# National Semiconductor is now part of Texas Instruments.

Search <a href="http://www.ti.com/">http://www.ti.com/</a> for the latest technical information and details on our current products and services.



## LP5550

# PowerWise™ Technology Compliant Energy Management Unit

## **General Description**

The LP5550 is a PWI 1.0 compliant Energy Management System for reducing power consumption of stand-alone mobile phone processors such as base-band or applications processors.

The LP5550 contains an advanced, digitally controlled switching regulator for supplying variable voltage to processor core and memory. The device also incorporates 3 programmable LDO-regulators for powering I/O, PLLs and maintaining memory retention in shutdown-mode.

The device is controlled via the PWI open-standard interface. The LP5550 operates cooperatively with PowerWise technology compatible processors to optimize supply voltages adaptively over process and temperature variations or dynamically using frequency/voltage pre-characterized look-up tables.

#### **Features**

- Supports high-efficiency PowerWise Technology Adaptive Voltage Scaling
- PWI open standard interface for system power management
- Digitally controlled intelligent voltage scaling
- 1 MHz PWM switching frequency
- Auto or PWI controlled PFM mode transition
- Internal soft start/startup sequencing.
- 3 programmable LDOs for I/O, PLL, and memory retention supply generation.
- Power OK output.

### **Applications**

- GSM/GPRS/EDGE & UMTS cellular handsets
- Hand-held radios
- PDAs
- Battery powered devices
- Portable instruments

## System Diagram

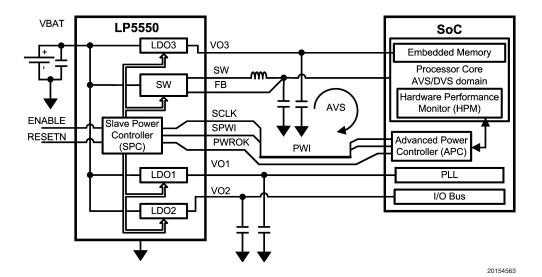



FIGURE 1. System Diagram

## **Connection Diagrams and Package Mark Information**

16 - Pin LLP **NS Package Number SQA16A** 

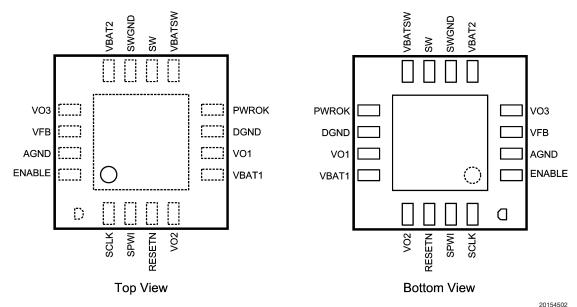
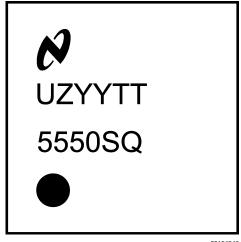




FIGURE 2. LP5550 Pinout

Package Mark



Note: The actual physical placement of the package marking will vary from part to part.

FIGURE 3. Top View

# **Typical Application**

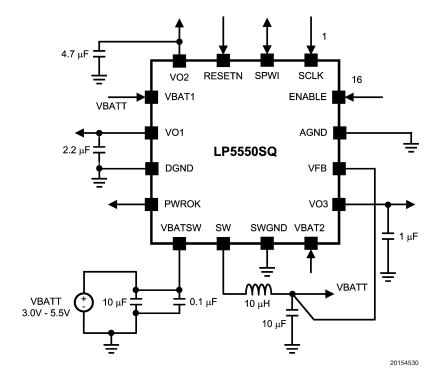



FIGURE 4. Typical Application Circuit

# **Pin Descriptions**

| Pin # | Name        | I/O | Туре | Description                                                         |  |  |  |  |  |
|-------|-------------|-----|------|---------------------------------------------------------------------|--|--|--|--|--|
| 1     | SCLK        | I   | D    | PowerWise Interface (PWI) clock input                               |  |  |  |  |  |
| 2     | SPWI        | I/O | D    | PowerWise Interface (PWI) bi-directional data                       |  |  |  |  |  |
| 3     | RESETN      | I   | D    | Reset, active low                                                   |  |  |  |  |  |
| 4     | VO2         | 0   | А    | LDO2 output, for supplying the I/O voltage on the SoC               |  |  |  |  |  |
| 5     | VBAT1       | Р   | Р    | Battery supply voltage                                              |  |  |  |  |  |
| 6     | VO1         | 0   | А    | LDO1 output, for supplying a fixed voltage to a PLL etc. on the SoC |  |  |  |  |  |
|       |             |     | G    | Digital ground                                                      |  |  |  |  |  |
| 8     | B PWROK O D |     |      | Power OK, active high output signal                                 |  |  |  |  |  |
| 9     | VBATSW      | Р   | Р    | Battery supply voltage for switching regulator                      |  |  |  |  |  |
| 10    | SW          | 0   | А    | Switcher pin connected to coil                                      |  |  |  |  |  |
| 11    | SWGND       | G   | G    | Switcher ground                                                     |  |  |  |  |  |
| 12    | VBAT2       | Р   | Р    | Battery supply voltage                                              |  |  |  |  |  |
| 13    | VO3         | 0   | А    | LDO3 output, on-chip memory supply voltage                          |  |  |  |  |  |
| 14    | VFB         | I   | А    | Switcher output voltage for supplying SoC core logic                |  |  |  |  |  |
| 15    | AGND        | G   | G    | Analog Ground                                                       |  |  |  |  |  |
| 16    | ENABLE      | I   | D    | Enable, active high                                                 |  |  |  |  |  |

A: Analog Pin

D: Digital Pin

I: Input Pin

O: Output Pin

I/O: Input/Output Pin

P: Power Pin

G: Ground Pin

# **Ordering Information**

| Voltage Option | Order Number | Package Marking | Supplied As               |
|----------------|--------------|-----------------|---------------------------|
|                | LP5550SQ     | LP5550SQ        | 1000 units, Tape-and-Reel |
|                | LP5550SQX    | LP5550SQ        | 4500 units, Tape-and-Reel |

<sup>\*</sup>Released. Samples available.

## Absolute Maximum Ratings (Notes 1, 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

VBAT1, VBAT2, VBATSW -0.3 to +6.0V VO1, VO2, VO3 to GND -0.3 to +VBAT1+0.3V

ENABLE, RESETN, VFB,

SW,

SPWI, SCLK, PWROK -0.3 to VBAT2+0.3V

DGND, AGND, SWGND to ±0.3V

**GND SLUG** 

Junction Temperature 150°C

(TJ-MAX)

Storage Temperature Range -65°C to 150°C Maximum Continuous 1.0 W

Power Dissipation (PD-MAX) (Note 4)

Maximum Lead Note 4

Temperature (Soldering)

ESD Rating (Note 3) Human Body Model:

All pins 2.0kV

## Operating Ratings (Notes 1, 2)

VBAT1, VBAT2, VBATSW 3.0V to 5.5V Junction Temperature (T<sub>.I</sub>) -40°C to +125°C

Range

Ambient Temperature  $(T_A)$   $-40^{\circ}C$  to  $+85^{\circ}C$ 

Range(Note 6)

### Thermal Properties(Note 7)

Junction-to-Ambient 39.8°C/W

Thermal Resistance  $(\theta_{JA})$ 

**General Electrical Characteristics** Unless otherwise noted,  $V_{BAT1,2,SW}$ , RESETN, ENABLE = 3.6V. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire junction temperature range for operation, -40 to +125°C. (Notes 2, 8, 9)

| Symbol          | Parameter                                       | Conditions                                                                     | Min | Тур | Max | Units |
|-----------------|-------------------------------------------------|--------------------------------------------------------------------------------|-----|-----|-----|-------|
| IQ              | Shutdown Supply current                         | V <sub>BAT1,2,SW</sub> = 2.0V, all circuits off.                               |     | 1   | 6   | μΑ    |
|                 | Sleep State Supply Current                      | $V_{BAT1,2,SW} = 3.6V$ , LDO3 ( $V_{O3}$ ) on, PWI on. All other circuits off. |     | 70  | 85  | μΑ    |
|                 | Acitve State Supply Current (No load, PFM mode) | $V_{BAT1,2,SW} = 3.6V$ , LDOs 1 and 2 on, Switcher on, PWI on.                 |     | 140 | 165 | μΑ    |
| T <sub>SD</sub> | Thermal Shutdown Threshold                      |                                                                                |     | 160 |     | °C    |
|                 | Thermal Shutdown Hysteresis                     |                                                                                |     | 10  |     |       |

# **LDO1 (PLL/Fixed Voltage) Characteristics** Unless otherwise noted, $V_{BAT1,2,SW}$ , RESETN, EN-ABLE = 3.6V. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire junction temperature range for operation, -40 to +125°C. (Notes 2, 8, 9)

| Symbol                 | Parameter                   | Conditions                                                                         | Min     | Тур   | Max    | Units |
|------------------------|-----------------------------|------------------------------------------------------------------------------------|---------|-------|--------|-------|
| V <sub>OUT</sub>       | Output Voltage Accuracy     | $1 \text{mA} \le I_{\text{OUT}} \le 100 \text{mA}, V_{\text{OUT}} = 1.2 \text{V},$ | -3%     | 1.2   | 3%     | V     |
| Accuracy               |                             | $3.0V \le V_{BAT1,2,SW} \le 5.5V$                                                  |         |       |        |       |
| V <sub>OUT</sub> Range | Programmable Output Voltage | $0\mu A \le I_{OUT} \le 100mA$ , Programming                                       | 0.7     | 1.2   | 2.2    | V     |
|                        | Range                       | Resolution=100mV                                                                   |         |       |        |       |
| I <sub>OUT</sub>       | Recommended Output Current  | 3.0V ≤ VBAT1,2,SW ≤ 5.5V                                                           |         | 100   |        | mA    |
|                        | Short Circuit Current Limit | $V_{OUT} = 0V$                                                                     |         |       | 350    |       |
| IQ                     | Quiescent Current           | I <sub>OUT</sub> = 0mA(Note 11)                                                    |         | 35    | 45     | μΑ    |
| $\Delta V_{OUT}$       | Line Regulation             | $3.0V \le V_{BAT1,2,SW} \le 5.5V, I_{OUT} =$                                       | -0.125  |       | 0.125  | %/V   |
|                        |                             | 50mA                                                                               |         |       |        |       |
|                        | Load Regulation             | $V_{IN} = 3.6V, 1mA \le I_{OUT} \le 100mA$                                         | -0.0085 |       | 0.0085 | %/mA  |
|                        | Line Transient Regulation   | $3.6V \le V_{IN} \le 3.9V$ , TRISE,FALL = 10                                       |         | 27    |        | mV    |
|                        |                             | μs                                                                                 |         |       |        |       |
|                        | Load Transient Regulation   | $V_{IN} = 3.6V, 10mA \le I_{OUT} \le 90 mA,$                                       |         | 86    |        | mV    |
|                        |                             | TRISE,FALL = 100 ns                                                                |         |       |        |       |
| eN                     | Output Noise Voltage        | $10Hz \le f \le 100kHz, C_{OUT} = 2.2\mu F$                                        |         | 0.103 |        | mVRMS |

# **LDO1 (PLL/Fixed Voltage) Characteristics** Unless otherwise noted, V<sub>BAT1,2,SW</sub>, RESETN, ENABLE = 3.6V. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire junction temperature range for operation, -40 to +125°C. (Notes 2, 8, 9) (Continued)

| Symbol                | Parameter                     | Conditions                             | Min | Тур | Max | Units |
|-----------------------|-------------------------------|----------------------------------------|-----|-----|-----|-------|
| PSRR                  | Power Supply Ripple Rejection | $f = 1kHz, C_{OUT} = 2.2\mu F$         |     | 56  |     | dB    |
|                       | Ratio                         | $f = 10kHz, C_{OUT} = 2.2\mu F$        |     | 36  |     | dB    |
| C <sub>OUT</sub>      | Output CapacitanceOutput      | $0\mu A \le I_{OUT} \le 100mA$         | 1   | 2.2 | 20  | μF    |
|                       | Capacitor ESR                 |                                        | 5   |     | 500 | mΩ    |
| t <sub>START-UP</sub> | Start-Up Time from Shut-down  | $C_{OUT} = 1\mu F$ , $I_{OUT} = 100mA$ |     | 54  |     | μs    |

# **LDO2 (I/O Voltage) Characteristics** Unless otherwise noted, $V_{BAT1,2,SW}$ , RESETN, ENABLE = 3.6V. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire junction temperature range for operation, -40 to +125°C. (Notes 2, 8, 9)

| Symbol                       | Parameter                            | Conditions                                                                                                                                                             | Min    | Тур   | Max   | Units |
|------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|-------|
| V <sub>OUT</sub><br>Accuracy | Output Voltage Accuracy              | $1 \text{mA} \le I_{\text{OUT}} \le 250 \text{mA}, V_{\text{OUT}} = 2.5 \text{V},$<br>$V_{\text{OUT}} + 0.4 \text{V} \le V_{\text{BAT1},2,\text{SW}} \le 5.5 \text{V}$ | -3%    | 2.5   | 3%    | V     |
| V <sub>OUT</sub> Range       | Programmable Output Voltage<br>Range | $0\mu A \le I_{OUT} \le 250 mA, 1.5-2.3 V$ =100 mV step, 2.5 V, 2.8 V, 3.0 V and 3.3 V                                                                                 | 1.5    | 3.3   | 3.3   | V     |
| I <sub>OUT</sub>             | Recommended Output Current           | $V_{OUT} + 0.4V \le V_{BAT1,2,SW} \le 5.5V$                                                                                                                            |        | 250   |       | mA    |
|                              | Output Current Limit                 | V <sub>OUT</sub> = 0V                                                                                                                                                  |        |       | 740   |       |
|                              | Dropout Voltage(Note 10)             | I <sub>OUT</sub> = 125mA                                                                                                                                               |        | 70    | 260   | mV    |
| IQ                           | Quiescent Current                    | I <sub>OUT</sub> = 0mA (Note 11)                                                                                                                                       |        | 55    | 60    | μΑ    |
| $\Delta V_{OUT}$             | Line Regulation                      | $V_{OUT}$ +0.4V $\leq V_{BAT1,2,SW} \leq 5.5V$ ,<br>$I_{OUT}$ = 125mA                                                                                                  | -0.125 |       | 0.125 | %/V   |
|                              | Load Regulation                      | $V_{IN} = 3.6V, 1mA \le I_{OUT} \le 250mA$                                                                                                                             | -0.011 |       | 0.011 | %/mA  |
|                              | Line Transient Regulation            | $3.6V \le V_{IN} \le 3.9V$ , $T_{RISE,FALL} = 10$ us                                                                                                                   |        | 24    |       | mV    |
|                              | Load Transient Regulation            | $V_{\text{IN}} = 3.6 \text{V}, 25 \text{mA} \le I_{\text{OUT}} \le 225 \text{ mA},$<br>$T_{\text{RISE,FALL}} = 100 \text{ ns}$                                         |        | 246   |       | mV    |
| eN                           | Output Noise Voltage                 | $10Hz \le f \le 100kHz, C_{OUT} = 4.7\mu F$                                                                                                                            |        | 0.120 |       | mVRMS |
| PSRR                         | Power Supply Ripple Rejection        | $f = 1kHz$ , $C_{OUT} = 4.7\mu F$                                                                                                                                      |        | 46    |       | dB    |
|                              | Ratio                                | f = 10kHz, C <sub>OUT</sub> = 4.7μF                                                                                                                                    |        | 34    |       |       |
| C <sub>OUT</sub>             | Output Capacitance                   | $0\mu A \le I_{OUT} \le 250mA$                                                                                                                                         | 2      | 4.7   | 20    | μF    |
|                              | Output Capacitor ESR                 | 1                                                                                                                                                                      | 5      |       | 500   | mΩ    |
| t <sub>START-UP</sub>        | Start-Up Time from Shut-down         | $C_{OUT} = 4.7 \mu F, I_{OUT} = 250 mA$                                                                                                                                |        | 144   |       | μs    |

# **LDO3 (Memory Retention Voltage) Characteristics** Unless otherwise noted, $V_{BAT1,2,SW}$ , RESETN, ENABLE = 3.6V. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in bold-face type apply over the entire junction temperature range for operation, -40 to +125°C. (Notes 2, 8, 9)

| Symbol              | Parameter                          | Conditions                                                       | Min | Тур | Max | Units |
|---------------------|------------------------------------|------------------------------------------------------------------|-----|-----|-----|-------|
| V <sub>OUT</sub>    | Output Voltage Accuracy            | Active state: Tracking V <sub>AVS</sub>                          | -3% | 1.2 | 3%  | V     |
| Accuracy            |                                    | $I_{OUT} \le 50 \text{mA,VOUT} = 1.2 \text{V}, 3.0 \text{V} \le$ |     |     |     |       |
|                     |                                    | $V_{BAT1,2,SW} \le 5.5V$                                         |     |     |     |       |
|                     |                                    | Sleep state: Memory retention voltage                            | -3% | 1.2 | 3%  | V     |
|                     |                                    | regulation                                                       |     |     |     |       |
|                     |                                    | $I_{OUT} \le 5mA, V_{OUT} = 1.2V, 3.0V \le$                      |     |     |     |       |
|                     |                                    | $V_{BAT1,2,SW} \le 5.5V$                                         |     |     |     |       |
| V <sub>OFFSET</sub> | Active State Buffer offset (=      | I <sub>OUT</sub> = 50 mA,                                        |     | 13  |     | mV    |
|                     | V <sub>O3</sub> -V <sub>FB</sub> ) | V <sub>OUT</sub> = 0.6 V                                         |     |     |     |       |
|                     |                                    | I <sub>OUT</sub> = 50 mA,                                        |     | 28  |     | mV    |
|                     |                                    | V <sub>OUT</sub> = 1.2V                                          |     |     |     |       |

# **LDO3 (Memory Retention Voltage) Characteristics** Unless otherwise noted, $V_{BAT1,2,SW}$ , RESETN, ENABLE = 3.6V. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire junction temperature range for operation, -40 to +125°C. (Notes 2, 8, 9) (Continued)

| Symbol                 | Parameter                                       | Conditions                                                | Min | Тур   | Max  | Units |
|------------------------|-------------------------------------------------|-----------------------------------------------------------|-----|-------|------|-------|
| V <sub>OUT</sub> Range | Programmable Output Voltage Range (Sleep state) | 0μA ≤ I <sub>OUT</sub> ≤ 5mA, Programming Resolution=50mV | 0.6 | 1.2   | 1.35 | V     |
| I <sub>Q</sub>         | Quiescent Current                               | Active mode, I <sub>OUT</sub> = 10µA (Note 11)            |     | 33    | 44   | μΑ    |
|                        |                                                 | Sleep mode, I <sub>OUT</sub> = 10µA (Note 11)             |     | 10    | 16   | μΑ    |
| l <sub>оит</sub>       | Recommended Output Current, Active state        | $3.0V \le V_{BAT1,2,SW} \le 5.5V$                         |     | 50    |      | mA    |
|                        | Recommended Output Current,<br>Sleep state      | $3.0V \le V_{BAT1,2,SW} \le 5.5V$                         |     | 5     |      |       |
|                        | Short Circuit Current Limit,<br>Active state    | V <sub>OUT</sub> = 0V                                     |     |       | 230  |       |
| eN                     | Output Voltage Noise                            | $10Hz \le f \le 100kHz, C_{OUT} = 1\mu F$                 |     | 0.158 |      | mVRMS |
| PSRR                   | Power Supply Ripple Rejection<br>Ratio          | f = 217Hz, C <sub>OUT</sub> = 1.0μF                       |     | 36    |      | dB    |
| COUT                   | Output Capacitance                              | $0\mu A \le I_{OUT} \le 5mA$                              | 0.7 | 1     | 2.2  | μF    |
|                        | Output Capacitor ESR                            |                                                           | 5   |       | 500  | mΩ    |

# **Switcher (Core Voltage) Characteristics** Unless otherwise noted, $V_{BAT1,2,SW}$ , RESETN, ENABLE = 3.6V. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire junction temperature range for operation, -40 to +125°C. (Notes 2, 8, 9)

| Symbol                       | Parameter                                | Conditions                                                                                    | Min   | Тур      | Max  | Units |
|------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------|-------|----------|------|-------|
| V <sub>OUT</sub><br>Accuracy | Output Voltage                           | $I_{OUT}$ = 150 mA, $V_{OUT}$ = 1.2V, 3.0V < $V_{BAT1,2,SW}$ <5.5V                            | -3%   |          | 3%   | V     |
|                              |                                          | I <sub>OUT</sub> = 100-300 mA, V <sub>OUT</sub> =<br>1.2V,3.0V < V <sub>BAT1,2,SW</sub> <5.5V | -1.5% |          | 1.5% |       |
| V <sub>OUT</sub> Range       | Programmable Output Voltage Range        | $0mA \le I_{OUT} \le 300mA$ , Programming Resolution = $4.7mV$                                | 0.6   | 1.2      | 1.2  | V     |
| $\Delta V_{OUT}$             | Line regulation                          | $3.0V < V_{BAT1,2,SW} < 5.5V,$ $V_{OUT} = 1.2V,$ $I_{OUT} = 10 \text{ mA}$                    |       | 0.18     |      | %/V   |
|                              | Load regulation                          | $V_{BAT1,2,SW} = 3.6V$ ,<br>$V_{OUT} = 1.2V$ ,<br>$I_{OUT} = 100-300mA$                       |       | 0.0019   |      | %/mA  |
| IQ                           | Quiescent current consumption            | I <sub>OUT</sub> = 0mA                                                                        |       | 15       | 30   | μΑ    |
| R <sub>DSON(P)</sub>         | P-FET resistance                         | $V_{BAT1,2,SW} = VGS = 3.6V$                                                                  |       | 360      | 690  | mΩ    |
| R <sub>DSON(N)</sub>         | N-FET resistance                         | V <sub>BAT1,2,SW</sub> = VGS = 3.6V                                                           |       | 250      | 660  | mΩ    |
| I <sub>LIM</sub>             | Switch peak current limit                | 3.0V < V <sub>BAT1,2,SW</sub> <5.5V<br>Open Loop                                              | 350   | 620      | 750  | mA    |
| fosc                         | Internal oscillator frequency            | PWM-mode                                                                                      | 800   | 1000     | 1360 | kHz   |
| C <sub>OUT</sub>             | Output Capacitance                       | 0mA ≤ I <sub>OUT</sub> ≤ 300mA                                                                | 5     | 10       | 22   | μF    |
|                              | Output Capacitor ESR                     |                                                                                               | 5     |          | 500  | mΩ    |
| L                            | Inductor inductance                      | $0uA \le I_{OUT} \le 300mA$                                                                   |       | 4.7 / 10 |      | μH    |
| R <sub>VFB</sub>             | V <sub>FB</sub> pin resistance to ground |                                                                                               | 120   |          | 650  | kΩ    |

**Logic and Control Inputs** Unless otherwise noted,  $V_{BAT1,2,SW}$ , RESETN, ENABLE = 3.6V. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire junction temperature range for operation, -40 to +125°C. (Notes 2, 8, 9)

| Symbol              | Parameter                    | Conditions                                | Min                   | Тур | Max  | Units |
|---------------------|------------------------------|-------------------------------------------|-----------------------|-----|------|-------|
| V <sub>IL</sub>     | Input Low Level              | ENABLE, RESETN, SPWI, SCLK                |                       |     | 0.2  | V     |
|                     |                              | $3.0V \le V_{BAT1} \le 5.5V$              |                       |     |      |       |
| V <sub>IH</sub>     | Input High Level             | ENABLE, RESETN 3.0V ≤ V <sub>BAT1</sub> ≤ | 2                     |     |      | V     |
|                     |                              | 5.5V                                      |                       |     |      |       |
| V <sub>IH_PWI</sub> | Input High Level, PWI        | SPWI, SCLK, 1.5V ≤V <sub>O2</sub> ≤ 3.3V  | V <sub>O2</sub> -0.2V |     |      | V     |
| I <sub>IL</sub>     | Logic Input Current          | ENABLE, RESETN, 0V ≤ V <sub>BAT1</sub> ≤  | -5                    |     | 5    | μΑ    |
|                     |                              | 5.5V                                      |                       |     |      |       |
| I <sub>IL_PWI</sub> | Logic Input Current, PWI     | SPWI, SCLK, 1.5V ≤ V <sub>O2</sub> ≤ 3.3V | -5                    |     | 15   | μΑ    |
| R <sub>PD_PWI</sub> | Pull-down resistance for PWI |                                           | 0.5                   | 1   | 2.25 | MΩ    |
|                     | signals                      |                                           |                       |     |      |       |
| T <sub>EN_LOW</sub> | Minimum low pulse width to   | ENABLE pulsed high - low - high           |                       | 100 |      | μsec  |
|                     | enter STARTUP state          | from SHUTDOWN state                       |                       |     |      |       |
|                     |                              | ENABLE pulsed high - low - high           |                       | 4   |      |       |
|                     |                              | from SLEEP or ACTIVE state                |                       |     |      |       |

**Logic and Control Outputs** Unless otherwise noted,  $V_{BAT1,2,SW}$ , RESETN, ENABLE = 3.6V. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire junction temperature range for operation, -40 to +125°C. (Notes 2, 8, 9)

| Symbol              | Parameter              | Conditions                            | Min                     | Тур | Max | Units |
|---------------------|------------------------|---------------------------------------|-------------------------|-----|-----|-------|
| V <sub>OL</sub>     | Output low level       | PWROK, SPWI, I <sub>SINK</sub> ≤ 1 mA |                         |     | 0.4 | V     |
| V <sub>OH</sub>     | Output high level      | PWROK, I <sub>SOURCE</sub> ≤ 1 mA     | V <sub>BAT1</sub> -0.4V |     |     | V     |
| V <sub>OH_PWI</sub> | Output high level, PWI | SPWI, I <sub>SOURCE</sub> ≤ 1 mA      | V <sub>O2</sub> -0.4V   |     |     | V     |

**Note 1:** Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under which operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical Characteristics tables.

Note 2: All voltages are with respect to the potential at the GND pin.

following equation:  $TA-MAX = TJ-MAX-OP - (\theta JA \times PD-MAX)$ .

Note 3: The Human body model is a 100 pF capacitor discharged through a 1.5 k $\Omega$  resistor into each pin.

Note 4: The amount of Absolute Maximum power dissipation allowed for the device depends on the ambient temperature and can be calculated using the formula  $P = (TJ - TA)/\theta_{JA}$ , (1) where TJ is the junction temperature, TA is the ambient temperature, and JA is the junction-to-ambient thermal resistance.

Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.

Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ=150°C (typ.) and disengages at TJ=140°C (typ.).

Note 5: For detailed soldering specifications and information, please refer to National Semiconductor Application Note 1187: Leadless Leadframe Package (LLP)

Note 6: In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP = 125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the part/package in the application ( $\theta_{JA}$ ), as given by the

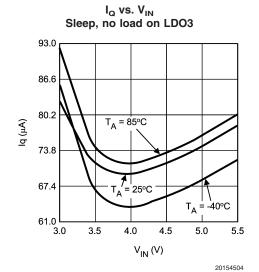
Note 7: Junction-to-ambient thermal resistance ( $\theta$ JA) is taken from a thermal modeling result, performed under the conditions and guidelines set forth in the JEDEC standard JESD51-7. The test board is a 4-layer FR-4 board measuring 102mm x 76mm x 1.6mm with a 2x1 array of thermal vias. The ground plane on the board is 50mm x 50mm. Thickness of copper layers are  $36\mu m/18\mu m/36\mu m$  (1.50z/10z/1.50z). Ambient temperature in simulation is 22°C, still air. Power dissipation is 1W.

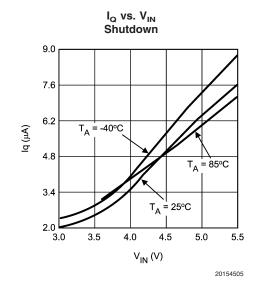
Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.

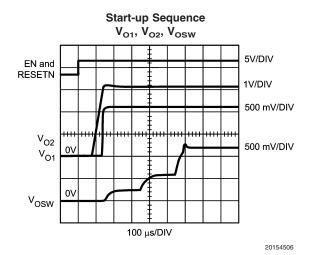
The value of  $\theta_{JA}$  of this product can vary significantly, depending on PCB material, layout, and environmental conditions. In applications where high maximum power dissipation exists (high VIN, high IOUT), special care must be paid to thermal dissipation issues. For more information on these topics, please refer to Application Note 1187: Leadless Leadframe Package (LLP) and the Power Efficiency and Power Dissipation section of this datasheet.

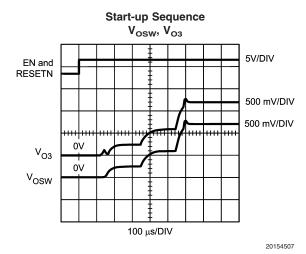
Note 8: Min and Max limits are guaranteed by design, test, or statistical analysis. Typical (Typ) numbers are not guaranteed, but do represent the most likely norm. Unless otherwise specified, conditions for Typ specifications are: VIN = 3.6V and TA = 25°C control.

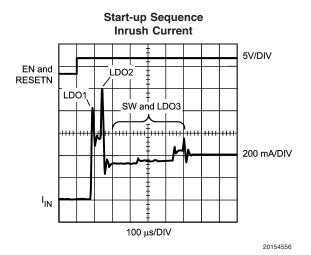
Note 9: Capacitors: Low-ESR Surface-Mount Ceramic Capacitors are (MLCCs) used in setting electrical characteristics

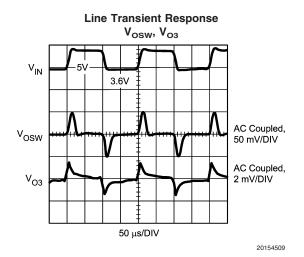

Note 10: Dropout voltage is the input-to-output voltage difference at which the output voltage is 100mV below its nominal value. This specification does not apply in cases it implies operation with an input voltage below the 3.0V minimum appearing under Operating Ratings. For example, this specification does not apply for devices having 1.5V outputs because the specification would imply operation with an input voltage at or about 1.5V


Note 11: Quiescent current for LDO1, LDO2, and LDO3 do not include shared functional blocks such as the bandgap reference.

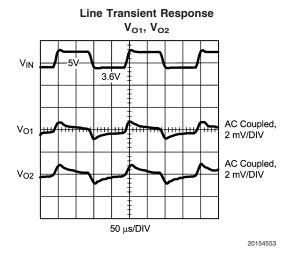

## **Simplified Functional Diagram** VBATSW FΒ LP5550 Input Voltage Feed Forward 10 μΗ sw PWM FΒ 10 μF PWM REF PWI Control VBAT1 VO1/2 VBAT2 2.2 μF, VO1 4.7 μF, VO2 PWI Control $V_{\mathsf{REF}}$ x 2 LDOs VO3 PWI Control SCLK SPWI SPC ΕN PWI Control $V_{\mathsf{REF}}$ 1: Active 2: Sleep 1 RESET 50 mV **PWROK** FΒ AGND DGND PGND **PGND** 20154532

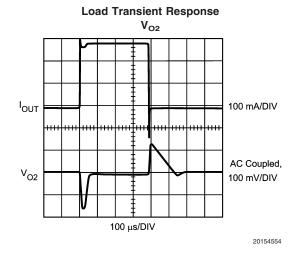

FIGURE 5. Simplified Functional Diagram

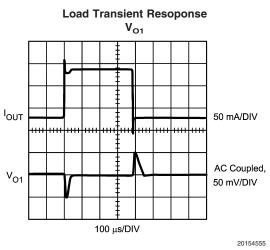

# Typical Performance Characteristics Unless otherwise stated: VIN=3.6V

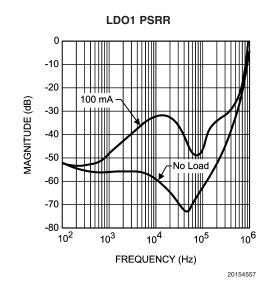


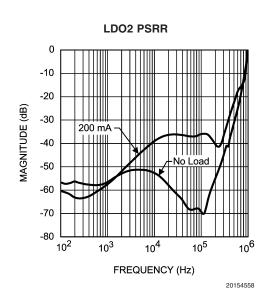


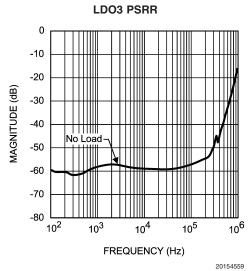



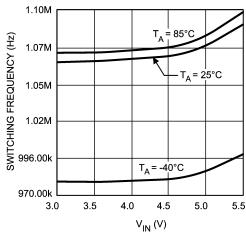





## $\textbf{Typical Performance Characteristics} \ \ \textbf{Unless otherwise stated:} \ \ \textbf{V}_{\text{IN}} = 3.6 \text{V} \ \ (\textbf{Continued})$

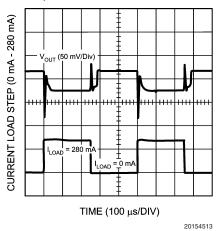






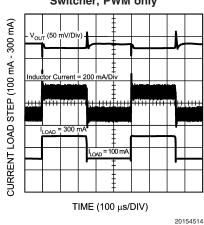





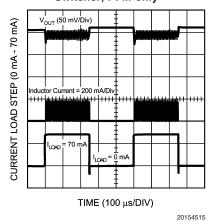




## Typical Performance Characteristics Unless otherwise stated: V<sub>IN</sub>=3.6V (Continued)

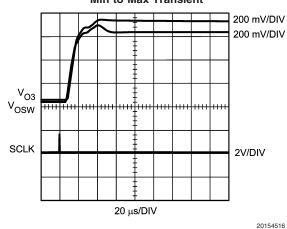
## Switching Frequency vs. $V_{\rm IN}$



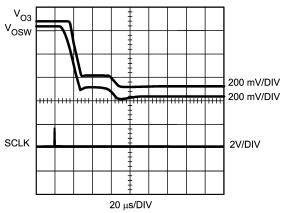

# Load Transient Response Switcher, Automatic PWM/PFM Transition




20154510


#### Load Trainsiet Response Switcher, PWM only

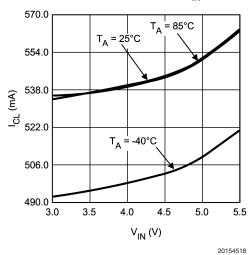



Load Transient Response Switcher, PFM only

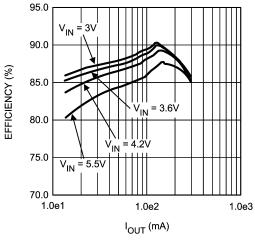


V<sub>OUT</sub> Transient Response Min to Max Transient



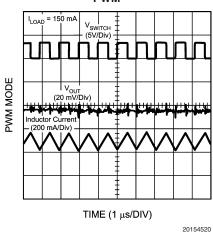

V<sub>OUT</sub> Transient Response Max to Min Transient



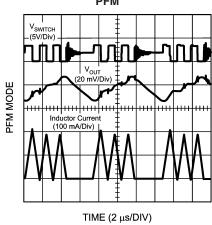

20154517

## $\textbf{Typical Performance Characteristics} \ \ \textbf{Unless otherwise stated:} \ \ \textbf{V}_{\text{IN}} = 3.6 \text{V} \ \ (\textbf{Continued})$

### Switch Current Limit vs. V<sub>IN</sub>




### Efficiency vs. Load (Switcher)




20154519

# Switching Waveforms PWM



# Switching Waveforms PFM



20154521

## LP5550 PWI Register Map

The PWI standard supports sixteen 8-bit registers on the PWI slave. The table below summarizes these registers and shows default register bit values after reset. The following sub-sections provide additional detail on the use of each individual register.

## **Summary**

| Register | Register |                          |      | Reset Default Value |    |   |   |   |   |   |   |
|----------|----------|--------------------------|------|---------------------|----|---|---|---|---|---|---|
| Address  | Name     | Register Usage           | Туре | 7                   | 6  | 5 | 4 | 3 | 2 | 1 | 0 |
| 0x0      | R0       | Core voltage             | R/W  | 0                   | 1  | 1 | 1 | 1 | 1 | 1 | 1 |
| 0x1      | R1       | Unused                   | R/W  | -                   | -  | - | - | - | - | - | - |
| 0x2      | R2       | Memory retention voltage | R/W  | 0                   | 1  | 1 | 0 | 0 | - | - | - |
| 0x3      | R3       | Status register          | R/O  | 0                   | 0  | 0 | 0 | 1 | 1 | 1 | 1 |
| 0x4      | R4       | PWI version number       | R/O  | 0                   | 0  | 0 | 0 | 0 | 0 | 0 | 1 |
| 0x5      | R5       | Unused                   | R/W  | -                   | -  | - | - | - | - | - | - |
| 0x6      | R6       | Unused                   | R/W  | -                   | -  | - | - | - | - | - | - |
| 0x7      | R7       | LDO2 voltage             | R/W  | 0                   | 1  | 1 | 1 | 1 | - | - | - |
| 0x8      | R8       | LDO1 voltage             | R/W  | 0                   | 0  | 1 | 0 | 1 | - | - | - |
| 0x9      | R9       | PFM/PWM force            | R/W  | 0                   | 0  | - | - | - | - | - | - |
| 0xA      | R10      | Unused                   | R/W  | -                   | -  | - | - | - | - | - | - |
| 0xB      | R11      | Unused                   | R/W  | -                   | -  | - | - | - | - | - | - |
| 0xC      | R12      | Unused                   | R/W  | -                   | -  | - | - | - | - | - | - |
| 0xD      | R13      | Unused                   | R/W  | -                   | -  | - | - | - | - | - | - |
| 0xE      | R14      | Unused                   | R/W  | -                   | -  | - | - | - | - | - | - |
| 0xF      | R15      | Reserved                 | R/W  | -                   | Ī- | - | - | - | - | - | - |

## **R0 - Core Voltage Register**

Address 0x0 Type R/W

Reset Default 8h'7F

| Bit   | Field Name | Description or Comment                                | Description or Comment                                                                 |  |  |
|-------|------------|-------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|
| 7     | Sign       | This bit is fixed to '0'. Reading the                 | This bit is fixed to '0'. Reading this bit will result in a '0'. Any data written into |  |  |
|       |            | this bit position using the Registe                   | er Write command is ignored.                                                           |  |  |
| 6:0   | Voltage    | Core voltage value. Default value is in <b>bold</b> . |                                                                                        |  |  |
|       |            | Voltage Data Code [7:0]                               | Voltage Value (V)                                                                      |  |  |
|       |            | 7h'00                                                 | 0.6                                                                                    |  |  |
| 7h'xx |            | 7h'xx                                                 | Linear scaling                                                                         |  |  |
|       |            | 7h'7f                                                 | 1.2 (default)                                                                          |  |  |

## R1 - Unused Register

Address 0x1 Type R/W

Reset Default 8h'00

| Bit | Field Name | Description or Comment                                                  |  |
|-----|------------|-------------------------------------------------------------------------|--|
| 7:0 | Unused     | Write transactions to this register are ignored. Read transactions will |  |
|     |            | return a "No Response Frame." A no response frame contains all          |  |
|     |            | zeros (see PWI 1.0 specification).                                      |  |

# R2 - VO3 Voltage Register (Memory Retention Voltage)

Address 0x2 Type R/W

Reset Default 8h'60

| Bit | Field Name | Description or Comment                                                   | Description or Comment                                                                 |  |  |
|-----|------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|
| 7   | Sign       | This bit is fixed to '0'. Reading the                                    | This bit is fixed to '0'. Reading this bit will result in a '0'. Any data written into |  |  |
|     |            | this bit position using the Registe                                      | er Write command is ignored.                                                           |  |  |
| 6:3 | Voltage    | Fixed voltage value. A code of a                                         | Il ones indicates maximum voltage while a code                                         |  |  |
|     |            | of all zero indicates minimum voltage. Default value is in <b>bold</b> . |                                                                                        |  |  |
|     |            | Voltage Data Code [6:3]                                                  | Voltage Value (volts)                                                                  |  |  |
|     |            | 4h'0                                                                     | 0.6                                                                                    |  |  |
|     |            | 4h'1                                                                     | 0.65                                                                                   |  |  |
|     |            | 4h'2                                                                     | 0.7                                                                                    |  |  |
|     |            | 4h'3                                                                     | 0.75                                                                                   |  |  |
|     |            | 4h'4                                                                     | 0.8                                                                                    |  |  |
|     |            | 4h'5                                                                     | 0.85                                                                                   |  |  |
|     |            | 4h'6                                                                     | 0.9                                                                                    |  |  |
|     |            | 4h'7                                                                     | 0.95                                                                                   |  |  |
|     |            | 4h'8                                                                     | 1                                                                                      |  |  |
|     |            | 4h'9                                                                     | 1.05                                                                                   |  |  |
|     |            | 4h'A                                                                     | 1.1                                                                                    |  |  |
|     |            | 4h'B                                                                     | 1.15                                                                                   |  |  |
|     |            | 4h'C                                                                     | 1.20 (default)                                                                         |  |  |
|     |            | 4h'D                                                                     | 1.25                                                                                   |  |  |
|     |            | 4h'E                                                                     | 1.3                                                                                    |  |  |
|     |            | 4h'F                                                                     | 1.35                                                                                   |  |  |
| 2:0 | Unused     | These bits are fixed to '0'. Readi                                       | ing                                                                                    |  |  |
|     |            | these bits will result in a '000'. A                                     | ny data                                                                                |  |  |
|     |            | written into these bits using the                                        |                                                                                        |  |  |
|     |            | Register Write command is ignor                                          | red.                                                                                   |  |  |

# R3 - Status Register

Address 0x3
Type Read Only
Reset Default 8h'0F

| Bit | Field Name | Description or Comment   |  |
|-----|------------|--------------------------|--|
| 7   | Reserved   | Reserved, read returns 0 |  |
| 6   | Reserved   | Reserved, read returns 0 |  |
| 5   | User Bit   | Unused, read returns 0   |  |
| 4   | User Bit   | Unused, read returns 0   |  |
| 3   | Fixed OK   | Unused, read returns 1   |  |
| 2   | IO OK      | Unused, read returns 1   |  |
| 1   | Memory OK  | Unused, read returns 1   |  |
| 0   | Core OK    | Unused, read returns 1   |  |

## **R4 - PWI Version Number Register**

Address 0x4

Type Read Only

Reset Default 8h'01

| Bit | Field Name | Description or Comment                                               |  |
|-----|------------|----------------------------------------------------------------------|--|
| 7:0 | Version    | Read transaction will return 8h'01 indicating PWI 1.0 specification. |  |
|     |            | Write transactions to this register are ignored.                     |  |

## R5 - R6 - Unused Registers

Address 0x5, 0x6

Type R/W

Reset Default 8h'00

| Bit  | Field Name | Description or Comment                                                  |  |
|------|------------|-------------------------------------------------------------------------|--|
| 7:00 | Unused     | Write transactions to this register are ignored. Read transactions will |  |
|      |            | return a "No Response Frame." A no response frame contains all          |  |
|      |            | zeros (see PWI 1.0 specification).                                      |  |

# R7 - VO2 Voltage Register (I/O Voltage)

Address 0x7

Type R/W

Reset Default 8h'78

| Bit | Field Name | Description or Comment                                                           |                                                                                        |  |  |
|-----|------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|
| 7   | Sign       | This bit is fixed to '0'. Reading the                                            | This bit is fixed to '0'. Reading this bit will result in a '0'. Any data written into |  |  |
|     |            | this bit position using the Regist                                               | er Write command is ignored.                                                           |  |  |
| 6:3 | Voltage    | Fixed voltage value. A code of a                                                 | III ones indicates maximum voltage while a code                                        |  |  |
|     |            | of all zero indicates minimum vo                                                 | oltage. Default value is in bold.                                                      |  |  |
|     |            | Voltage Data Code [6:3]                                                          | Voltage Value (volts)                                                                  |  |  |
|     |            | 4h'0                                                                             | 1.5                                                                                    |  |  |
|     |            | 4h'1                                                                             | 1.5                                                                                    |  |  |
|     |            | 4h'2                                                                             | 1.5                                                                                    |  |  |
|     |            | 4h'3                                                                             | 1.5                                                                                    |  |  |
|     |            | 4h'4                                                                             | 1.6                                                                                    |  |  |
|     |            | 4h'5                                                                             | 1.7                                                                                    |  |  |
|     |            | 4h'6                                                                             | 1.8                                                                                    |  |  |
|     |            | 4h'7                                                                             | 1.9                                                                                    |  |  |
|     |            | 4h'8                                                                             | 2                                                                                      |  |  |
|     |            | 4h'9                                                                             | 2.1                                                                                    |  |  |
|     |            | 4h'A                                                                             | 2.2                                                                                    |  |  |
|     |            | 4h'B                                                                             | 2.3                                                                                    |  |  |
|     |            | 4h'C                                                                             | 2.5                                                                                    |  |  |
|     |            | 4h'D                                                                             | 2.8                                                                                    |  |  |
|     |            | 4h'E                                                                             | 3                                                                                      |  |  |
|     |            | 4h'F                                                                             | 3.3 (default)                                                                          |  |  |
| 2:0 | Unused     | These bits are fixed to '0'. Reading these bits will result in a '000'. Any data |                                                                                        |  |  |
|     |            | written into these bits using the                                                | Register Write command is ignored.                                                     |  |  |

# R8 - VO1 Voltage Register (PLL/Fixed Voltage)

Address 0x8 Type R/W

Reset Default 8h'28

| Bit | Field Name | Description or Comment                |                                                                                |  |  |
|-----|------------|---------------------------------------|--------------------------------------------------------------------------------|--|--|
| 7   | Sign       | This bit is fixed to '0'. Reading the | nis bit will result in a '0'. Any data written into                            |  |  |
|     |            | this bit position using the Registe   | er Write command is ignored.                                                   |  |  |
| 6:3 | Voltage    | Fixed voltage value. A code of a      | Fixed voltage value. A code of all ones indicates maximum voltage while a code |  |  |
|     |            | of all zero indicates minimum vo      | ltage. Default value is in bold.                                               |  |  |
|     |            | Voltage Data Code [6:3]               | Voltage Value (volts)                                                          |  |  |
|     |            | 4h'0                                  | 0.7                                                                            |  |  |
|     |            | 4h'1                                  | 0.8                                                                            |  |  |
|     |            | 4h'2                                  | 0.9                                                                            |  |  |
|     |            | 4h'3                                  | 1                                                                              |  |  |
|     |            | 4h'4                                  | 1.1                                                                            |  |  |
|     |            | 4h'5                                  | 1.2 (default)                                                                  |  |  |
|     |            | 4h'6                                  | 1.3                                                                            |  |  |
|     |            | 4h'7                                  | 1.4                                                                            |  |  |
|     |            | 4h'8                                  | 1.5                                                                            |  |  |
|     |            | 4h'9                                  | 1.6                                                                            |  |  |
|     |            | 4h'A                                  | 1.7                                                                            |  |  |
|     |            | 4h'B                                  | 1.8                                                                            |  |  |
|     |            | 4h'C                                  | 1.9                                                                            |  |  |
|     |            | 4h'D                                  | 2                                                                              |  |  |
|     |            | 4h'E                                  | 2.1                                                                            |  |  |
|     |            | 4h'F                                  | 2.2                                                                            |  |  |
| 2:0 | Unused     | These bits are fixed to '0'. Read     | ing these bits will result in a 3b'000. Any data                               |  |  |
|     |            |                                       | Register Write command is ignored.                                             |  |  |

## **R9 - PFM/PWM Force Register**

Address 0x9

Type R/W

Reset Default 8h'00

| Bit | Field Name | Description or Comment                                                                           |                                     |   |  |
|-----|------------|--------------------------------------------------------------------------------------------------|-------------------------------------|---|--|
| 7:6 | PFM/PWM    |                                                                                                  | User Register                       |   |  |
|     | Force      |                                                                                                  | PFM Force (bit 7) PWM Force (bit 6) |   |  |
|     |            | Automatic Transition                                                                             | 0                                   | 0 |  |
|     |            | Automatic Transition                                                                             | 1                                   | 1 |  |
|     |            | Forced PFM Mode                                                                                  | 1                                   | 0 |  |
|     |            | Forced PWM Mode                                                                                  | 0                                   | 1 |  |
| 5:0 | Unused     | These bits are fixed to '0'. Reading these bits will result in a '000000'. Any data written into |                                     |   |  |
|     |            | these bits using the Register Write command is ignored.                                          |                                     |   |  |

## R10 - R14 - Unused Registers

Address 0xA, 0xB, 0xC, 0xD, 0xE

Type R/W

Reset Default 8h'00

| Bit | Field Name | Description or Comment                                                  |  |
|-----|------------|-------------------------------------------------------------------------|--|
| 7:0 | Unused     | Write transactions to this register are ignored. Read transactions will |  |
|     |            | return a "No Response Frame." A no response frame contains all          |  |
|     |            | zeros (see PWI 1.0 specification) frame.                                |  |

# R15 - Manufacturer Register

Reset Default 8h'00

Adress 0xF

Type R/W

| Bit | Field Name | Description or Comment        |
|-----|------------|-------------------------------|
| 7:0 | Reserved   | Do not write to this register |

### **Operation Description**

#### **DEVICE INFORMATION**

The LP5550 is a PowerWise Interface (PWI) compliant power management unit (PMU) for application or baseband processors in mobile phones or other portable equipment. It operates cooperatively with processors using National Semiconductor's Advanced Power Controller (APC) to provide Adaptive or Dynamic Voltage Scaling (AVS, DVS) which drastically improves processor efficiencies compared to conventional power delivery methods. The LP5550 consists of a high efficiency switching DC/DC buck converter to supply the AVS or DVS voltage domain, three LDOs for supplying the logic, PLL, and memory, and PWI registers and logic.

#### **OPERATION STATE DIAGRAM**

The LP5550 has four operating states: Start-up, Active, Sleep and Standby.

The Start-up state is the default state after reset. All regulators are off and PWROK output is '0'. The device will power up when the external enable-input is pulled high. After the power-up sequence LP5550 enters the Active state.

In the Active state all regulators are on and PWROK-output is '1'. Immediately after Start-up the output voltages are at

their default levels. LP5550 can be turned off by supplying the Shutdown command over PWI, or by setting ENABLE and/or RESETN to '0'. The LP5550 can be switched to the Sleep state by issuing the Sleep command.

In the Sleep state the core voltage regulator is off, but the PWROK output is still '1'. The memory voltage regulator (VO3) provides the programmed memory retention voltage. LDO1 and LDO2 are on. The LP5550 can be activated from the Sleep state by giving the Wake-up command. This resumes the last programmed Active state configuration. The device can also be switched off by giving the Shutdown command, or by setting ENABLE and/or RESETN to '0'

In the Shutdown-state all output voltages are '0', and PWROK-signal is '0' as well. The LP5550 can exit the Shutdown-state if either ENABLE or RESETN is '0'. In either case the device moves to the Start-up state. See the ENABLE

Figure 6 shows the LP5550 state diagram. The figure assumes that supply voltage to the regulator IC is in the valid range.

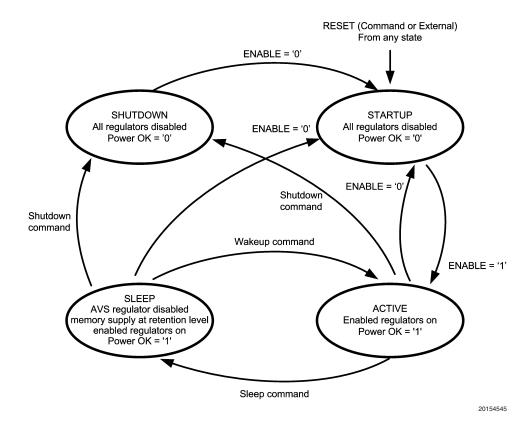



FIGURE 6. LP5550 State Diagram

## **Operation Description** (Continued)

#### **VOLTAGE SCALING**

The LP5550 is designed to be used in a voltage scaling system to lower the power dissipation of baseband or application processors in mobile phones or other portable equipment. By scaling supply voltage with the clock frequency of a processor, dramatic power savings can be achieved. Two types of voltage scaling are supported, dynamic voltage scaling (DVS) and adaptive voltage scaling (AVS). DVS systems switch between pre-characterized voltages which are paired to clock frequencies used for frequency scaling in the processor. AVS systems track the processor performance and optimize the supply voltage to the required performance. AVS is a closed loop system that provides process and temperature compensation such that for any given processor, temperature, or clock frequency, the minimum supply voltage is delivered.

#### DIGITALLY CONTROLLED VOLTAGE SCALING

The LP5550 delivers fast, controlled voltage scaling transients with the help of a digital state machine. The state machine automatically optimizes the control loop in the LP5550 switching regulator to provide large signal transients with minimal over- and undershoot. This is an important characteristic for voltage scaling systems that rely on minimal over- and undershoot to set voltages as low as possible and save energy.

#### LARGE SIGNAL TRANSIENT RESPONSE

The switching converter in the LP5550 is designed to work in a voltage scaling system. This requires that the converter has a well controlled large signal transient response. Specifically, the under- and over-shoots have to be minimal or zero while maintaining settling times less than 100 usec. Typical response plots are shown in the Typical Performance section.

#### PowerWise (TM) INTERFACE

To support DVS and AVS, the LP5550 is programmable via the low power, 2 wire PowerWise Interface (PWI). This serial interface controls the various voltages and states of all the regulators in the LP5550. In particular, the switching regulator voltage can be controlled between 0.6V and 1.2V in 128 steps (linear scaling). This high resolution voltage control affords accurate temperature and process compensation in AVS. The LDO voltages can also be set, however they are not intended to be dynamic in operation. The LP5550 supports the full command set as described in PWI 1.0 specification:

- Core Voltage Adjust
- Reset
- Sleep
- Shutdown

- Wakeup
- · Register Read
- · Register Write
- Authenticate
- Synchronize

#### **PWM/PFM OPERATION**

The switching converter in the LP5550 has two modes of operation: pulse width modulation (PWM) and pulse frequency modulation (PFM). In PWM the converter switches at 1MHz. Each period can be split into two cycles. During the first cycle, the high-side switch is on and the low-side switch is off, therefore the inductor current is rising. In the second cycle, the high-side switch is off and the low-side switch is on causing the inductor current to decrease. The output ripple voltage is lowest in PWM mode *Figure 7*. As the load current decreases, the converter efficiency becoms worse due to the increased percentage of overhead current needed to operate in PWM mode. The LP5550 can operate in PFM mode to increase efficiency at low loads.

By default, the part will automatically transition into PFM mode when either of two conditions occurs for a duration of 64 or more clock cycles:

- A. The inductor valley current goes below 0 A
- B. The peak PMOS switch current drops below the  $I_{\text{MODE}}$  level:

$$I_{MODE} < 26 \text{ mA} + \frac{V_{IN}}{500} \text{ (typ)}$$

During PFM operation, the converter positions the output voltage between two voltage limits, 'High PFM Threshold' and 'Low PFM Threshold' as shown in *Figure 7*. The PFM comparators sense the output voltage via the feedback pin and control the switching of the output FETs such that the output voltage ramps between these two levels. If the output voltage is below the 'low' PFM comparator threshold, the PMOS power switch is turned on. It remains on until the output voltage exceeds the 'high' PFM threshold or the peak current exceeds the  $I_{\rm PFM}$  level set for PFM mode. The peak current in PFM mode is:

$$I_{PFM} = 117 \text{ mA} + \frac{V_{IN}}{64\Omega} \text{ (typ)}$$

If  $I_{\rm PFM}$  is tripped, the PMOS switch conducts again once the inductor current reaches zero (the NMOS switch conducts while the PMOS switch is off). If the 'high' PFM threshold is tripped, the PMOS remains off until the 'low' PFM threshold is tripped. The NMOS turns off once the inductor current reaches zero.

## Operation Description (Continued)

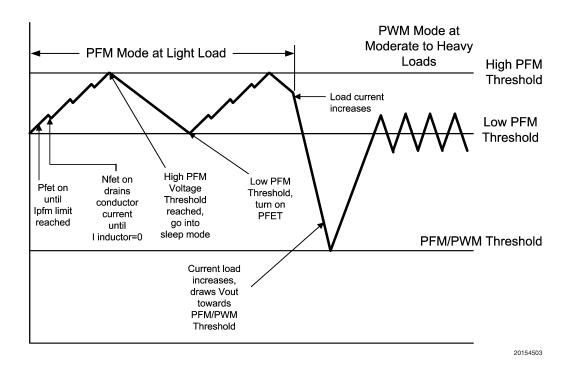



FIGURE 7. Operation in PFM Mode and Transfer to PWM Mode

## **Application Information**

#### **PWM/PFM FORCE REGISTER (R9)**

By default, the LP5550 automatically transitions between PFM and PWM to optimize efficiency. The PWM/PFM force register (R9) provides the option to override the automatic transition and force PFM or PWM operation (see R9 – PWM/PFM Force Register declaration). Note that if the operating mode of the regulator is forced to be PFM then the switch current limit is reduced to 100 mA (50 mA average load current).

#### **EN/RESETN**

The LP5550 can be shutdown via the ENABLE or RESETN pins, or by issuing a shutdown command from PWI. To disable the LP5550 via hardware (as opposed to the PWI shutdown command), pull the ENABLE and/or the RESETN pin(s) low. To enable the LP5550, both the ENABLE and the RESETN pins must be high. Once enabled, the LP5550 engages the power-up sequence and all voltages return to their default values.

When using PWI to issue a shutdown command, the PWI will be disabled along with the regulators in the LP5550. To re-enable the part, either the ENABLE, RESETN, or both pins must be toggled (high – low – high). The part will then enter the power-up sequence and all voltages will return to their default values. *Figure 8* summarizes the ENABLE/RESETN control.

The ENABLE and RESETN pins provide flexibility for system control. In larger systems such as a mobile phone, it can be advantageous to enable/disable a subsystem independently. For example, the LP5550 may be powering the applications processor in a mobile phone. The system controller can power down the applications processor via the ENABLE pin, but leave on other subsystems. When the phone is turned off or in a fault condition, the system controller can have a global reset command that is connected to all the subsystems (RESETN for the LP5550). However, if this type of control is not needed, the ENABLE and RESETN pins can be tied together and used as a single enable/disable pin.

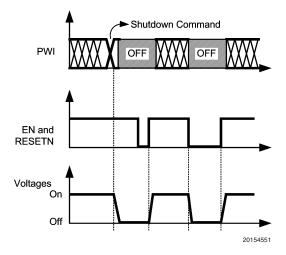



FIGURE 8. ENABLE and RESETN operation

#### **INDUCTOR**

A 10uH or 4.7uH inductor should be used with the LP5550. The inductor should be rated to handle the peak load current plus the ripple current:

$$\begin{split} I_{L(MAX)} &= I_{LOAD(MAX)} + \Delta i_{L(MAX)} \\ &= I_{LOAD(MAX)} + \frac{D \times (V_{IN(MAX)} - V_{OUT})}{2 \times L \times f_{S}} \\ &= I_{LOAD(MAX)} + \frac{D \times (V_{IN(MAX)} - V_{OUT})}{20} \text{ (A),} \\ &\qquad \qquad \left\{ \begin{array}{l} f_{S} = 1 \text{ MHz,} \\ L = 10 \text{ } \mu\text{H} \end{array} \right. \\ &= I_{LOAD(MAX)} + \frac{D \times (V_{IN(MAX)} - V_{OUT})}{9.4} \text{ (A),} \\ &\qquad \qquad \left\{ \begin{array}{l} f_{S} = 1 \text{ MHz,} \\ L = 4.7 \text{ } \mu\text{H} \end{array} \right. \end{split}$$

#### **CURRENT LIMIT**

The switching converter in the LP5550 detects the peak inductor current and limits it for protection (see Electrical Characteristics table and/or Typical Performance section). To determine the average current limit from the peak current limit, the inductor size, input and output voltage, and switching frequency must be known. The LP5550 is designed to work with a 4.7uH or 10uH inductor, so:

$$\begin{split} I_{CL\_AVG} &= I_{CL\_PK} - \Delta i_L \\ &= I_{CL\_PK} - \frac{D \times (V_{IN} - V_{OUT})}{2 \times L \times f_S} \\ &\approx 0.4 - \frac{D \times (V_{IN} - V_{OUT})}{20} , \left\{ \begin{array}{l} f_S = 1 \text{ MHz,} \\ L = 10 \text{ } \mu\text{H} \end{array} \right. \\ &\approx 0.4 - \frac{D \times (V_{IN} - V_{OUT})}{9.4} , \left\{ \begin{array}{l} f_S = 1 \text{ MHz,} \\ L = 4.7 \text{ } \mu\text{H} \end{array} \right. \end{split}$$

#### **INPUT CAPACITOR**

The input capacitor to the switching converter supplies the AC switching current drawn from the switching action of the internal power FETs. The input current of a buck converter is discontinuous, so the ripple current supplied by the input capacitor is large. The input capacitor must be rated to handle this current:

$$I_{RMS\_CIN} = I_{OUT} \frac{\sqrt{V_{OUT} \times (V_{IN} - V_{OUT})}}{V_{IN}} (A)$$

The power dissipated in the input capacitor is given by:

$$P_{D_{CIN}} = I_{RMS_{CIN}}^2 \times R_{ESR_{CIN}}(W)$$

The input capacitor must be rated to handle both the RMS current and the dissipated power. A 10  $\mu$ F ceramic capacitor is recommended for the LP5550.

## **Application Information** (Continued)

#### **OUTPUT CAPACITOR**

The switching converter in the LP5550 is designed to be used with a 10uF ceramic output capacitor. The dielectric should be X5R, X7R, or comparable material to maintain proper tolerances. The output capacitor of the switching converter absorbs the AC ripple current from the inductor and provides the initial response to a load transient. The ripple voltage at the output of the converter is the product of the ripple current flowing through the output capacitor and the impedance of the capacitor. The impedance of the capacitor can be dominated by capacitive, resistive, or inductive elements within the capacitor, depending on the frequency of the ripple current. Ceramic capacitors are predominately used in portable systems and have very low ESR and remain capacitive up to high frequencies.

The switcher peak - to - peak output voltage ripple in steady state can be calculated as:

$$V_{PP} = I_{LPP} \left( R_{ESR} + \frac{1}{F_S \times 8 \times C_{OUT}} \right)$$

#### **LDO INFORMATION**

The LDOs included in the LP5550 provide static supply voltages for various functions in the processor. Use the following sections to determine loading and external components.

#### LDO LOADING CAPABILITY

The LDOs in the LP5550 can regulate to a variety of output voltages, depending on the need of the processor. These voltages can be programmed through the PWI. Table 1 summarizes the parameters of the LP5550 LDOs.

**TABLE 1. LDO Parameters** 

|      | PWI Register | Output voltage range                                | Recommended<br>Maximum Output<br>Current | Dropout Voltage (typical) | Typical Load            |
|------|--------------|-----------------------------------------------------|------------------------------------------|---------------------------|-------------------------|
| LDO1 | R8           | 0.6 V - 2.2 V                                       | 100 mA                                   | 200 mV                    | PLL                     |
| LDO2 | R7           | 1.5 V – 3.3 V                                       | 250 mA                                   | 150 mV                    | I/O                     |
| LDO3 |              | $V_{OSW} + 0.05 V^1$<br>0.7 V - 1.35 V <sup>2</sup> | 50 mA                                    | 200 mV                    | Memory/Memory retention |

- 1. LDO3 tracks the switching converter output voltage (V<sub>OSW</sub>) plus a 50 mV offset when the LP5550 is in active state.
- 2. LDO3 regulates at the set memory retention voltage when the LP5550 is in shutdown state.

#### LDO OUTPUT CAPACITOR

The output capacitor sets a low frequency pole and a high frequency zero in the control loop of an LDO. The capacitance and the equivalent series resistance (ESR) of the capacitor must be within a specified range to meet stability

requirements. The LDOs in the LP5550 are designed to be used with ceramic output capacitors. The dielectric should be X5R, X7R, or comparable material to maintain proper tolerances. Use the following table to choose a suitable output capacitor:

**TABLE 2. Output Capacitor Selection Guide** 

|      | Output Capacitance Range    |                   |
|------|-----------------------------|-------------------|
|      | (Recommended Typical Value) | ESR range         |
| LDO1 | 1 μF – 20 μF (2.2 μF)       | 5 mohm – 500 mohm |
| LDO2 | 2 μF – 20 μF (4.7 μF)       | 5 mohm – 500 mohm |
| LDO3 | 0.7 μF – 2.2 μF (1.0 μF)    | 5 mohm- 500 mohm  |

# Application Information (Continued)

### **BOARD LAYOUT CONSIDERATIONS**

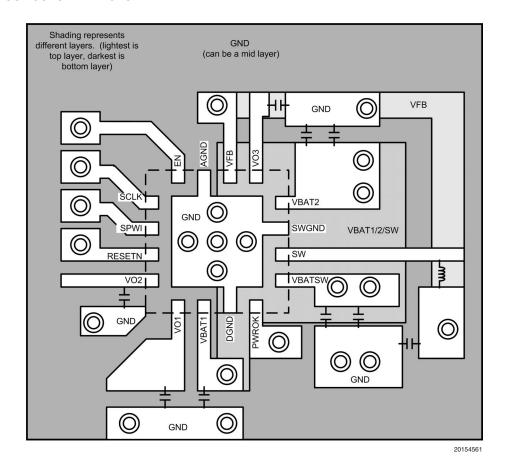




FIGURE 9. Board Layout Design Recommendations for the LP5550

### Physical Dimensions inches (millimeters) unless otherwise noted



16-Lead LLP Package **NS Package Number SQA16A** 

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### **BANNED SUBSTANCE COMPLIANCE**

National Semiconductor follows the provisions of the Product Stewardship Guide for Customers (CSP-9-111C2) and Banned Substances and Materials of Interest Specification (CSP-9-111S2) for regulatory environmental compliance. Details may be found at: www.national.com/quality/green.

Lead free products are RoHS compliant.



National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com

Tel: 1-800-272-9959

www.national.com

**National Semiconductor Europe Customer Support Center** Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

**National Semiconductor** Asia Pacific Customer Support Center Email: ap.support@nsc.com **National Semiconductor** Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560