2：1 Multiplexer and 1：2 Demultiplexer with Loopback

General Description

The MAX9396 consists of a $2: 1$ multiplexer and a 1：2 demultiplexer with loopback．The multiplexer section （channel B）accepts two differential inputs and gener－ ates a single differential output．The demultiplexer sec－ tion（channel A）accepts a single differential input and generates two parallel differential outputs．The MAX9396 features a loopback mode that connects the input of channel A to the output of channel B and con－ nects the selected input of channel B to the outputs of channel A．
The differential inputs of the MAX9396 accept CML／LVPECL levels and can also accept LVDS inputs with common－mode voltages from +0.6 V to（VCC－ 0.05 V ）．The differential outputs are LVDS compatible and drive 100Ω loads．
Three LVCMOS／LVTTL logic inputs control the internal connections between inputs and outputs，one for the multiplexer portion of channel $\mathrm{B}(\mathrm{BSEL})$ ，and the other two for loopback control of channels A and B（LB＿SELA and LB＿SELB）．Independent enable inputs for each dif－ ferential output pair provide additional flexibility．
Fail－safe circuitry forces the outputs to a differential low condition for undriven inputs or when the common－ mode voltage is below +0.6 V ．
Ultra－low 57psp－p（typ）pseudorandom bit sequence （PRBS）jitter ensures reliable communications in high－ speed links that are highly sensitive to timing error， especially those incorporating clock－and－data recovery， or serializers and deserializers．The high－speed switch－ ing performance guarantees 1.25 Gbps operation and less than 87ps（max）skew between channels．
The MAX9396 is available in a 32－pin TQFP package and is specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended tem－ perature range．

Applications

High－Speed Telecom／Datacom Equipment
Central Office Backplane Clock Distribution DSLAMs
Protection Switching
Fault－Tolerant Systems

Pin Configuration and Functional Diagram appear at end of data sheet．
－Guaranteed 1．25Gbps Operation with 450 mV （min） Differential Output Swing
－Integrated 100Ω Resistors on Differential Inputs
－Simultaneous Loopback Control
－2ps（RMS）（max）Random Jitter
－AC Specifications Guaranteed for 150 mV Differential Input
－Signal Inputs Accept Any Differential Signals with $\mathrm{VCM}=+0.6 \mathrm{~V}$ to（VCC－0．05V）
－LVDS Outputs for Clock or High－Speed Data
－Low－Level Input Fail－Safe Detection
－＋3．0V to＋3．6V Supply Voltage Range
－LVCMOS／LVTTL Logic Inputs
Ordering Information

PART	TEMP RANGE	PIN－ PACKAGE	PKG CODE
MAX9396EHJ＋	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 TQFP	$\mathrm{H} 32-1$

＋Denotes a lead－free package．
Typical Operating Circuit

2:1 Multiplexer and 1:2 Demultiplexer with Loopback

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Protection (Human Body Model)
$\left(\mathrm{IN}_{-}, \overline{\mathrm{IN}}_{-}, \mathrm{OUT}_{-}, \mathrm{OUT}_{--}, E N_{-}\right.$, BSEL, LB_SEL_$) . . \pm 2 \mathrm{kV}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \pm 1 \%, \mathrm{EN}_{-}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{C M}=+0.6 \mathrm{~V}$ to $\left(\mathrm{V}_{C C}-0.05 \mathrm{~V}\right), \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{I} \mathrm{V}$ ID $=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=+1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2, and 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LVCMOS/LVTTL INPUTS (EN_ _ , BSEL, LB_SEL_)						
Input High Voltage	$\mathrm{V}_{\text {IH }}$		2.0		VCC	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$		0		0.8	V
Input High Current	IIH	$\mathrm{V}_{\mathrm{IN}}=+2.0 \mathrm{~V}$ to V_{CC}	0		20	$\mu \mathrm{A}$
Input Low Current	IIL	V IN $=0 \mathrm{~V}$ to +0.8 V	-1		+10	$\mu \mathrm{A}$
DIFFERENTIAL INPUTS ($\mathrm{IN}_{-\sim}$, $\overline{\mathbf{I N}}_{--}$)						
Differential Input Voltage	VID	$\mathrm{V}_{\text {ILD }} \geq 0 \mathrm{~V}$ and $\mathrm{V}_{\text {IHD }} \leq \mathrm{V}_{\text {CC }}$, Figure 1	0.1		3.0	V
Input Common-Mode Range	VCM		0.6		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 0.05 \end{gathered}$	V
Single-Ended Input Current	$\begin{aligned} & \mathrm{IN}_{--} \\ & \frac{1 \mathrm{~N}_{--}}{} \\ & \hline \end{aligned}$	$\begin{aligned} & \mid \mathrm{V}_{\text {ID }} \leq 3.0 \mathrm{~V} \\ & \left(\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { to }+\mathrm{V}_{\mathrm{CC}}, \mathrm{IN}_{--} \text {, or } \overline{\mathrm{N}_{-}-} \text {open }\right) \end{aligned}$	-15		+200	$\mu \mathrm{A}$
Differential Input Termination	RIN	IN_{--}to $\overline{\mathrm{N}}_{-}^{-}$	80	100	120	Ω
LVDS OUTPUTS (OUT_ - , $\overline{\text { OUT }}_{--}$)						
Differential Output Voltage	VOD	$R_{L}=100 \Omega$, Figure 2	450	540	600	mV
Change in Magnitude of V_{OD} Between Complementary Output States	$\Delta \mathrm{V}_{\mathrm{OD}}$	Figure 2			50	mV
Offset Common-Mode Voltage	Vos	Figure 2	1.4	1.5	1.6	V
Change in Magnitude of VOS Between Complementary Output States	$\Delta \mathrm{V}$ OS	Figure 2			50	mV

2:1 Multiplexer and 1:2 Demultiplexer with Loopback

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, R_{\mathrm{L}}=100 \Omega \pm 1 \%, \mathrm{EN}-\quad=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{C M}=+0.6 \mathrm{~V}$ to $(\mathrm{V} C \mathrm{C}-0.05 \mathrm{~V}), \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{I} \mathrm{V}_{\text {ID }}=0.2 \overline{\mathrm{~V}}, \mathrm{~V}_{\mathrm{CM}}=+1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2, and 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Output Short-Circuit Current (Output(s) Shorted to GND)	Ilos	$\begin{aligned} & \mathrm{V}_{\text {ID }}= \pm 100 \mathrm{mV} \\ & (\text { Note 4) } \end{aligned}$	VOUT__ or $\overline{\text { OUT }}_{--}^{-}=0 \mathrm{~V}$		28	40	mA
			$\begin{aligned} & \mathrm{VoUT}_{--}= \\ & \mathrm{V} \mathrm{OUT}_{--}=0 \mathrm{~V} \end{aligned}$		17	24	
Output Short-Circuit Current (Outputs Shorted Together)	Ilosb	VID $= \pm 100 \mathrm{mV}$, VoUT_- $=\mathrm{V}_{\text {OUT }_{--}^{-}}($Note 4)				12	mA
SUPPLY CURRENT							
Supply Current	Icc	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{EN}_{--}=\mathrm{V}_{C C}$			56	75	mA
		$R_{L}=100 \Omega, E N_{-}=V_{C C}$, switching at 625 MHz (1.25Gbps)			56	75	

AC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}} \leq 625 \mathrm{MHz}, \mathrm{tR}_{\mathrm{C}} \mathrm{IN}=\mathrm{t}_{\mathrm{F}} \mathrm{IN}=125 \mathrm{ps}, \mathrm{R}_{\mathrm{L}}=100 \Omega \pm 1 \%, \mathrm{IV}$ ID $\geq 150 \mathrm{mV}, \mathrm{V}_{C M}=+0.6 \mathrm{~V}$ to ($\mathrm{VCC}-0.075 \mathrm{~V}$), $\mathrm{EN}_{--}=$ $\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{IV}$ ID $=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=+1.2 \mathrm{~V}, \mathrm{fIN}=625 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SEL to Switched Output	tSWITCH	Figure 3			1.1	ns
Disable Time to Differential Output Low	tPHD	Figure 4			1.7	ns
Enable Time to Differential Output High	tPDH	Figure 4			1.7	ns
Data Rate	fDR	VOD $\geq 450 \mathrm{mV}, 2^{23}-1$ PRBS	1.25			Gbps
Low-to-High Propagation Delay	tPLH	Figures 1, 5	250	340	630	ps
High-to-Low Propagation Delay	tphL	Figures 1, 5	250	355	630	ps
Pulse Skew ItplH - tphLI	tSKEW	Figures 1, 5 (Note 6)		18	86	ps
Output Channel-to-Channel Skew	tccs	Figure 6 (Note 7)			87	ps
Output Low-to-High Transition Time (20\% to 80\%)	tR	$\mathrm{fiN}_{-}=100 \mathrm{MHz}$, Figures 1, 5	170	220	350	ps
Output High-to-Low Transition Time (80\% to 20\%)	$\mathrm{tF}_{\text {F }}$	$\mathrm{fiN}_{\text {-_ }}=100 \mathrm{MHz}$, Figures 1, 5	170	210	350	ps
Added Random Jitter	tr J	$\mathrm{fin}_{\text {_ _ }}=625 \mathrm{MHz}$, clock pattern (Note 8)		0.45	2	ps (RMS)
Added Deterministic Jitter	tDJ	1.25Gbps, $2^{23}-1$ PRBS (Note 8)		57	120	psp-P

Note 1: Measurements obtained with the device in thermal equilibrium. All voltages referenced to GND except $\mathrm{V}_{\text {ID }}, \mathrm{V}_{\mathrm{OD}}$, and $\Delta \mathrm{V}_{\text {OD }}$.
Note 2: Current into the device defined as positive. Current out of the device defined as negative.
Note 3: DC parameters are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and guaranteed by design and characterization for $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Note 4: Current through either output.
Note 5: Guaranteed by design and characterization. Limits set at ± 6 sigma.
Note 6: TSKEW is the magnitude difference of differential propagation delays for the same output over the same condtions. tSKEW = ItPHL - tpLHI.
Note 7: Measured between outputs of the same device at the signal crossing points for a same-edge transition under the same conditions. Does not apply to loopback mode.
Note 8: Device jitter added to the differential input signal.

2:1 Multiplexer and 1:2 Demultiplexer with Loopback

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mid \mathrm{V}_{\mathrm{ID}} \mathrm{I}=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=+1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{I}}=6.25 \mathrm{MHz}\right.$, Figure 5. $)$

SINGLE-ENDED INPUT CURRENT
vs. TEMPERATURE

2:1 Multiplexer and 1:2 Demultiplexer with Loopback

Pin Description

PIN	NAME	FUNCTION
$\begin{gathered} 1,2,3 \\ 30,31,32 \end{gathered}$	N.C.	No Connection. Not internally connected.
4, 9, 20, 25	GND	Ground
5	ENB	Channel B Output Enable. Drive ENB high to enable the LVDS outputs for channel B. An internal $435 \mathrm{k} \Omega$ resistor to GND pulls ENB low when unconnected.
6	OUTB	Channel B LVDS Noninverting Output
7	OUTB	Channel B LVDS Inverting Output
8, 13, 24, 29	VCC	Power-Supply Input. Bypass each V_{CC} to GND with a $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ ceramic capacitor. Install both bypass capacitors as close as possible to the device, with the $0.01 \mu \mathrm{~F}$ capacitor closest to the device.
10	$\overline{\text { INB0 }}$	LVPECL/CML Inverting Input. An internal 68k resistor to GND pulls the input low when unconnected.
11	INBO	LVPECL/CML Noninverting Input. An internal $68 \mathrm{k} \Omega$ resistor to GND pulls the input low when unconnected.
12	LB_SELB	Loopback Select for Channel B Output. Connect LB_SELB to GND or leave unconnected to reproduce the INB_ (INB_) differential inputs at OUTB ($\overline{\text { OUTB }})$. Connect LB_SELB to V_{Cc} to loop back the INA (INA) differential inputs to OUTB ($\overline{\mathrm{OUTB}}$). An internal $435 \mathrm{k} \Omega$ resistor to GND pulls LB_SELB low when unconnected.
14	$\overline{\text { NB1 }}$	LVPECL/CML Inverting Input. An internal 68k Ω resistor to GND pulls the input low when unconnected.
15	INB1	LVPECL/CML Noninverting Input. An internal $68 \mathrm{k} \Omega$ resistor to GND pulls the input low when unconnected.
16	BSEL	Channel B Multiplexer Control Input. Selects the differential input to reproduce at the B channel differential output. Connect BSEL to GND or leave unconnected to select the INBO (INBO) set of inputs. Connect BSEL to $V_{C C}$ to select the INB1 (INB1) set of inputs. An internal $435 \mathrm{k} \Omega$ resistor to GND pulls BSEL low when unconnected.
17	ENA1	Channel A1 Output Enable. Drive ENA1 high to enable the A1 LVDS outputs. An internal $435 \mathrm{k} \Omega$ resistor to GND pulls the ENA1 low when unconnected.
18	$\overline{\text { OUTA1 }}$	Channel A1 LVDS Inverting Output
19	OUTA1	Channel A1 LVDS Noninverting Output

2:1 Multiplexer and 1:2 Demultiplexer with Loopback

Pin Description (continued)

PIN	NAME	FUNCTION
21	ENAO	Channel A0 Output Enable. Drive ENAO high to enable the AO LVDS outputs. An internal 435k Ω resistor to GND pulls ENAO low when unconnected.
22	$\overline{\text { OUTAO }}$	Channel AO LVDS Inverting Output
23	OUTAO	Channel AO LVDS Noninverting Output
26	INA	LVPECL/CML Noninverting Input. An internal 68k Ω resistor to GND pulls the input low when unconnected.
27	$\overline{\mathrm{NAA}}$	LVPECL/CML Inverting Input. An internal 68k Ω resistor to GND pulls the input low when unconnected.
28	LB_SELA	Loopback Select for Channel A Output. Connect LB_SELA to GND or leave unconnected to reproduce the INA (INA) differential inputs at OUTA_($\overline{\text { OUTA_). Connect LB_SELA to VCC to loop back }}$ the INB_(INB_) differential inputs to OUTA_ (OUTA_). An internal 435k Ω resistor to GND pulls LB_SELA low when unconnected.

Detailed Description

The MAX9396 high-speed, low-power 2:1 multiplexer and 1:2 demultiplexer with loopback provides signal redundancy switching in telecom and storage applications. This device selects one of two remote signal sources for local input and buffers a single local output signal to two remote receivers.
The multiplexer section (channel B) accepts two differential inputs and generates a single LVDS-compatible output. The demultiplexer section (channel A) accepts a single differential input and generates two parallel LVDScompatible outputs. The MAX9396 features a loopback mode that connects the input of channel A to the output of channel B and connects the selected input of channel B to the outputs of channel A. LB_SELA and LB_SELB provide independent loopback control for each channel.
Three LVCMOS/LVTTL logic inputs control the internal connections between inputs and outputs, one for the multiplexer portion of channel B (BSEL), and the other two for loopback control of channels A and B (LB_SELA and LB_SELB). Independent enable inputs for each differential output pair provide additional flexibility.

Input Fail-Safe

The differential inputs of the MAX9396 possess internal fail-safe protection. Fail-safe circuitry forces the outputs to a differential-low condition for undriven inputs or when the common-mode voltage is below +0.6 V . The MAX9396 provides low-level input fail-safe detection for LVPECL, CML, and other VCc-referenced differential inputs.

Select Function

BSEL selects the differential input pair to transmit through OUTB (OUTB) for LB_SELB = GND or through OUTA_ (OUTA_) for LB_SELA = Vcc. LB_SEL_ controls the loopback function for each channel. Connect LB_SEL_ to GND to select the normal inputs for each channel. Connect LB_SEL_ to VCc to enable the loopback function. The loopback function routes the input of channel A to the output of channel B, and the inputs of channel B to the outputs of channel A. See Tables 1 and 2 for a summary of the input/output routing between channels.

2:1 Multiplexer and 1:2 Demultiplexer with Loopback

Abstract

Enable Function The EN_ _ logic inputs enable and disable each set of differential outputs. For example, connect ENAO to VCC to enable the OUTAO/OUTAO differential output pair or connect ENAO to GND to disable the OUTAO/OUTAO differential output pair. The differential output pairs assert to a differential low condition when disabled.

Applications Information

Differential Inputs

The MAX9396 inputs accept any differential signaling standard within the specified common-mode voltage range. The fail-safe feature detects common-mode input signal levels and generates a differential output low condition for undriven inputs or when the commonmode voltage is below +0.6 V . Leave unused inputs unconnected or connect to GND.

Power-Supply Bypassing

Bypass each V_{Cc} to GND with high-frequency surfacemount ceramic $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors in parallel as close as possible to the device. Install the $0.01 \mu \mathrm{~F}$ capacitor closest to the device.

Differential Traces

Input and output trace characteristics affect the performance of the MAX9396. Connect each input and output to a 50Ω characteristic impedance trace. Maintain the distance between differential traces and eliminate sharp corners to avoid discontinuities in differential impedance and maximize common-mode noise immunity. Minimize the number of vias on the differential input and output traces to prevent impedance discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance through connectors and across cables. Minimize skew by matching the electrical length of the traces.

Output Termination
Terminate the transmission line with a 100Ω resistor at the receiver inputs for proper operation.
Ensure that the output currents do not exceed the current limits specified in the Absolute Maximum Ratings. Observe the total thermal limits of the MAX9396 under all operating conditions.

Cables and Connectors

Use matched differential impedance for transmission media. Use cables and connectors with matched differential impedance to minimize impedance discontinuities. Avoid the use of unbalanced cables.

Figure 1. Output Transition Time and Propagation Delay Timing Diagram

Figure 2. Test Circuit for VOD and VOS

Balanced cables, such as twisted pair, offer superior signal quality and tend to generate less EMI due to canceling effects.

2:1 Multiplexer and 1:2 Demultiplexer with Loopback

MAX9396

Figure 3. Input to Rising/Falling Edge Select and Mux Switch Timing Diagram

Figure 4. Output Active-to-Disable and Disable-to-Active Test Circuit and Timing Diagram

2:1 Multiplexer and 1:2 Demultiplexer with Loopback

Table 1. Input Select Truth Table

LOGIC INPUTS		DIFFERENTIAL OUTPUTS		
LB_SELA	LB_SELB	BSEL	OUTA_/ $\overline{\text { OUTA }}-$	OUTB / $\overline{\text { OUTB }}$
0	0	0	INA selected	INB0 selected
0	0	1	INA selected	INB1 selected
0	1	x	INA selected	INA selected
1	0	0	INB0 selected	INB0 selected
1	0	1	INB1 selected	INB1 selected
1	1	0	INB0 selected	INA selected
1	1	1	INB1 selected	INA selected

$X=$ Don't care.

Figure 5. Output Transition Time, Propagation Delay, and Output Channel-to-Channel Skew Test Circuit

PCB Layout
Use a four-layer PCB providing separate signal, power, and ground planes for high-speed signaling applications. Bypass VCC to GND as close as possible to the device. Install termination resistors as close as possible to the receiver inputs. Match the electrical length of the differential traces to minimize signal skew.

Table 2. Loopback Select Truth Table

LB_SEL_	OUT__- $_{\text {_ }}$
GND or open	Normal inputs selected.
$V_{C C}$	Loopback inputs selected.

2:1 Multiplexer and 1:2 Demultiplexer with Loopback

Figure 6. Output Channel-to-Channel Skew

\qquad

2:1 Multiplexer and 1:2 Demultiplexer with Loopback

Pin Configuration
Chip Information

PROCESS: BiCMOS Chip information

2:1 Multiplexer and 1:2 Demultiplexer with Loopback

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

2:1 Multiplexer and 1:2 Demultiplexer with Loopback

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NOTES:

1. ALL DIMENSIONING AND TQLERANCING CZNFDRM TD ANSI Y14.5-1982,
2. DATUM PLANE EH- IS LOCATED AT MLLD PARTING LINE AND CDINCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BODY AT BDTTIM DF PARTING LINE.
3. DIMENSIINS D1 AND E1 DD NDT INCLUDE MLLD PROTRUSIDN. ALLDWABLE MDLD PRDTRUSIDN IS 0.25 MM ON D1 AND E1 DIMENSIONS.
4. THE TOP OF PACKAGE IS SMALLER THAN THE BZTTOM DF PACKAGE BY 0.15 MILLIMETERS.
5. DIMENSIIN b DDES NDT INCLUDE DAMBAR PRDTRUSIDN. ALLIDWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS DF THE b DIMENSIDN AT MAXIMUM MATERIAL CDNDITIDN.
6. ALL DIMENSIDNS ARE IN MILLIMETERS.
7. THIS QUTLINE CDNFDRMS TV JEDEC PUBLICATIUN 95, REGISTRATIUN MS-026.
8. LEADS SHALL BE CDPLANAR WITHIN .004 INCH.
9. TDPMARK SHOWN IS FDR PACKAGE DRIENTATIUN REFERENCE ZNLY.

	JEDEC dMensions in Millimeters	
	AAA	
	$5 \times 5 \times 1.0 \mathrm{MM}$	
	MIN.	MAX.
A	X	1.20
A_{1}	0.05	0.15
A_{2}	0.95	1.05
D	6.80	7.20
D_{1}	4.80	5.20
E	6.80	7.20
E_{1}	4.80	5.20
L	0.45	0.75
N	32	
e	0.50	
b	0.17	BSC.
$b 1$	0.17	0.27
c	0.09	0.23
$c 1$	0.09	0.16

\square | PART NO． |
| :--- |
| SEARCH |

MAX9396

Part Number Table

Notes：

1．See the MAX9396 QuickView Data Sheet for further information on this product family or download the MAX9396 full data sheet（PDF，168kB）
2．Other options and links for purchasing parts are listed at：http：／／www．maxim－ic．com／sales．
3．Didn＇t Find What You Need？Ask our applications engineers．Expert assistance in finding parts，usually within one business day．
4．Part number suffixes：T or T\＆R＝tape and reel；＋＝RoHS／lead－free；\＃＝RoHS／lead－exempt．More：See full data sheet or Part Naming Conventions．
5．＊Some packages have variations，listed on the drawing．＂PkgCode／Variation＂tells which variation the product uses．

Part Number	Free Sample	Buy Direct	Package：TYPE PINS SIZE DRAWING CODE／VAR $*$	Temp

Didn＇t Find What You Need？

CONTACT US：SEND US AN EMAIL

