

4-Mbit (256 K × 16) Static RAM

Features

■ Very high speed: 45 ns

■ Wide voltage range: 4.5 V to 5.5 V

■ Ultra low standby power

Typical standby current: 1 μA

Maximum standby current: 7 μA

■ Ultra low active power

□ Typical active current: 2 mA at f = 1 MHz

■ Easy memory expansion with CE and OE features

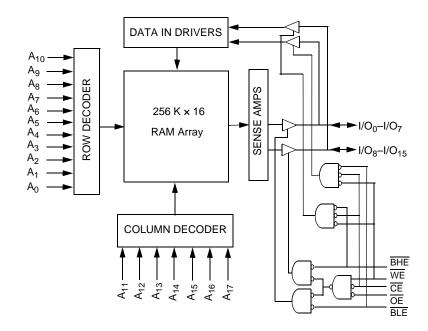
■ Automatic power down when deselected

 Complementary metal oxide semiconductor (CMOS) for optimum speed and power

Available in Pb-free 44-pin thin small outline package (TSOP) Type II package

Functional Description

The CY62146E is a high performance CMOS static RAM organized as 256K words by 16 bits. This device features advanced circuit design to provide ultra low active current. It is ideal for providing More Battery Life™ (MoBL®) in portable applications. The device also has an automatic power down


feature that reduces power consumption when addresses are not toggling. Placing the device into standby mode reduces power consumption by more than 99% when deselected ($\overline{\text{CE}}$ HIGH). The input and output pins (I/O_0 through I/O_{15}) are placed in a high impedance state when the device is deselected ($\overline{\text{CE}}$ HIGH), the outputs are disabled ($\overline{\text{OE}}$ HIGH), both Byte High Enable and Byte Low Enable are disabled ($\overline{\text{BHE}}$, $\overline{\text{BLE}}$ HIGH) or during a write operation ($\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW).

 $\overline{\text{To}}$ write to the device, take Chip Enable $\overline{(CE)}$ and Write Enable $\overline{(WE)}$ inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇) is written into the location specified on the address pins (A₀ through A₁₇). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₇).

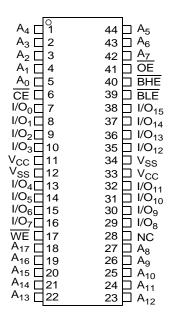
To read from the device, take Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins appears on I/O $_0$ to I/O $_7$. If Byte High Enable (BHE) is LOW, then data from memory appears on I/O $_8$ to I/O $_{15}$. See Truth Table on page 11 for a complete description of read and write modes.

The CY62146E device is suitable for interfacing with processors that have TTL I/P levels. It is not suitable for processors that require CMOS I/P levels. Please Electrical Characteristics on page 4 for more details and suggested alternatives.

Logic Block Diagram

CY62146E MoBL®

Contents


Pin Configurations	3
Product Portfolio	
Maximum Ratings	
Operating Range	4
Electrical Characteristics	4
Capacitance	5
Thermal Resistance	
AC Test Loads and Waveforms	5
Data Retention Characteristics	6
Data Retention Waveform	6
Switching Characteristics	
Switching Waveforms	
Truth Table	

Ordering Information	12
Ordering Code Definitions	
Package Diagram	
Acronyms	
Document Conventions	
Units of Measure	14
Document History Page	15
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	16
Cypress Developer Community	16
Technical Support	

Pin Configurations

Figure 1. 44-pin TSOP II pinout (Top View) [1]

Product Portfolio

								F	Power Di	ssipatio	n	
Product		Range	V _{CC} Range (V)		Speed	Operating I _{CC} , (mA)				Standby, I _{SB2}		
	Troduct	Range				(ns)	f = 1 MHz		f = f _{max}		(μ A)	
			Min	Typ [2]	Max		Typ [2]	Max	Typ [2]	Max	Typ [2]	Max
	CY62146ELL	Industrial / Automotive-A	4.5	5.0	5.5	45	2	2.5	15	20	1	7

Notes

^{1.} NC pins are not connected on the die.

^{2.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ)}$, $T_A = 25$ °C.

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage temperature-65 °C to +150 °C Ambient temperature with power applied-55 °C to +125 °C Supply voltage to ground potential-0.5 V to 6.0 V DC voltage applied to outputs in high Z state $^{[3,\,4]}$ -0.5 V to 6.0 V DC input voltage [3, 4]-0.5 V to 6.0 V

Output current into outputs (LOW)	20 mA
Static discharge voltage (MIL-STD-883, Method 3015)	>2001 V
Latch-up current	>200 mA

Operating Range

Device	Range Ambient Temperature		V cc ^[5]
CY62146ELL	Industrial / Automotive-A	–40 °C to +85 °C	4.5 V–5.5 V

Electrical Characteristics

Over the Operating Range

Dorometer	Description	Toot Con	ditions	45 ns (Ind	Unit		
Parameter	Description	lest Con	Test Conditions		Typ ^[6]	Max	Unit
V _{OH}	Output high voltage	V _{CC} = 4.5 V	$I_{OH} = -1.0 \text{ mA}$	2.4	-	_	V
		$V_{CC} = 5.5 \text{ V}$	$I_{OH} = -0.1 \text{ mA}$	_	-	3.4 [7]	
V _{OL}	Output low voltage	I _{OL} = 2.1 mA		_	-	0.4	V
V _{IH}	Input high voltage	$4.5 \le V_{CC} \le 5.5$		2.2	-	V _{CC} + 0.5	V
V _{IL}	Input low voltage	$4.5 \le V_{CC} \le 5.5$		-0.5	-	0.8	V
I _{IX}	Input leakage current	$GND \le V_1 \le V_{CC}$		-1	-	+1	μΑ
I _{OZ}	Output leakage current	$GND \leq V_O \leq V_CC,$	output disabled	-1	-	+1	μΑ
I _{CC}	V _{CC} operating supply current	$f = f_{max} = 1/t_{RC}$	$V_{CC} = V_{CCmax}$	_	15	20	mA
			I _{OUT} = 0 mA, CMOS levels	_	2	2.5	
I _{SB2} ^[8]	Automatic CE power down current – CMOS inputs	$\overline{CE} \ge V_{CC} - 0.2 \text{ V}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V}$ $f = 0, V_{CC} = V_{CC}$	$V_{\rm IN} \leq 0.2 \text{ V,}$ max)	-	1	7	μА

- $V_{IL}(min) = -2.0 \text{ V}$ for pulse durations less than 20 ns for I < 30 mA.
- $V_{IH}(max) = V_{CC} + 0.75 \text{ V for pulse durations less than 20 ns.}$

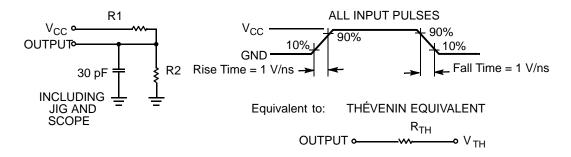
- V_{IH}(rifax) = V_{CC} + 0.75 V for pulse durations less trian 20 ris.

 Full Device AC operation assumes a minimum of 100 μs ramp time from 0 to V_{CC} (min) and 200 μs wait time after V_{CC} stabilization.

 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.

 Please note that the maximum V_{OH} limit does not exceed minimum CMOS V_{IH} of 3.5 V. If you are interfacing this SRAM with 5 V legacy processors that require a minimum V_{IH} of 3.5 V, please refer to Application Note AN6081 for technical details and options you may consider.
- 8. Chip enable (CE) and byte enables (BHE and BLE) need to be tied to CMOS levels to meet the ISB2 / ICCDR spec. Other inputs are left floating.

Capacitance


Parameter [9]	Description	Description Test Conditions		
C _{IN}	Input capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	Output capacitance		10	pF

Thermal Resistance

Parameter [9]	Description	Test Conditions	44-pin TSOP II	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still Air, soldered on a 3×4.5 inch, two layer printed circuit board	77	°C/W
- 30	Thermal resistance (junction to case)		13	°C/W

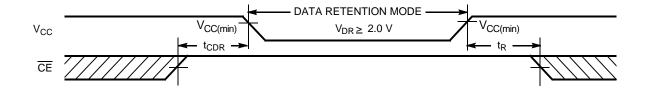
AC Test Loads and Waveforms

Figure 2. AC Test Loads and Waveforms

Parameters	5.0 V	Unit
R1	1800	Ω
R2	990	Ω
R _{TH}	639	Ω
V_{TH}	1.77	V

Note

^{9.} Tested initially after any design or process changes that may affect these parameters.


Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Typ [10]	Max	Unit
V_{DR}	V _{CC} for data retention		2	_	_	٧
I _{CCDR} [11]	Data retention current	$V_{CC} = 2 \text{ V}, \overline{CE} \ge V_{CC} - 0.2 \text{ V},$ $V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V}$	_	1	7	μΑ
t _{CDR} ^[12]	Chip deselect to data retention time		0	_	_	ns
t _R ^[13]	Operation recovery time		45	_	-	ns

Data Retention Waveform

Figure 3. Data Retention Waveform

^{10.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.

11. Chip enable (CE) and byte enables (BHE and BLE) need to be tied to CMOS levels to meet the I_{SB2} / I_{CCDR} spec. Other inputs are left floating.

^{12.} Tested initially and after any design or process changes that may affect these parameters.

13. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100~\mu s$ or stable at $V_{CC(min)} \ge 100~\mu s$.

Switching Characteristics

Over the Operating Range

Parameter [14, 15]	Description	45 ns (Industrial	/ Automotive-A)	Unit	
Parameter (1.17, 1.5)	Description	Min	Max	Unit	
Read Cycle					
t _{RC}	Read cycle time	45	_	ns	
t _{AA}	Address to data valid	-	45	ns	
t _{OHA}	Data hold from address change	10	_	ns	
t _{ACE}	CE LOW to data valid	-	45	ns	
t _{DOE}	OE LOW to data valid	-	22	ns	
t _{LZOE}	OE LOW to Low Z [16]	5	_	ns	
t _{HZOE}	OE HIGH to High Z [16, 17]	-	18	ns	
t _{LZCE}	CE LOW to Low Z [16]	10	_	ns	
t _{HZCE}	CE HIGH to High Z [16, 17]	-	18	ns	
t _{PU}	CE LOW to power-up	0	_	ns	
t _{PD}	CE HIGH to power-down	-	45	ns	
t _{DBE}	BLE/BHE LOW to data valid	_	22	ns	
t _{LZBE}	BLE/BHE LOW to Low Z [16]	5	_	ns	
t _{HZBE}	BLE/BHE HIGH to High Z [16, 17]	_	18	ns	
Write Cycle [18]		•			
t _{WC}	Write cycle time	45	_	ns	
t _{SCE}	CE LOW to write end	35	_	ns	
t _{AW}	Address setup to write end	35	_	ns	
t _{HA}	Address hold from write end	0	_	ns	
t _{SA}	Address setup to write start	0	_	ns	
t _{PWE}	WE pulse width	35	_	ns	
t _{BW}	BLE/BHE LOW to write end	35	_	ns	
t _{SD}	Data setup to write end	25	_	ns	
t _{HD}	Data hold from write end	0	_	ns	
t _{HZWE}	WE LOW to High Z [16, 17]	-	18	ns	
t _{LZWE}	WE HIGH to Low Z ^[16]	10	_	ns	

 ^{14.} Test conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns (1 V/ns) or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3 V, and output loading of the specified loL/loH as shown in Figure 2 on page 5.
 15. In an earlier revision of this device, under a specific application condition, READ and WRITE operations were limited to switching of the byte enable and/or chip enable signals as described in the Application Notes AN13842 and AN66311. However, the issue has been fixed and in production now, and hence, these Application Notes are no longer applicable. They are available for download on our website as they contain information on the date code of the parts, beyond which the fix has been in

production.

16. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZBE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any device.

17. t_{HZOE}, t_{HZEE}, t_{HZBE}, and t_{HZWE} transitions are measured when the outputs enter a high-impedance state.

^{18.} The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE, BLE or both = V_{IL}. All signals must be active to initiate a write and any of these signals can terminate a write by going inactive. The data input setup and hold timing must be referenced to the edge of the signal that terminates the write.

Switching Waveforms

Figure 4. Read Cycle No.1: Address Transition Controlled [19, 20]

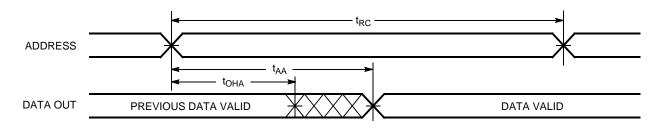
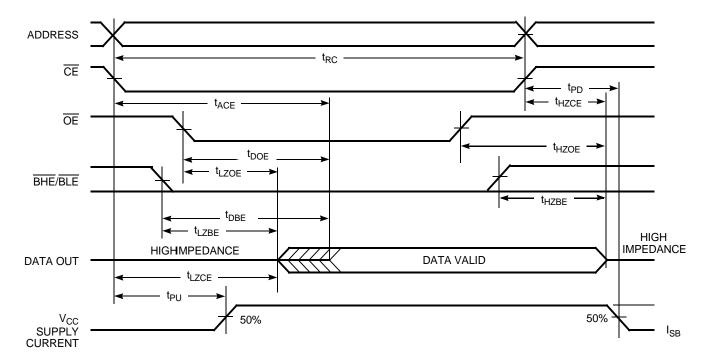



Figure 5. Read Cycle No. 2: $\overline{\text{OE}}$ Controlled [20, 21]

^{19.} The device is continuously selected. \overline{OE} , $\overline{CE} = V_{lL}$, \overline{BHE} , \overline{BLE} , or both = V_{lL} . 20. \overline{WE} is HIGH for read cycle. 21. Address valid before or similar to \overline{CE} , \overline{BHE} , \overline{BLE} transition LOW.

Switching Waveforms (continued)

Figure 6. Write Cycle 1: WE Controlled [22, 23, 24]

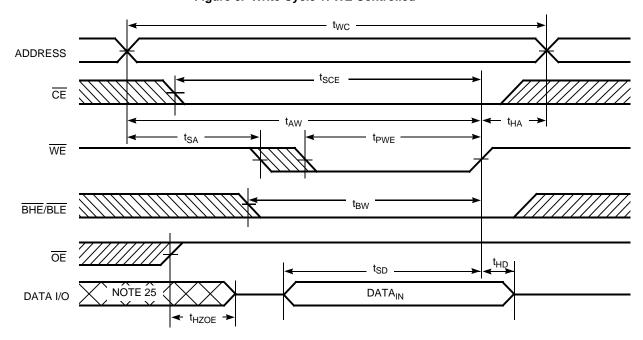
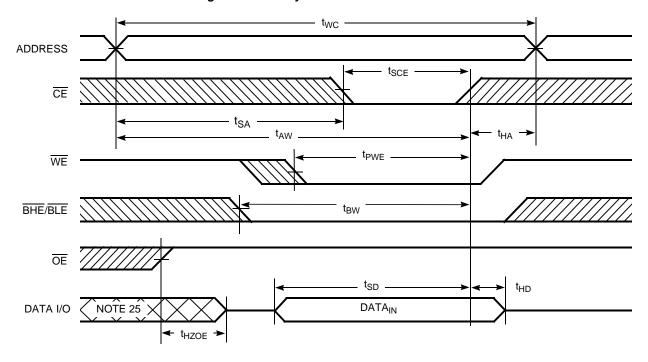



Figure 7. Write Cycle 2: CE Controlled [22, 23, 24]

Notes

- 22. Data I/O is high impedance if $\overline{OE} = V_{IH}$.
- 23. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ = V_{IH} , the output remains in a high impedance state.
- 24. The internal write time of the memory is defined by the overlap of WE, $\overline{\text{CE}} = \text{V}_{\text{IL}}$, $\overline{\text{BHE}}$, $\overline{\text{BLE}}$ or both = V_{IL} . All signals must be active to initiate a write and any of these signals can terminate the write by going inactive. The input setup and hold timing must be referenced to the dge of the signal that terminate the write.

 25. During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

Figure 8. Write Cycle 3: WE controlled, OE LOW [26, 27]

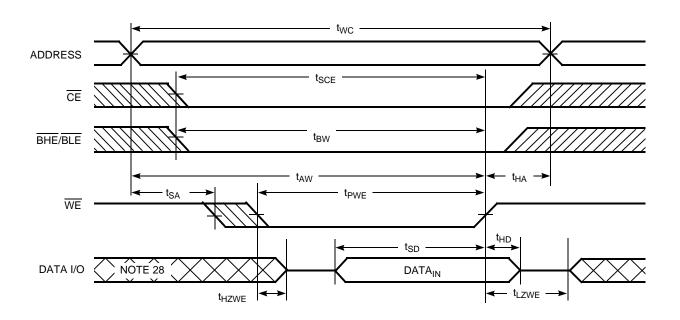
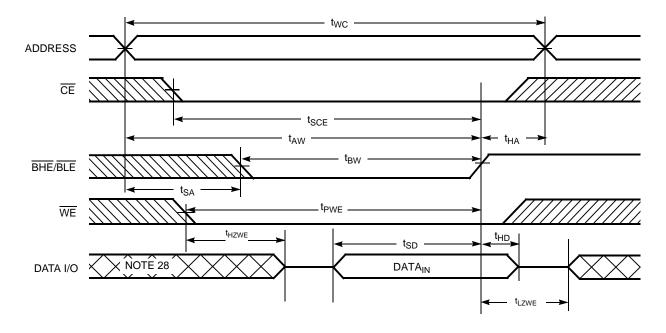



Figure 9. Write Cycle 4: BHE/BLE Controlled, OE LOW [26, 27]

Notes

26. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ = V_{IH} , the output remains in a high impedance state.

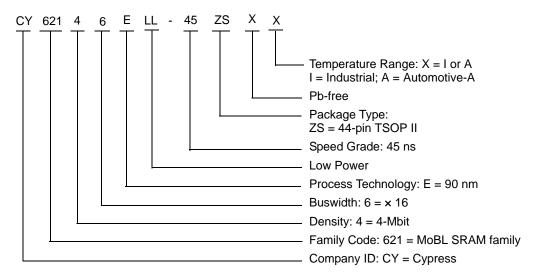
^{27.} The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE, BLE or both = V_{IL}. All signals must be active to initiate a write and any of these signals can terminate the write by going inactive. The input setup and hold timing must be referenced to the dge of the signal that terminate the write.

28. During this period, the I/Os are in output state. Do not apply input signals.

Truth Table

CE [29]	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Χ	Х	X ^[29]	X ^[29]	High Z	Deselect/power down	Standby (I _{SB})
L	Х	Х	Н	Н	High Z	Output disabled	Active (I _{CC})
L	Н	L	L	L	Data out (I/O ₀ -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data out (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High-Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High-Z	Read	Active (I _{CC})
L	Н	Н	L	L	High Z	Output disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Output disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	Output disabled	Active (I _{CC})
L	L	Х	L	L	Data in (I/O ₀ -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data in (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data in (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})

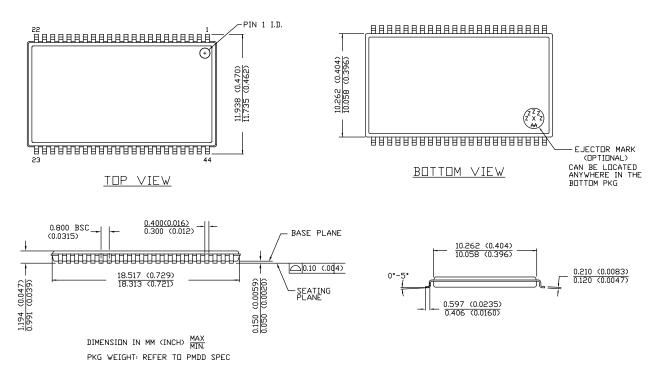
Note
29. Chip enable (CE) and byte enables (BHE and BLE) must be at CMOS levels (not floating) to meet the I_{SB2} / I_{CCDR} spec. Intermediate voltage levels on these pins is not permitted.



Ordering Information

Speed (ns)	Ordering Code	Package Diagram		Operating Range
45	CY62146ELL-45ZSXI	51-85087	44-pin TSOP II (Pb-free)	Industrial
	CY62146ELL-45ZSXA	51-85087	44-pin TSOP II (Pb-free)	Automotive-A

Contact your local Cypress sales representative for availability of these parts.


Ordering Code Definitions

Package Diagram

Figure 10. 44-pin TSOP Z44-II Package Outline, 51-85087

51-85087 *E

Acronyms

Acronym	Description			
BHE	Byte High Enable			
BLE	Byte Low Enable			
CE	Chip Enable			
CMOS	Complementary Metal Oxide Semiconductor			
I/O	Input/Output			
OE	Output Enable			
SRAM	Static Random Access Memory			
TSOP	Thin Small Outline Package			
VFBGA	Very Fine-Pitch Ball Gird Array			
WE	Write Enable			

Document Conventions

Units of Measure

Symbol	Unit of Measure			
°C	degree Celsius			
MHz	megahertz			
μΑ	microampere			
mA	milliampere			
ns	nanosecond			
Ω	ohm			
pF	picofarad			
V	volt			
W	watt			

Document History Page

Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change	
**	463213	See ECN	NXR	New data sheet.	
*A	684343	See ECN	VKN	Added Preliminary Automotive-A Information Updated Ordering Information Table	
*B	925501	See ECN	VKN	Added footnote #8 related to I _{SB2} and I _{CCDR} Added footnote #13 related AC timing parameters	
*C	1045260	See ECN	VKN	Converted Automotive-A specs from preliminary to final	
*D	2073548	See ECN	VKN / AESA	Corrected typo in the Data Retention Waveform and removed its irrelevant footnote	
*E	2943752	06/03/2010	VKN	Added Contents Added footnote related to chip enable in Truth Table Updated Package Diagram Added Sales, Solutions, and Legal Information	
*F	3109050	12/13/2010	PRAS	Changed Table Footnotes to Footnotes. Added Ordering Code Definitions.	
*G	3149059	01/20/2011	RAME	Updated as per latest template Corrected Errors in Ordering Code Definitions Added Acronyms and Units of Measure.	
*H	3296704	06/29/11	RAME	Removed reference to AN1064 SRAM system guidelines	
*	3921993	03/05/2013	MEMJ	Updated Switching Waveforms: Added Note 24 and refered the same note in Figure 6, Figure 7. Removed Note "WE is HIGH for read cycle." and its references in Figure 6, Figure 7. Added Note 27 and refered the same note in Figure 8, Figure 9. Updated Package Diagram: spec 51-85087 – Changed revision from *C to *E.	
*J	4013949	06/04/2013	MEMJ	Updated Functional Description. Updated Electrical Characteristics: Added one more Test Condition " $V_{CC} = 5.5 \text{ V}$, $I_{OH} = -0.1 \text{ mA}$ " for V_{OH} paramet and added maximum value corresponding to that Test Condition. Added Note 7 and referred the same note in maximum value for V_{OH} paramet corresponding to Test Condition " $V_{CC} = 5.5 \text{ V}$, $I_{OH} = -0.1 \text{ mA}$ ".	
*K	4102022	08/14/2013	VINI	Updated Switching Characteristics: Updated Note 15.	
				Updated in new template.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive Clocks & Buffers Interface

Lighting & Power Control

Memory
PSoC
Touch Sensing
USB Controllers
Wireless/RF

cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

© Cypress Semiconductor Corporation, 2008-2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.