To our customers,

Old Company Name in Catalogs and Other Documents

On April $1^{\text {st }}, 2010$, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April ${ }^{\text {st }}, 2010$
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

X to Ku BAND SUPER LOW NOISE AMPLIFIER N-CHANNEL HJ-FET

DESCRIPTION

The NE4210S01 is a Hetero Junction FET that utilizes the hetero junction to create high mobility electrons. Its excellent low noise and associated gain make it suitable for DBS and another commercial systems.

FEATURES

- Super Low Noise Figure \& High Associated Gain
$\mathrm{NF}=0.5 \mathrm{~dB}$ TYP. $\mathrm{Ga}=13.0 \mathrm{~dB}$ TYP. $@ \mathrm{f}=12 \mathrm{GHz}$
- Gate Length: $\mathrm{L}_{\mathrm{g}} \leq 0.20 \mu \mathrm{~m}$
- Gate Width : $\mathrm{W}_{\mathrm{g}}=160 \mu \mathrm{~m}$

ORDERING INFORMATION (PLAN)

Part Number	Marking	Supplying Form
NE4210S01-T1	L	Tape \& reel $1 \mathrm{kp} / \mathrm{reel}$
NE4210S01-T1B		Tape \& reel 4 kp/reel

Remark To order evaluation samples, please contact your local NEC sales office. (Part number for sample order: NE4210S01)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=\boldsymbol{+ 2 5 ^ { \circ }} \mathbf{C}$)

Parameter	Symbol	Ratings	Unit
Drain to Source Voltage	V_{Ds}	4.0	V
Gate to Source Voltage	V_{Gs}	-3.0	V
Drain Current	ID_{o}	loss	mA
Gate Current	IG_{G}	100	$\mu \mathrm{~A}$
Total Power Dissipation	$\mathrm{P}_{\text {tot }}$	165	mW
Channel Temperature	T_{ch}	125	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-65 \mathrm{to}+125$	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS ($\mathrm{T}_{\mathrm{A}}=+\mathbf{+ 2 5 ^ { \circ }} \mathrm{C}$)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
	Drain to Source Voltage	VDs	1	2	3
	ID	5	10	15	mA
	Pin	-	-	0	dBm

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Gate to Source Leak Current	Igso	$V_{G S}=-3 \mathrm{~V}$	-	0.5	10	$\mu \mathrm{A}$
Saturated Drain Current	loss	$\mathrm{V}_{\mathrm{DS}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	15	40	70	mA
Gate to Source Cut off Voltage	VGS (off)	V $\mathrm{DS}=2 \mathrm{~V}$, los $=100 \mu \mathrm{~A}$	-0.2	-0.7	-2.0	V
Transconductance	gm	$\mathrm{VDS}=2 \mathrm{~V}, \mathrm{los}=10 \mathrm{~mA}$	40	55	-	mS
Noise Figure	NF	$\begin{aligned} & \mathrm{VDS}=2 \mathrm{~V}, \mathrm{lds}=10 \mathrm{~mA} \\ & \mathrm{f}=12 \mathrm{GHz} \end{aligned}$	-	0.50	0.70	dB
Associated Gain	Ga		11.0	13.0	-	dB

TYPICAL CHARACTERISTICS ($\mathrm{TA}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C}$)

Gain Calculations

$$
\begin{array}{ll}
\text { MSG. }=\left|\frac{S_{21}}{S_{12}}\right| & \mathrm{K}=\frac{1+|\Delta|^{2}-\left|\mathrm{S}_{11}\right|^{2}-\left|\mathrm{S}_{22}\right|^{2}}{2\left|\mathrm{~S}_{12}\right|\left|\mathrm{S}_{21}\right|} \\
\text { MAG. }=\left|\frac{\mathrm{S}_{21}}{\mathrm{~S}_{12}}\right|\left(\mathrm{k} \pm \sqrt{\mathrm{k}^{2}-1}\right) & \Delta=\mathrm{S}_{11} \cdot \mathrm{~S}_{22}-\mathrm{S}_{21} \cdot \mathrm{~S}_{12}
\end{array}
$$

S-PARAMETERS

MAG. AND ANG.
$V_{D S}=2 \mathrm{~V}, \mathrm{ID}=10 \mathrm{~mA}$

FREQUENCY	S_{11}		S 21		S_{12}		S22	
MHz	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.	MAG.	ANG
2000.0000	0.972	-21.0	4.436	153.9	0.026	73.8	0.621	-16.6
2500.0000	0.953	-27.3	4.435	147.1	0.033	69.6	0.610	-21.6
3000.0000	0.934	-34.1	4.443	139.9	0.039	63.7	0.592	-27.1
3500.0000	0.910	-40.2	4.385	132.9	0.044	60.0	0.579	-32.2
4000.0000	0.887	-45.8	4.306	126.3	0.047	54.4	0.564	-37.2
4500.0000	0.865	-51.1	4.244	120.0	0.051	50.2	0.554	-41.6
5000.0000	0.842	-55.5	4.164	114.1	0.054	46.6	0.546	-45.5
5500.0000	0.821	-60.0	4.129	108.3	0.057	42.8	0.538	-49.4
6000.0000	0.802	-64.8	4.122	102.6	0.061	40.6	0.531	-52.1
6500.0000	0.777	-70.2	4.151	96.5	0.067	37.6	0.519	-56.5
7000.0000	0.732	-76.4	4.175	89.8	0.071	33.0	0.495	-60.5
7500.0000	0.685	-83.4	4.179	82.9	0.073	28.7	0.460	-63.9
8000.0000	0.652	-91.3	4.184	76.2	0.077	25.6	0.423	-67.5
8500.0000	0.619	-100.8	4.210	69.1	0.082	23.0	0.385	-72.2
9000.0000	0.591	-111.0	4.189	61.5	0.086	18.0	0.344	-78.5
9500.0000	0.563	-120.7	4.131	54.4	0.091	13.4	0.301	-86.2
10000.0000	0.538	-129.7	4.070	47.4	0.094	10.7	0.270	-95.5
10500.0000	0.517	-138.8	4.023	40.3	0.099	6.5	0.250	-107.2
11000.0000	0.488	-148.6	3.963	33.2	0.103	1.7	0.236	-118.7
11500.0000	0.460	-158.9	3.905	26.1	0.104	-2.6	0.225	-127.6
12000.0000	0.433	-171.3	3.850	18.5	0.108	-7.1	0.215	-137.8
12500.0000	0.424	175.5	3.767	10.9	0.111	-11.2	0.194	-147.8
13000.0000	0.421	161.6	3.675	3.3	0.113	-16.9	0.166	-161.6
13500.0000	0.436	147.9	3.551	-4.2	0.112	-19.9	0.144	177.6
14000.0000	0.461	135.9	3.421	-11.5	0.112	-24.6	0.137	151.7
14500.0000	0.495	125.0	3.285	-18.5	0.113	-28.5	0.161	127.6
15000.0000	0.528	115.2	3.151	-25.9	0.111	-32.0	0.210	111.3
15500.0000	0.542	106.7	3.003	-32.3	0.109	-33.5	0.254	104.7
16000.0000	0.556	99.3	2.885	-39.0	0.108	-37.0	0.301	101.1
16500.0000	0.561	91.0	2.764	-46.4	0.107	-39.4	0.347	99.3
17000.0000	0.564	82.6	2.609	-53.3	0.108	-42.3	0.381	96.0
17500.0000	0.571	74.3	2.456	-59.7	0.106	-46.1	0.396	91.6
18000.0000	0.581	67.3	2.297	-65.8	0.103	-48.0	0.400	87.1

AMPLIFIER PARAMETERS

$V_{D S}=2 \mathrm{~V}, \mathrm{ld}=10 \mathrm{~mA}$

FREQUENCY MHz	GUmax dB	GAmax dB	$\left.\left\|S_{21}\right\|\right\|^{2}$ dB	$\left\|S_{12}\right\|^{2}$ dB	K	Delay ns	Mason's U dB	$\begin{aligned} & \mathrm{G} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { G2 } \\ & \text { dB } \end{aligned}$
2000.0000	27.67		12.94	-31.55	0.25	0.038	30.256	12.61	2.12
2500.0000	25.31		12.94	-29.62	0.32	0.038	28.341	10.35	2.02
3000.0000	23.75		12.95	-28.24	0.38	0.040	26.068	8.92	1.87
3500.0000	22.25		12.84	-27.19	0.44	0.039	25.369	7.64	1.77
4000.0000	21.07		12.68	-26.58	0.51	0.037	23.501	6.73	1.66
4500.0000	20.15		12.56	-25.82	0.57	0.035	22.666	6.00	1.59
5000.0000	19.29		12.39	-25.36	0.63	0.033	21.854	5.36	1.54
5500.0000	18.67		12.32	-24.81	0.68	0.032	21.290	4.87	1.48
6000.0000	18.21		12.30	-24.30	0.71	0.032	21.403	4.47	1.44
6500.0000	17.75		12.36	-23.49	0.72	0.034	21.682	4.03	1.37
7000.0000	16.97		12.41	-22.94	0.80	0.037	20.537	3.33	1.22
7500.0000	16.21		12.42	-22.70	0.90	0.038	19.541	2.75	1.04
8000.0000	15.69		12.43	-22.29	0.94	0.037	19.390	2.40	0.85
8500.0000	15.28		12.49	-21.76	0.96	0.040	19.809	2.10	0.70
9000.0000	14.85		12.44	-21.32	0.98	0.042	19.658	1.87	0.55
9500.0000	14.39	16.34	12.32	-20.83	1.00	0.040	19.512	1.65	0.41
10000.0000	14.01	15.53	12.19	-20.53	1.02	0.039	19.822	1.49	0.33
10500.0000	13.72	15.40	12.09	-20.11	1.01	0.040	20.318	1.35	0.28
11000.0000	13.39	14.90	11.96	-19.74	1.02	0.039	20.322	1.18	0.25
11500.0000	13.09	14.27	11.83	-19.67	1.06	0.039	19.926	1.03	0.22
12000.0000	12.81	13.92	11.71	-19.33	1.07	0.042	20.054	0.90	0.21
12500.0000	12.54	13.56	11.52	-19.11	1.08	0.042	20.125	0.86	0.17
13000.0000	12.28	13.16	11.31	-18.97	1.11	0.042	19.648	0.85	0.12
13500.0000	12.02	12.78	11.01	-19.05	1.14	0.042	19.328	0.92	0.09
14000.0000	11.80	12.51	10.68	-19.03	1.15	0.041	19.111	1.04	0.08
14500.0000	11.66	12.38	10.33	-18.96	1.14	0.039	19.447	1.22	0.11
15000.0000	11.58	12.32	9.97	-19.10	1.13	0.041	19.785	1.42	0.20
15500.0000	11.35	12.01	9.55	-19.25	1.16	0.036	19.151	1.51	0.29
16000.0000	11.22	11.95	9.20	-19.33	1.15	0.037	19.274	1.60	0.41
16500.0000	11.03	11.80	8.83	-19.41	1.15	0.041	18.894	1.64	0.56
17000.0000	10.67	11.40	8.33	-19.37	1.16	0.039	17.879	1.66	0.68
17500.0000	10.26	10.86	7.81	-19.46	1.21	0.035	16.470	1.72	0.74
18000.0000	9.77	10.19	7.22	-19.74	1.30	0.034	14.659	1.78	0.76

S-PARAMETERS

MAG. AND ANG.
$V_{d s}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{Gs}}=0 \mathrm{~V}$

FREQUENCY	S_{11}		S_{21}		S_{12}		S_{22}	
MHz	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.
2000.0000	0.990	-20.7	0.016	109.0	0.016	102.3	0.751	151.4
2500.0000	0.981	-27.1	0.022	103.4	0.020	103.6	0.751	145.4
3000.0000	0.978	-33.8	0.028	103.5	0.028	101.6	0.762	139.8
3500.0000	0.972	-40.2	0.035	102.0	0.033	100.1	0.756	134.2
4000.0000	0.966	-46.4	0.042	98.5	0.041	97.5	0.760	128.8
4500.0000	0.962	-52.4	0.052	96.0	0.050	94.8	0.761	122.4
5000.0000	0.957	-57.6	0.061	91.4	0.059	91.1	0.755	115.8
5500.0000	0.954	-63.3	0.070	88.1	0.070	86.6	0.755	109.2
6000.0000	0.949	-69.1	0.080	83.7	0.080	82.6	0.758	102.2
6500.0000	0.944	-75.8	0.092	77.8	0.092	77.9	0.757	95.4
7000.0000	0.930	-83.5	0.107	73.0	0.105	71.9	0.765	88.8
7500.0000	0.916	-92.8	0.121	66.5	0.120	66.3	0.773	83.4
8000.0000	0.905	-103.2	0.135	59.3	0.133	58.8	0.780	78.7
8500.0000	0.894	-114.6	0.147	51.6	0.146	51.6	0.793	75.3
9000.0000	0.885	-126.2	0.158	45.1	0.158	44.3	0.804	72.4
9500.0000	0.878	-137.1	0.169	38.3	0.168	38.2	0.809	69.6
10000.0000	0.871	-147.7	0.181	32.0	0.179	31.7	0.819	66.7
10500.0000	0.873	-158.2	0.193	25.6	0.192	25.5	0.821	63.6
11000.0000	0.875	-169.7	0.205	17.9	0.205	17.8	0.821	60.4
11500.0000	0.873	178.0	0.218	9.8	0.216	9.9	0.820	55.9
12000.0000	0.863	164.3	0.227	1.5	0.225	1.3	0.819	51.7
12500.0000	0.869	150.7	0.231	-7.0	0.231	-7.6	0.819	46.6
13000.0000	0.868	137.7	0.230	-15.4	0.230	-15.8	0.831	41.8
13500.0000	0.869	126.0	0.225	-22.7	0.226	-24.0	0.841	37.3
14000.0000	0.880	115.8	0.219	-29.7	0.217	-29.3	0.850	34.6
14500.0000	0.892	107.3	0.212	-33.7	0.213	-34.1	0.858	33.2
15000.0000	0.907	98.5	0.207	-39.4	0.206	-39.4	0.866	32.5
15500.0000	0.904	90.7	0.201	-43.9	0.199	-44.0	0.870	32.2
16000.0000	0.905	83.7	0.198	-48.1	0.199	-47.8	0.866	31.7
16500.0000	0.884	75.5	0.194	-53.0	0.191	-52.9	0.863	30.5
17000.0000	0.867	67.7	0.188	-58.1	0.188	-58.0	0.861	28.1
17500.0000	0.846	60.0	0.182	-62.4	0.182	-63.0	0.856	24.5
18000.0000	0.831	54.0	0.172	-67.1	0.174	-67.5	0.850	20.0

AMPLIFIER PARAMETERS

$V_{d s}=0 \mathrm{~V}, \mathrm{Vgs}_{\mathrm{G}}=0 \mathrm{~V}$

$\begin{gathered} \text { FREQUENCY } \\ \mathrm{MHz} \end{gathered}$	GUmax dB	GAmax dB	$\begin{gathered} \left\|S_{21}\right\|^{2} \\ d B \end{gathered}$	$\left\|S_{12}\right\|^{2}$ dB	K	Delay ns	Mason's U dB	$\begin{aligned} & \text { G1 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \text { G2 } \\ & \text { dB } \end{aligned}$
2000.0000	-15.19	-15.16	-36.00	-35.92	16.25	0.031	-33.488	17.21	3.60
2500.0000	-15.56	-15.55	-33.32	-33.83	19.06	0.031	-40.201	14.15	3.61
3000.0000	-13.78	-13.82	-31.18	-31.20	12.08	-0.001	-42.783	13.62	3.78
3500.0000	-12.82	-12.91	-29.06	-29.53	10.34	0.009	-36.658	12.55	3.69
4000.0000	-12.01	-12.15	-27.46	-27.66	8.42	0.019	-42.595	11.71	3.74
4500.0000	-10.64	-10.88	-25.71	-25.99	6.36	0.014	-38.655	11.32	3.75
5000.0000	-9.97	-10.27	-24.36	-24.54	5.48	0.025	-42.970	10.72	3.67
5500.0000	-8.93	-9.35	-23.06	-23.10	4.38	0.018	-39.542	10.47	3.66
6000.0000	-8.16	-8.69	-21.90	-21.98	3.80	0.025	-40.847	10.03	3.71
6500.0000	-7.40	-8.05	-20.76	-20.70	3.25	0.033	-49.494	9.66	3.70
7000.0000	-6.88	-7.62	-19.40	-19.61	3.05	0.027	-36.513	8.69	3.82
7500.0000	-6.50	-7.33	-18.38	-18.39	2.80	0.036	-53.452	7.93	3.94
8000.0000	-5.91	-6.83	-17.42	-17.50	2.54	0.040	-42.015	7.44	4.06
8500.0000	-5.40	-6.42	-16.66	-16.69	2.31	0.043	-52.459	6.96	4.30
9000.0000	-4.90	-6.03	-16.05	-16.02	2.12	0.036	-40.046	6.63	4.52
9500.0000	-4.45	-5.67	-15.46	-15.49	1.99	0.038	-51.895	6.39	4.62
10000.0000	-3.86	-5.22	-14.85	-14.95	1.83	0.035	-40.055	6.17	4.82
10500.0000	-3.21	-4.74	-14.30	-14.32	1.66	0.035	-48.996	6.23	4.86
11000.0000	-2.61	-4.26	-13.78	-13.78	1.52	0.043	-60.695	6.29	4.88
11500.0000	-2.16	-3.92	-13.24	-13.33	1.45	0.045	-39.289	6.23	4.86
12000.0000	-2.13	-3.90	-12.89	-12.97	1.44	0.046	-39.470	5.93	4.83
12500.0000	-1.81	-3.72	-12.74	-12.72	1.39	0.047	-38.276	6.10	4.83
13000.0000	-1.59	-3.62	-12.77	-12.76	1.37	0.047	-42.090	6.07	5.11
13500.0000	-1.50	-3.60	-12.94	-12.93	1.36	0.040	-31.392	6.11	5.34
14000.0000	-1.16	-3.42	-13.19	-13.28	1.33	0.039	-36.132	6.47	5.56
14500.0000	-0.79	-3.27	-13.48	-13.45	1.29	0.022	-40.171	6.90	5.80
15000.0000	-0.19	-2.83	-13.68	-13.74	1.23	0.032	-40.013	7.51	6.01
15500.0000	-0.41	-2.97	-13.93	-14.02	1.25	0.025	-36.170	7.37	6.15
16000.0000	-0.62	-3.10	-14.06	-14.03	1.26	0.024	-40.930	7.42	6.03
16500.0000	-1.71	-3.79	-14.26	-14.37	1.42	0.027	-37.301	6.62	5.94
17000.0000	-2.63	-4.43	-14.53	-14.54	1.57	0.028	-55.485	6.04	5.86
17500.0000	-3.61	-5.16	-14.82	-14.78	1.79	0.024	-40.919	5.47	5.74
18000.0000	-4.60	-5.92	-15.27	-15.19	2.07	0.026	-42.429	5.10	5.57

S-PARAMETERS

MAG. AND ANG.
$V_{D S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-2.5 \mathrm{~V}$

FREQUENCY	S_{11}		S_{21}		S_{12}		S_{22}	
MHz	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.
2000.0000	0.994	-12.8	0.040	74.2	0.041	74.9	0.982	-15.4
2500.0000	0.985	-16.9	0.051	69.4	0.050	68.3	0.981	-20.0
3000.0000	0.982	-21.3	0.061	65.3	0.061	64.1	0.976	-24.8
3500.0000	0.976	-25.4	0.070	59.3	0.070	59.2	0.973	-29.7
4000.0000	0.972	-29.2	0.079	54.6	0.079	54.1	0.966	-34.6
4500.0000	0.970	-33.0	0.087	50.3	0.087	49.3	0.965	-39.3
5000.0000	0.968	-36.0	0.095	45.4	0.094	45.1	0.962	-43.5
5500.0000	0.963	-38.8	0.101	41.6	0.102	41.3	0.961	-47.5
6000.0000	0.964	-41.7	0.109	39.3	0.110	38.9	0.957	-50.7
6500.0000	0.960	-44.3	0.121	36.6	0.119	35.6	0.956	-54.8
7000.0000	0.952	-47.2	0.135	31.2	0.134	31.9	0.957	-58.9
7500.0000	0.947	-50.8	0.148	26.5	0.148	26.4	0.949	-63.1
8000.0000	0.941	-55.4	0.161	22.0	0.161	21.5	0.939	-67.5
8500.0000	0.936	-61.1	0.176	16.5	0.176	16.7	0.932	-73.0
9000.0000	0.930	-67.1	0.193	10.4	0.194	10.0	0.923	-79.2
9500.0000	0.922	-73.3	0.208	4.1	0.209	3.6	0.913	-86.8
10000.0000	0.912	-78.7	0.221	-2.8	0.223	-2.8	0.903	-94.9
10500.0000	0.908	-84.2	0.236	-8.8	0.238	-9.3	0.900	-103.4
11000.0000	0.908	-89.3	0.253	-15.8	0.254	-16.1	0.900	-111.7
11500.0000	0.905	-94.9	0.267	-22.0	0.268	-23.0	0.899	-118.7
12000.0000	0.898	-101.4	0.284	-30.3	0.283	-30.7	0.906	-126.7
12500.0000	0.901	-108.7	0.300	-38.0	0.300	-38.8	0.899	-134.6
13000.0000	0.893	-117.4	0.316	-47.4	0.317	-47.8	0.894	-143.1
13500.0000	0.876	-127.1	0.328	-57.2	0.328	-57.8	0.880	-153.0
14000.0000	0.866	-138.2	0.334	-68.3	0.334	-68.9	0.877	-164.1
14500.0000	0.860	-149.8	0.332	-80.4	0.331	-80.9	0.875	-177.7
15000.0000	0.865	-161.4	0.320	-93.4	0.322	-93.4	0.877	168.2
15500.0000	0.866	-172.6	0.298	-104.7	0.298	-105.5	0.880	155.6
16000.0000	0.883	177.5	0.273	-115.0	0.272	-115.5	0.893	144.2
16500.0000	0.888	166.8	0.249	-125.2	0.248	-125.3	0.913	135.1
17000.0000	0.874	153.9	0.226	-135.9	0.223	-136.1	0.924	127.5
17500.0000	0.865	140.6	0.203	-147.2	0.199	-147.2	0.932	120.9
18000.0000	0.839	126.8	0.170	-156.8	0.171	-159.4	0.927	114.0

AMPLIFIER PARAMETERS

$V_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-2.5 \mathrm{~V}$

FREQUENCY MHz	GUmax dB	GAmax dB	$\begin{gathered} \left\|S_{2} 1\right\|^{2} \\ d B \end{gathered}$	$\begin{gathered} \left\|S_{12}\right\|^{2} \\ d B \end{gathered}$	K	Delay ns	Mason's U dB	$\begin{aligned} & \mathrm{G} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { G2 } \\ & \text { dB } \end{aligned}$
2000.0000	5.45	-2.13	-27.93	-27.82	1.12	0.026	-28.423	18.97	14.41
2500.0000	3.65	-2.54	-25.89	-25.96	1.18	0.026	-29.391	15.27	14.27
3000.0000	3.32	-2.67	-24.34	-24.23	1.19	0.023	-27.770	14.51	13.16
3500.0000	2.83	-2.75	-23.07	-23.05	1.21	0.033	-49.384	13.23	12.67
4000.0000	2.30	-2.91	-22.10	-22.00	1.23	0.026	-33.498	12.62	11.78
4500.0000	2.73	-2.68	-21.18	-21.19	1.20	0.024	-30.661	12.24	11.67
5000.0000	2.73	-2.61	-20.47	-20.50	1.19	0.027	-39.320	11.96	11.25
5500.0000	2.68	-2.61	-19.91	-19.86	1.18	0.021	-37.388	11.44	11.15
6000.0000	2.93	-2.52	-19.26	-19.20	1.17	0.013	-34.861	11.45	10.75
6500.0000	3.36	-2.26	-18.34	-18.49	1.15	0.015	-26.993	11.02	10.68
7000.0000	3.59	-2.11	-17.41	-17.46	1.12	0.030	-31.857	10.29	10.72
7500.0000	3.29	-2.11	-16.61	-16.62	1.12	0.026	-45.807	9.86	10.05
8000.0000	2.84	-2.21	-15.87	-15.87	1.13	0.025	-35.681	9.43	9.28
8500.0000	2.78	-2.18	-15.09	-15.10	1.13	0.031	-40.714	9.05	8.82
9000.0000	2.69	-2.14	-14.31	-14.26	1.12	0.034	-35.203	8.72	8.28
9500.0000	2.37	-2.23	-13.63	-13.60	1.13	0.035	-35.298	8.24	7.77
10000.0000	2.00	-2.34	-13.10	-13.03	1.14	0.038	-37.411	7.75	7.35
10500.0000	2.23	-2.22	-12.55	-12.47	1.13	0.034	-31.948	7.58	7.20
11000.0000	2.80	-1.90	-11.94	-11.89	1.09	0.039	-36.170	7.54	7.20
11500.0000	3.15	-1.69	-11.47	-11.44	1.08	0.034	-27.602	7.44	7.17
12000.0000	3.69	-1.33	-10.94	-10.97	1.05	0.046	-30.925	7.14	7.48
12500.0000	3.99	-1.10	-10.46	-10.45	1.03	0.043	-25.841	7.27	7.19
13000.0000	3.91	-0.98	-9.99	-9.98	1.03	0.052	-30.075	6.95	6.96
13500.0000	3.12	-1.26	-9.68	-9.68	1.04	0.055	-29.034	6.33	6.47
14000.0000	2.86	-1.36	-9.53	-9.51	1.05	0.061	-29.463	6.01	6.38
14500.0000	2.55	-1.54	-9.58	-9.60	1.06	0.067	-31.274	5.84	6.29
15000.0000	2.47	-1.64	-9.90	-9.85	1.07	0.073	-37.889	5.99	6.38
15500.0000	1.95	-1.97	-10.52	-10.52	1.10	0.062	-29.488	6.01	6.47
16000.0000	2.23	-1.99	-11.28	-11.31	1.11	0.057	-34.340	6.57	6.93
16500.0000	2.46	-1.97	-12.07	-12.11	1.11	0.057	-38.158	6.76	7.78
17000.0000	1.68	-2.33	-12.92	-13.03	1.15	0.059	-32.987	6.27	8.34
17500.0000	0.92	-2.67	-13.87	-14.04	1.21	0.063	-30.080	6.00	8.79
18000.0000	-1.59	-4.11	-15.41	-15.35	1.47	0.054	-26.585	5.28	8.53

NOISE PARAMETERS

$\mathrm{V} D \mathrm{~S}=2 \mathrm{~V}, \mathrm{ID}=10 \mathrm{~mA}$

Freq. (GHz)	$\mathrm{NF}_{\text {min. }}(\mathrm{dB})$	Гopt	$\mathrm{Rn} / 50$		
				ANG.	0.38
2.0	0.29	20.7	0.94	12	0.33
4.0	0.30	18.7	0.80	26	0.26
6.0	0.33	17.0	0.66	44	0.18
8.0	0.38	15.4	0.50	68	0.11
10.0	0.43	14.1	0.38	97	0.09
12.0	0.50	13.0	0.29	133	0.08
14.0	0.59	12.3	0.27	177	0.11
16.0	0.71	11.8	0.33	-129	0.23
18.0	0.86	11.2	0.39	-82	

TYPICAL MOUNT PAD LAYOUT

PACKAGE DIMENSIONS (Unit: mm)

NOTE ON CORRECT USE

(1) Because this device is a GaAs MES FET with a Schottky barrier gate structure, it is necessary that sufficient care be taken regarding static electricity and strong electric fields.

Take measures against static electricity and make sure the body is earthed when mounting the device.
(2) Follow the procedure below when operating the device by a gate-and-drain-independent dual power supply.

Directly ground both the source pins.
$V_{G S}=$ fixed to approximately -4 V .
Increase Vos to a predetermined voltage level (within the recommended operating range of Vos).
Adjust $V_{G s}$ in line with a predetermined ID.
(3) It is recommended that the bias application circuit be able to have a fixed voltage and current.
(4) Adjust the I/O matching circuit after turning the bias OFF.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared Reflow	Package peak temperature: $230^{\circ} \mathrm{C}$ or below Time: 30 seconds or less (at $210^{\circ} \mathrm{C}$) Count: 1, Exposure limit : None ${ }^{\text {Note }}$	IR30-00-1
Partial Heating	Pin temperature: $230^{\circ} \mathrm{C}$ Time: 10 seconds or less (per pin row) Exposure limit : None ${ }^{\text {Note }}$	-

Note After opening the dry pack, keep it in a place below $25^{\circ} \mathrm{C}$ and $65 \% \mathrm{RH}$ for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

[MEMO]

CAUTION

Abstract

The Great Care must be taken in dealing with the devices in this guide. The reason is that the material of the devices is GaAs (Gallium Arsenide), which is designated as harmful substance according to the law concerned. Keep the law concerned and so on, especially in case of removal.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

