0	V
VIT-	Negative-going input threshold voltage	0.8			V
Vhys	Hysteresis voltage	200		500	mV



DP and DM - Electrical Characteristics for the Integrated USB 2.0 Transceiver (CONT'D)

	INPUT LEAKAGE	TEST CONDITION	MIN	TYP	MAX	UNIT
DP/DM	Measurement taken with pull-up/dn disabled and device in idle mode	DP/DM Voltage = 0 – VDDA3.3	-1.3		1.3	uA
DP/DM	Measurement taken with pull-up/dn disabled and device in active mode	DP/DM Voltage = 2V		See Chart ¹	1.3	uA

†Characterization only. Limits approved by design.

¹Typical DP/DM Input Leakage with pull-up/dn disabled and device in active mode

Power Sequencing Guidelines

Power-On Reset

The system reset function ensures an orderly start-up sequence for the TUSB6015. There is a one active low external system reset input (RSTn). The reset initializes the Power/Reset/Clock Manager (PRCM) module, which in turn generates all the internal resets to initialize USB 2.0 PHY Macro and synchronous logic in the core. While reset is asserted (active low), the dual functional pin is sampled to determine device configuration after reset.

Since TUSB6015 relies on a dual function pin to configure the device during reset, the reset must be sufficiently long for (external) marginal pull-up/pull-down to achieve the intended levels. Reset pulse duration should be at least three times actual RC constant time (with typical 22 kOhm marginal pull-up resistor with 50 pF load, reset pulse should be at least 3.3 μ s).

All functional pins remain in same state even after RSTn is de-asserted and stay in that state until internal core reset is cleared. The internal core reset is held for 16 system clock cycles following low-to-high RSTn transition.

Upon power-on reset, the following must be determined for proper device initialization:

System reference clock source

Device uses dual-mode pin to determine initial clock input setup. Dual function pin is latched during the reset. After the reset this terminal assumes the normal functionality.

External Pin	Function	Description
GPIO6	Reference Clock Frequency Select	Determines the reference clock pin 0 – 38.4 MHz (CLKIN_38_4 pin is used) 1 – 19.2 MHz (CLKIN_19_2_24 pin is used)
CLK_24_SEL	CLKIN_19_2_24 Frequency Select	Determines the reference frequency of the CLKIN_19_2_24 pin 0 - RSVD 1 - 19.2 MHz If GPIO6 is low at reset, this pin will have no effect on clock selection.

Upon exiting reset, the USB 2.0 PHY is not in the suspend state and the system clock (60 MHz) is enabled and free running. The USB 2.0 HS Peripheral Controller Core powers up and a session is not enabled. With session not enabled, all the USB 2.0 HS Peripheral Controller Core State Machine's are in the idle state.

After reset is de-asserted, the device asserts the DevReady interrupt to the External Host to indicate that it is ready to be programmed. The host reads the NOR Flash Interrupt Source register and decides how to proceed based on the device's current status.

SLLS937 REVISION 1.4 SEPTEMBER 12, 2008

System Power-Up Sequence

		20 us required from stable power to reset de-assertion
1.8 V Power Supply		
TUSB6015: IO Interface Status	DINTERFACEISNOT INITIALIZED	IO INTERFACE IS INITIALIZED
TUSB6015: CLK_24_SEL (Ref Clock Freq Select)		F G PIO6 is high at reset ** Pulled up by TUSB6015 CLK_24_SEL internal pull up resistor (Frequency on CLKIN_19_2_24 is 19.2 MHz). If externally grounded, frequency on CLKIN_19_2_24 is 24 MHz.
TUSB6015: G PIO6 (Reference Clock Select)		Pulled up by TUSB6015 G PIO6 internal pull up resistor (19.2 MHz CLKIN is selected reference clock source). If externally grounded, 38.4 MHz CLKIN is selected).
TUSB6015: CPEN		
TUSB6015: SWEN		
TUSB6015: RSTn		Pulled high by TOSB6015 internal pull-up
1.5 V Power Supply	2	
3.3 V Power Supply	2 <u></u>	
TUSB6015: INT Ext Host: Extint/GPIOn		TUSB6015 sets INT low to indicate device is ready

NOTE: Reference Clock Source selection is latched on RSTn rising edge. No external components are required to select 19.2 MHz CLKIN as a reference clock source.

🕖 Signal state cannot be guaranteed

Signal state is stable and valid

Input Supply Current

 $T_A = 25^{\circ}C$

VDDA3.3 = 3.3V +/- 10%, VSS = 0V

	PARAMETER	TEST CONDITIONS	ТҮР	UNIT
		Idle ¹	16.5	uA
IDD Input supply current	Input supply	No Bus Activity ²	3.7	mA
	Active (Transmit / Receive) ³	3.6	mA	
	-	Reset⁴	2.7	mA

VDD1.8⁷ = 1.8V +/- 10%, VSS = 0V

PARAMETER		TEST CONDITIONS	TYP	UNIT
IDD Input supply current		Idle ¹	0.26	uA
	Input supply	No Bus Activity ²	157.0	uA
	Active (Transmit / Receive) ³	350.0	uA	
		Reset⁴	1.8	mA

Cumulative VDD1.5 = 1.5V +/- 10%, VSS = 0V (VDD1.5, VDDD1.5, VDDCM1.5, VDDA1.5)

PARAMETER		TEST CONDITIONS	ТҮР	UNIT							
		Idle ¹	2.0	uA							
	Input supply	No Bus Activity ²	56.5	mA							
IDD	current	Active (Transmit / Receive) ³	58.0	mA							
		Reset⁴	29.2	mA							

¹ DevIdle bit set in Device PRCM Management Register, USB cable unplugged.

²Normal operation with no packets being transferred on the USB, except SOF every 125 μs. ³Bulk IN and OUT on one End Point. Packet size is 512 bytes.

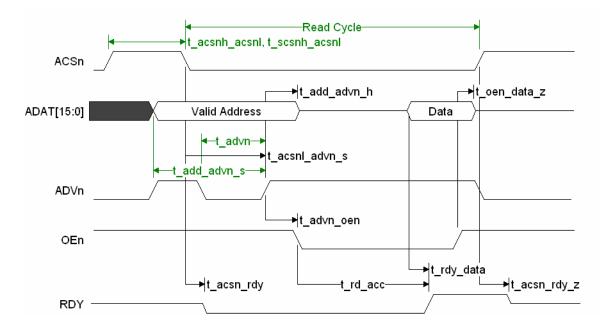
⁴TUSB6015 RSTn asserted.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appear at the end of this data sheet.

Input Clock Requirements

CLKIN 19.2 MHz Recommended Operating Conditions

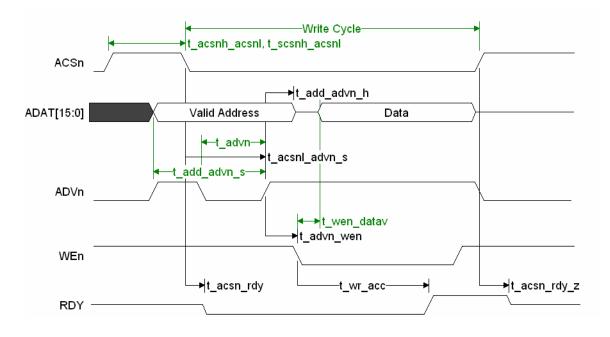
PARAMETER	VALUE
Nominal Clock Frequency	
(GPIO6 = high @ reset)	19.20 MHz
(CLK_24_SEL = high @ reset)	
Frequency Accuracy	+/- 100 ppm
Maximum Rise/Fall Time	5ns (10% to 90%)
Input Clock Type	Square Wave
Duty Cycle	45% - 55%
Input Capacitance Loading	4pF
Jitter	118 ps


CLKIN 38.4 MHz Recommended Operating Conditions

PARAMETER	VALUE
Nominal Clock Frequency (GPIO6 = low @ reset)	38.40 MHz
Frequency Accuracy	+/- 100 ppm
Input Clock Type	Sinusoid
Duty Cycle	45% - 55%
Input Common Mode Voltage VCM (V _{CM})	1 V +/- 100 mV
Vp-p	200 mV – 800 mV
Input Capacitance Loading	5 pF
Rin	180 kOhms
Jitter	100 ps (peak-to-peak)

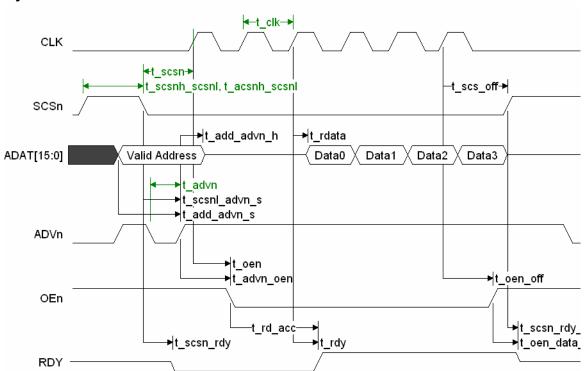
Timing Diagrams

Asynchronous Read Access



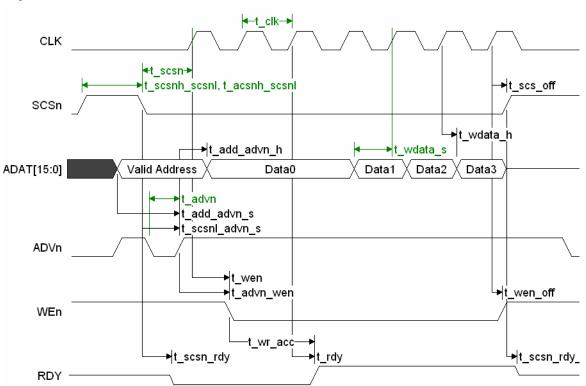
	PARAMETER	MIN	MAX	UNIT
t_acsnh_acsnl	Delay time, ACSn high to ACSn low	8		ns
t_scsnh_acsnl	Delay time, SCSn high to ACSn low	8		ns
t_add_advn_h	Address Hold to ADVn high	0.8		ns
t_acsnl_advn_s	ACSn low Setup to ADVn high	18		ns
t_add_advn_s	Address Setup to ADVn high	18		ns
t_advn_oen	Sampled Address to OEn low	1		ns
t_advn	ADVn low pulse	7		ns
	OEn low to RDY high (16-bit Register Access)	6	8	Sys Clk
	OEn low to RDY high (32-bit Register Access) 1 st 16-bit	5	7	Sys Clk
t_rd_acc	OEn low to RDY high (32-bit Register Access) 2 nd 16-bit	2	4	Sys Clk
	OEn low to RDY high (FIFO Access, with DMAREQ) 1 st 16-bit	3	4	Sys Clk
	OEn low to RDY high (FIFO Access, with DMAREQ) 2 nd 16-bit	3	4	Sys Clk
t_acsn_rdy	ACSn low to RDY low		7	ns
t_acsn_rdy_z	ACSn high to RDY high-Z		7	ns
t_oen_data_z	OEn high to Data high-Z		8	ns
t_rdy_data	Delay time, RDY high to data valid	-1	6	ns

SLLS937 REVISION 1.4 SEPTEMBER 12, 2008


Asynchronous Write Access

	PARAMETER	MIN	MAX	UNIT
t_acsnh_ascnl	Delay time, ACSn high to ACSn low	8		ns
t_scsnh_ascnl	Delay time, SCSn high to ACSn low	8		ns
t_add_advn_h	Address Hold to ADVn high	0.8		ns
t_acsnl_advn_s	ACSn low Setup to ADVn high	18		ns
t_add_advn_s	Address Setup to ADVn high	18		ns
t_advn	ADVn low pulse	7		ns
t_advn_wen	ADVn to WEn low	1		ns
	WEn low to RDY high (16-bit Register Access)	3	5	Sys Clk
	WEn low to RDY high (32-bit Register Access) 1 st 16-bit	2	4	Sys Clk
t_wr_acc	WEn low to RDY high (32-bit Register Access) 2 nd 16-bit	3	7	Sys Clk
	WEn low to RDY high (FIFO Access, with DMAREQ) 1 st 16-bit	3	4	Sys Clk
	WEn low to RDY high (FIFO Access, with DMAREQ) 2 nd 16-bit	3	4	Sys Clk
t_acsn_rdy	ACSn low to RDY low		7	ns
t_acsn_rdy_z	ACSn high to RDY high-Z		7	ns
t_wen_datav	Delay time, WEn low to Data valid		1-5ns	Sys Clk

SLLS937 REVISION 1.4 SEPTEMBER 10, 2008


Synchronous Burst Read Access

Notes: RDY going low is asynchronous to t_scsn_rdy. Going high, it is synchronous to CLK. Read Data output and RDY going high are synchronous to CLK. Valid Data Time programmable through Device Wait Count Register. Wait Count is not used for non-DMA synchronous reads.

	PARAMETER	MIN	MAX	UNIT
t_clk	Cycle Time (max 67.5 MHz)	14.8		ns
t_scsnh_scsnl	Delay time, SCSn high to SCSn low	8		ns
t_acsnh_scsnl	Delay time, ACSn high to SCSn low	8		ns
t_scsn	Delay time, SCSn low to first rising edge of CLK	3ns	1+3ns	CLK
t_scs_off	CLK to SCSn high	4		ns
t_rdata	Read data output delay	2.2	9.2	ns
t_rdy	RDY output delay	2.2	8.2	Ns
t_advn	ADVn low pulse	7		Ns
t_advn_oen	ADVn high to OEn low	3		Ns
t_oen_off	CLK to OEn high	4		Ns
toon	OEn setup to CLK high	3.75		Ns
t_oen	OEn hold time	0		
t_rd_acc	Valid Data Time (with DMAREQ)	1 ¹	32 ²	CLK
t_add_advn_h	Addr Hold time to ADVn high	0.8		Ns
t_scsnl_advn_s	SCSn low Setup to ADVn high	12		Ns
t_add_advn_s	Address Setup to ADVn high	12		Ns
t_scsn_rdy	SCSn low to RDY valid low		7	ns
t_scsn_rdy_z	SCSn high to RDY high-Z		7	ns
t_oen_data_z	OEn high to Data high-Z		8	ns

¹Device Wait Count Register = 0 or 1. ²Device Wait Count Register = 31.

Synchronous Burst Write Access

Note: RDY going low is asynchronous to t_scsn_rdy. Going high, it is synchronous to CLK. Valid Data Time programmable through Device Wait Count Register. For Wait Count values other than 0 or 1 (when DMAREQ is used), t_wr_acc = Wait Count + 1.

	PARAMETER	MIN	MAX	UNIT
t_clk	Cycle Time (max 67.5 MHz)	14.8		ns
t_scsnh_scsnl	Delay time, SCSn high to SCSn low	8		ns
t_acsnh_scsnl	Delay time, ACSn high to SCSn low	8		ns
t_scsn	Delay time, SCSn low to first rising edge of CLK	3ns	1+3ns	CLK
t_scs_off	CLK to SCSn high	1+3ns		Sys Clk
t_wdata_s	Data setup to CLK high	3.75		ns
t_wdata_h	Data hold time	0.6		ns
t_rdy	CLK to RDY output delay	2.2	8.2	ns
t_add_advn_h	Address Hold	0.8		ns
t_scsnl_advn_s	SCSn low Setup to ADVn high	12		ns
t_add_advn_s	Address Setup to ADVn high	12		ns
t_advn	ADVn low pulse	7		ns
t_advn_wen	ADVn high to WEn low	1+3ns		CLK
t_wen_off	CLK to WEn high	1+3ns		Sys Clk
t won	WEn setup to CLK high	3.75		ns
t_wen	WEn hold time	0		
t_wr_acc	Valid Data Time (with DMAREQ)	1 ¹	32 ²	CLK
t_scsn_rdy	SCSn low to RDY valid low		7	ns
t_scsn_rdy_z	SCSn high to RDY high-Z		7	ns

¹Device Wait Count Register = 0 or 1.

²Device Wait Count Register = 31.

SLLS937 REVISION 1.4 SEPTEMBER 10, 2008

Pin Descriptions

TERMINAL					
NAME	BALL	TYPE	I/O	RESET STATE	DESCRIPTION
VDD15	A1	Supply	-	-	Digital core power supply, 1.5 V
VSS	A2	Supply	-	-	Ground
CLK_24_SEL	A3	LVCMOS Failsafe ¹	I	In with Pull-up	CLKIN_19_2_24 Frequency Select at Reset CLK 24 SEL = HIGH, 19.2 MHz CLK 24 SEL = LOW, RSVD If GPIO6 is low at reset, this pin will have no effect on clock selection.
CLKIN_38_4	A4	LVCMOS Failsafe ¹	I	In	System Clock In. Connect directly to ground if not used.
CLKIN_19_2_24	A5	LVCMOS Failsafe ¹	I	In	System Clock In. Connect directly to ground if not used.
VSS	A6	Supply	-	-	Ground
VDD18	A7	Supply	-	-	IO Power Supply, 1.8 V
OEn	A8	LVCMOS Failsafe ¹	I	In with Pull-up	Output Enable
VDD15	A9	Supply	-	-	Digital core power supply, 1.5 V
VSSREF	B1	Supply	-	-	Ground reference for the reference circuits
GPIO7	B2	LVCMOS Failsafe ¹	I/O	In with Pull-up	GPIO 7
VDD15	B3	Supply	-	-	Digital core power supply, 1.5 V
VSS	B4	Supply	-	-	Ground
VDD18	B5	Supply	-	-	IO Power Supply, 1.8 V
GPIO2_DMAREQ2	B6	LVCMOS Failsafe ¹	I/O	In with Pull-up	GPIO 2 / DMA Request 2
ADAT15	B7	LVCMOS	I/O	In with Pull-up	Multiplexed ADDRESS.15/DATA.14
ADAT16	B8	LVCMOS	I/O	In with Pull-up	Multiplexed ADDRESS.16/DATA.15
VSS	B9	Supply	-	-	Ground
VDDA3P3	C1	Supply	-	-	3.3V Analog Supply
R1	C2	Bias	I	-	High precision external resistor used for calibration. (R1 value: 10.7 K +/- 1%)
GPIO4_DMAREQ4	C4	LVCMOS Failsafe ¹	I/O	In with Pull-up	GPIO 4 / DMA Request 4
VDD15	C5	Supply	-		Digital core power supply, 1.5 V
ADVn	C6	LVCMOS Failsafe ¹	I	In with Pull-up	Address Valid
ADAT12	C7	LVCMOS Failsafe ¹	I/O	In with Pull-up	Multiplexed ADDRESS.12/DATA.11
ADAT14	C8	LVCMOS Failsafe ¹	I/O	In with Pull-up	Multiplexed ADDRESS.14/DATA.13

SLLS937 REVISION 1.4 SEPTEMBER 12, 2008

CLK	C9	LVCMOS Failsafe ¹	I	In with Pull-up	NOR Interface Clock
DP	D1	USB	I/O	-	USB Differential Pair
VDDCM1P5	D2	Supply	-	-	1.5V PLL Supply
VSSCM1P5	D3	Supply	-	-	1.5V PLL Ground
TEST	D4	LVCMOS	Ι	-	Test Mode. Under normal operation this signal should be tied directly to GND.
GPIO1	D5	LVCMOS Failsafe ¹	I/O	In with Pull-up	GPIO 1
WEn	D6	LVCMOS Failsafe ¹	I	In with Pull-up	Write Enable
ADAT13	D7	LVCMOS Failsafe ¹	I/O	In with Pull-up	Multiplexed ADDRESS.13/DATA.12
ADAT11	D8	LVCMOS Failsafe ¹	I/O	In with Pull-up	Multiplexed ADDRESS.11/DATA.10
VDD15	D9	Supply	-	-	Digital core power supply, 1.5 V
VSSA1P5	E1	Supply	-	-	1.5V Analog Ground
DM	E2	USB	I/O	-	USB Differential Pair
VDDA1P5	E3	Supply	-	-	1.5V Analog Supply
VSSA3P3	E4	Supply	-	-	3.3V Analog Ground
VSS	E5	Supply	-	-	Ground
ADAT2	E6	LVCMOS Failsafe ¹	I/O	In with Pull-up	Multiplexed ADDRESS.2/DATA.1
GPIO5_DMAREQ5	E7	LVCMOS Failsafe ¹	I/O	In with Pull-up	GPIO 5 / DMA Request 5
GPIO3_DMAREQ3	E8	LVCMOS Failsafe ¹	I/O	In with Pull-up	GPIO 3 / DMA Request 3
VSS	E9	Supply	-	-	Ground
VDDD1P5	F1	Supply	-	-	1.5V Digital Supply
ID	F2	USB	Ι	-	Should be left floating as a USB device.
VBUS	F3	USB	I	-	USB VBUS
VSSD1P5	F4	Supply	-	-	1.5V Digital Ground
GPIO6	F5	LVCMOS Failsafe ¹	I/O	In with Pull-up	GPIO 6 / Input Clock Source Select at reset. GPIO6 = HIGH, 19.2/24 MHz GPIO6 = LOW, 38.4 MHz
ADAT1	F6	LVCMOS Failsafe ¹	I/O	In with Pull-up	Multiplexed ADDRESS.1/DATA.0
ADAT10	F7	LVCMOS Failsafe ¹	I/O	In with Pull-up	Multiplexed ADDRESS.10/DATA.9
ADAT9	F8	LVCMOS Failsafe ¹	I/O	In with Pull-up	Multiplexed ADDRESS.9/DATA.8
VDD15	F9	Supply	-	In with Pull-up	Digital core power supply, 1.5 V
VSS	G1	Supply	-	-	Ground
1.5V_SWEN	G2	LVCMOS	0	0	Switch Enable for 1.5V supply for Vbat/Vbus

SLLS937 REVISION 1.4 SEPTEMBER 10, 2008

					REVISION 1.4 SEFTEMBER		
		Failsafe1			Switch, if applicable		
		LVCMOS		0	Switch Enable for 3.3V supply for Vbat/Vbus		
3.3V_SWEN	G3	Failsafe ¹	0	0	Switch, if applicable		
ACSn	G4	LVCMOS			As makanana Chin Calaat		
ACSI	G4	Failsafe ¹	I	In with Pull-up	Asynchronous Chip Select		
ADAT3	G5	LVCMOS	I/O	In with Pull-up	Multiplexed ADDRESS.3/DATA.2		
ABATS	00	Failsafe ¹	"0				
ADAT4	G6	LVCMOS	I/O	In with Pull-up	Multiplexed ADDRESS.4/DATA.3		
		Failsafe ¹					
RDY	G7	LVCMOS	0	high z	Ready		
		tri-state		-			
SCSn VSS	G8 G9	LVCMOS		In with Pull-up	Synchronous Chip Select		
V33	Ga	Supply LVCMOS	-	-	Ground		
RSTn	H1	Failsafe ¹	Ι	In with Pull-up	Reset Active Low		
		LVCMOS					
CPEN	H2	Failsafe ¹	0	0	5V Charge Pump Enable, if applicable		
		LVCMOS					
SLEEP	H3	Failsafe ¹	0	0	Use for external power supply low power mode when idle, if applicable		
		LVCMOS					
GPIO0	H4	Failsafe ¹	I/O	In with Pull-up	GPIO 0		
		LVCMOS					
ADAT5	H5	Failsafe ¹	I/O	In with Pull-up	Multiplexed ADDRESS.5/DATA.4		
		LVCMOS					
ADAT6	H6	Failsafe ¹	I/O	In with Pull-up	Multiplexed ADDRESS.6/DATA.5		
A D A T 7		LVCMOS	1/0	la with Dull wa			
ADAT7	H7	Failsafe ¹	I/O	In with Pull-up	Multiplexed ADDRESS.7/DATA.6		
	H8	LVCMOS	1/0	In with Dull up	Multipleyed ADDDESS 8/DATA 7		
ADAT8	ПО	Failsafe ¹	I/O	In with Pull-up	Multiplexed ADDRESS.8/DATA.7		
VDD18	H9	Supply	-	-	IO Power Supply, 1.8 V		
VDD18	J1	Supply	-	-	IO Power Supply, 1.8 V		
VSS	J2	Supply	-	-	Ground		
VDD15	J3	Supply	-	-	Digital core power supply, 1.5 V		
VSS	J4	Supply	-	-	Ground		
DMAREQ1	J5	LVCMOS	ο	1	DMA Request 1		
		Failsafe ¹					
VDD18	J6	Supply	-	-	IO Power Supply, 1.8 V		
DMAREQ0	J7		0	1	DMA Request 0		
		Failsafe ¹					
VSS	J8	Supply	-	-	Ground		
INT	J9	LVCMOS	0	1	Interrupt		
		Failsafe ¹					

¹Failsafe means that the signal can toggle when VDD18 is not present without damaging the device.

External Components

USB PHY Voltage and Current Bias Resistor Pin: R1

This signal must connect to a precision external resistance to set the internal operating reference currents and cable driver output currents. A resistance of 10.7 k• \pm 1% (temperature coefficient \pm 100ppm/°C) is necessary to meet requirements set forth in the Universal Serial Bus Revision 2.0 specification.

The side of the resistor not connected to the R1 signal should connect through a low impedance path to the circuit board ground plane.

USB PHY Voltage and Current Reference Ground: VSSREF

This signal is the reference ground for the voltage and current reference circuitry internal to the Data/Port macro. This signal must connect to the low impedance circuit board ground plane.

USB PHY Power Connections: VDDCM1P5, VDDA1P5, VDDD1P5, VDDA3P3

Decoupling capacitors are required to suppress high-frequency switching noise and stabilize the supply voltage. A decoupling capacitor is most effective when it is close to the chip. This minimizes the inductance of the circuit board wiring and interconnects.

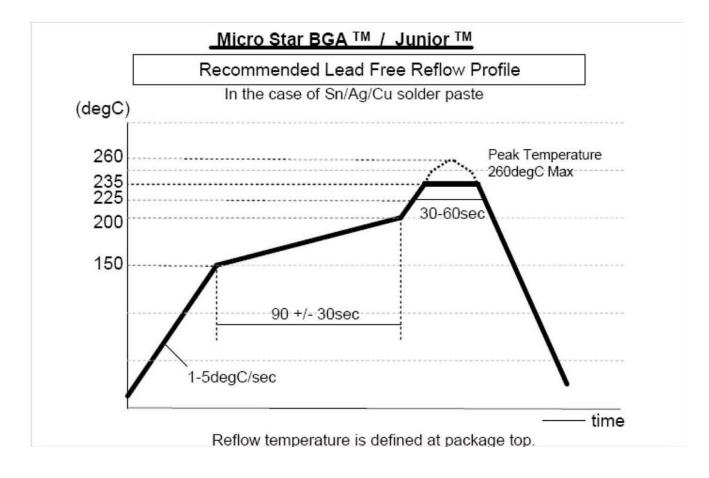
The USB 2.0 PHY Macro has two power rails, 1.5V (VDDCM1P5, VDDD1P5, VDDA1P5) and 3.3V (VDDA3P3). Each power connection has its own associated ground connection, 1.5V (VSSCM1P5, VSSD1P5, VSSA1P5) and 3.3V (VSSA3P3). Each supply is isolated from the others to provide noise isolation.

A combination of high-frequency capacitors near each terminal is suggested, such as paralleled 1uF, 0.01uF, and 0.001uF capacitors. A lower frequency 10uF filter capacitor is also recommended. A series inductor on the analog supplies is also recommended. All ground pins must connect through a low impedance path to the circuit board ground plane. All grounds can be connected to each other.

- VDDCM1P5 (Common Module 1.5V Supply) (1) 1µf , (1) 0.1µf, 0.01µf, (1) 0.001µf, (1) 10µf
- VSSCM1P5 (Common Module Ground)
- VDDD1P5 (Digital 1.5V Supply) (1) 0.1µf, (1) 0.001µf, (1) 10µf
- VSSD1P5 (Digital 1.5V Ground)
- VDDA1P5 (Analog 1.5V Supply) (1) 0.1μf, (1) 0.001μf, (1) 10μf, with a series inductor between the main supply and the device, the caps between the inductor and the device.
- VSSA1P5 (Analog 1.5V Ground)
- VDDA3P3 (Analog 3.3V Supply) (1) 0.1μf, (1) 0.001μf, (1) 10μf, with a series inductor between the main supply and the device, the caps between the inductor and the device.
- VDDA3P3 (Analog 3.3V Ground)

Digital Power Connections: VDD18, VDD15

The digital portion of the TUSB6015 has two power rails, 1.5V (VDD15) and 1.8V (VDD18). There is one digital ground connection (VSS). Each supply is isolated from the others to provide noise isolation.


A combination of high-frequency capacitors near each terminal is suggested, such as paralleled 0.01uF and 0.001uF capacitors. A lower frequency 10uF filter capacitor is also recommended. All ground pins must connect through a low impedance path to the circuit board ground plane. All grounds can be connected to each other.

- VDD15 (Digital Core Voltage 1.5V Supply) (5) 0.1µf, (5) 0.001µf, (1) 10µf
- VDD18 (Digital IO Voltage 1.8V Supply) (5) 0.1µf, (5) 0.001µf, (1) 10µf
- VSS (Digital Ground)

SLLS937 REVISION 1.4 SEPTEMBER 10, 2008

Reflow Conditions

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
TUSB6015IZQE	NRND	BGA MICROSTAR JUNIOR	ZQE	80	360	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	TUSB6015I	
TUSB6015IZQER	NRND	BGA MICROSTAR JUNIOR	ZQE	80	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	TUSB6015I	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

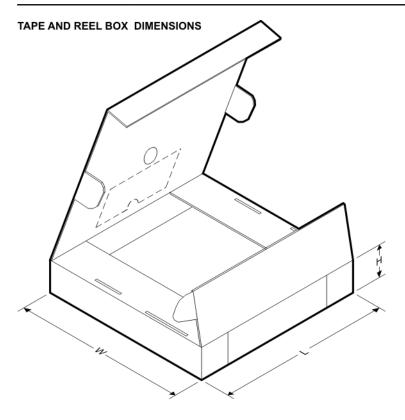
PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

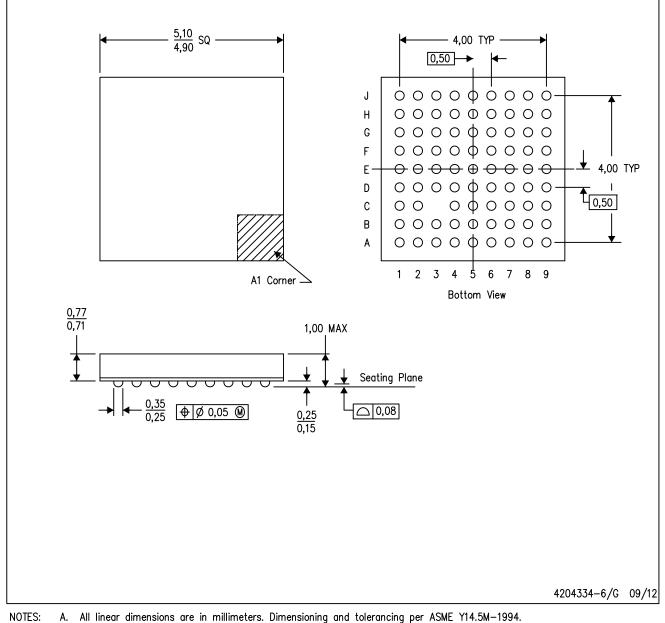

*All dimensions are nomina	I											
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TUSB6015IZQER	BGA MI CROSTA R JUNI OR	ZQE	80	2500	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

29-Jan-2015



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TUSB6015IZQER	BGA MICROSTAR JUNIOR	ZQE	80	2500	338.1	338.1	20.6

ZQE (S-PBGA-N80)

PLASTIC BALL GRID ARRAY

A. All linear almensions are in millimeters. Dimensioning and toil
B. This drawing is subject to change without notice.

C. Falls within JEDEC MO-225

D. This is a Pb-free solder ball design.

MicroStar Junior is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications			
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive		
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications		
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers		
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps		
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy		
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial		
Interface	interface.ti.com	Medical	www.ti.com/medical		
Logic	logic.ti.com	Security	www.ti.com/security		
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense		
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video		
RFID	www.ti-rfid.com				
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com		
Wireless Connectivity	www.ti.com/wirelessconnectivity				

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated