Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF35835
- Class Q Military
- Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

SN74LS299

8-Bit Shift/Storage Register with 3-State Outputs

The SN74LS299 is an 8-Bit Universal Shift/Storage Register with 3-state outputs. Four modes of operation are possible: hold (store), shift left, shift right and load data.

The parallel load inputs and flip-flop outputs are multiplexed to reduce the total number of package pins. Separate outputs are provided for flip-flops Q_{0} and Q_{7} to allow easy cascading. A separate active LOW Master Reset is used to reset the register.

- Common I/O for Reduced Pin Count
- Four Operation Modes: Shift Left, Shift Right, Load and Store
- Separate Shift Right Serial Input and Shift Left Serial Input for Easy Cascading
- 3-State Outputs for Bus Oriented Applications
- Input Clamp Diodes Limit High-Speed Termination Effects
- ESD > 3500 Volts

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Typ	Max	Unit
V_{CC}	Supply Voltage	4.75	5.0	5.25	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	0	25	70	${ }^{\circ} \mathrm{C}$
I_{OH}	Output Current - High $\mathrm{Q}_{0}, \mathrm{Q}_{7}$			-0.4	mA
I_{OL}	Output Current - Low $\mathrm{Q}_{0}, \mathrm{Q}_{7}$			8.0	mA
I_{OH}	Output Current - High $\mathrm{I} / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$			-2.6	mA
I_{OL}	Output Current - Low $\mathrm{I} / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$			24	mA

ON Semiconductor

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
SN74LS299N	PDIP-20	1440 Units/Box
SN74LS299DW	SOIC-WIDE	38 Units/Rail
SN74LS299DWR2	SOIC-WIDE	2500/Tape \& Reel

CONNECTION DIAGRAM DIP (TOP VIEW)

PIN NAME		LOADING (Note a)	
		HIGH	LOW
CP	Clock Pulse (Active Positive-Going Edge) Input	0.5 U.L.	0.25 U.L
DS0	Serial Data Input for Right Shift	0.5 U.L.	0.25 U.L
DS7	Serial Data Input for Left Shift	0.5 U.L.	0.25 U.L
$1 / 0_{n}$	Parallel Data Input or	0.5 U.L.	0.25 U.L
	Parallel Output (3-State)	L.	15 U.L.
$\mathrm{OE}_{1}, \mathrm{OE}_{2}$	3-State Output Enable (Active LOW) Inputs	0.5 U.L.	0.25 U.L
$\mathrm{Q}_{0}, \mathrm{Q}_{7}$	Serial Outputs	10 U.L.	5 U.L
MR	Asynchronous Master Reset (Active LOW) Input	0.5 U.L.	0.25 U
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Mode Select Inputs	1 U.L.	0.5 U.

NOTES:
a) 1 TTL Unit Load (U.L.) $=40 \mu$ A HIGH/1.6 mA LOW.

FUNCTION TABLE

INPUTS								RESPONSE
MR	S_{1}	S_{0}	OE_{1}	OE_{2}	CP	DS ${ }_{0}$	DS_{7}	
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	Asynchronous Reset; $Q_{0}=Q_{7}=$ LOW I/O Voltage Undetermined
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{X} \end{aligned}$	X	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Asynchronous Reset; $Q_{0}=Q_{7}=$ LOW I/O Voltage LOW
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	H H	x	x	$\begin{aligned} & \Gamma \\ & \Gamma \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	Shift Right; $D \rightarrow Q_{0} ; Q_{0} \rightarrow Q_{1}$; etc. Shift Right; $\mathrm{D} \rightarrow \mathrm{Q}_{0} \& \mathrm{I} / \mathrm{O}_{0} ; \mathrm{Q}_{0} \rightarrow \mathrm{O}_{1} \& \mathrm{I} / \mathrm{O}_{1}$; etc.
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	x	x	\widetilde{J}	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \hline D \\ & D \end{aligned}$	Shift Left; $D \rightarrow Q_{7} ; Q_{7} \rightarrow Q_{6} ;$ etc. Shift Left; $D \rightarrow Q_{7} \& I / O_{7} ; Q_{7} \rightarrow Q_{6} \& I / O_{6} ;$ etc.
H	H	H	X	X	\checkmark	X	X	Parallel Load; $1 / \mathrm{O}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L	L	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{X} \end{aligned}$	X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	Hold: I/O Voltage undetermined
H	L	L	L	L	X	X	X	Hold: $1 / \mathrm{O}_{\mathrm{n}}=\mathrm{Q}_{\mathrm{n}}$

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions	
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed In All Inputs	HIGH Voltage for
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V	Guaranteed In All Inputs	LOW Voltage for
V_{IK}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}$	18 mA
V_{OH}	Output HIGH Voltage$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$		2.4	3.1		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{O}}$	MAX
V_{OH}	Output HIGH VoltageQ_{0}, Q_{7}		2.7	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{O}}$	MAX
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$			0.25	0.4	V	$10 \mathrm{~L}=12 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{MIN},$
				0.35	0.5	V	$\mathrm{IOL}_{\mathrm{OL}}=24 \mathrm{~mA}$	per Truth Table
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$				0.4	V	$\mathrm{loL}=4.0 \mathrm{~mA}$	$V_{C C}=V_{C C}$ MIN,
					0.5	V	$\mathrm{I}_{\text {OL }}=8.0 \mathrm{~mA}$	per Truth Table
$\mathrm{I}_{\text {OzH }}$	Output Off Current HIGH$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$				40	$\mu \mathrm{A}$	$V_{C C}=M A X,$	$2.7 \mathrm{~V}$
$\mathrm{I}_{\text {OzL }}$	Output Off Current LOW$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$				-400	$\mu \mathrm{A}$	$V_{C C}=$ MAX	$=0.4 \mathrm{~V}$
I_{IH}	Input HIGH Current	Others			20	$\mu \mathrm{A}$	$V_{C C}=M A X, V_{I N}=2.7 V$	
		$\begin{aligned} & \mathrm{S}_{0}, \mathrm{~S}_{1}, \\ & \mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7} \end{aligned}$			40	$\mu \mathrm{A}$		
		Others			0.1	mA	$V_{C C}=M A X, V_{I N}=7.0 \mathrm{~V}$	
		$\mathrm{S}_{0}, \mathrm{~S}_{1}$			0.2	mA		
		$\mathrm{l} / \mathrm{O}_{0}-\mathrm{l} / \mathrm{O}_{7}$			0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	
IIL	Input LOW Current	Others			-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	
		$\mathrm{S}_{0}, \mathrm{~S}_{1}$			-0.8	mA		
los	Short Circuit Current (Note 1)	$\mathrm{Q}_{0}, \mathrm{Q}_{7}$	-20		-100	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	
		$\mathrm{l} / \mathrm{O}_{0}-\mathrm{l} / \mathrm{O}_{7}$	-30		-130	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$	
ICC	Power Supply Current				53	mA	$\mathrm{V}_{C C}=$ MAX	

1. Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	25	35		MHz	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHL}} \\ & \mathrm{t}_{\mathrm{PLLH}} \end{aligned}$	Propagation Delay, Clock to Q_{0} or Q_{7}		$\begin{aligned} & 26 \\ & 22 \end{aligned}$	$\begin{aligned} & 39 \\ & 33 \end{aligned}$	ns	
${ }_{\text {t }}{ }_{\text {PLL }}$	Propagation Delay, Clear to Q_{0} or Q_{7}		27	40	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHL}} \\ & \mathrm{t}_{\mathrm{PLLH}} \end{aligned}$	Propagation Delay, Clock to $\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$		$\begin{aligned} & 26 \\ & 17 \end{aligned}$	$\begin{aligned} & 39 \\ & 25 \end{aligned}$	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$
${ }_{\text {t }}{ }_{\text {PLL }}$	Propagation Delay, Clear to $\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$		26	40	ns	
$\begin{aligned} & \mathrm{t}_{\text {PZH }} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time		$\begin{aligned} & 13 \\ & 19 \end{aligned}$	$\begin{aligned} & 21 \\ & 30 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$

AC SETUP REQUIREMENTS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
$t_{\text {W }}$	Clock Pulse Width HIGH	25		\checkmark	ns	$\cdots \mathrm{N}$
t_{W}	Clock Pulse Width LOW	13			ns	(3)
t_{w}	Clear Pulse Width LOW	20			ns	-
t_{s}	Data Setup Time	20			ns	O $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$
$\mathrm{t}_{\text {s }}$	Select Setup Time	35		-	ns	$V_{C C}=5.0$
$t_{\text {h }}$	Data Hold Time	0			ns	
t_{h}	Select Hold Time	10			ns	
$\mathrm{t}_{\text {rec }}$	Recovery Time	20			ns	

Figure 1.

Figure 2.

Figure 3.

Figure 4.

AC LOAD CIRCUIT

SWITCH POSITIONS

SYMBOL	SW1	SW2
$\mathrm{t}_{\text {PZH }}$	Open	Closed
$\mathrm{t}_{\text {PZL }}$	Closed	Open
$\mathrm{t}_{\text {PLZ }}$	Closed	Closed
$\mathrm{t}_{\text {PHZ }}$	Closed	Closed

Figure 5.

PACKAGE DIMENSIONS

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and 10 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

