Rochester
Electronics ${ }^{\circ}$

Datasheet

HI-5040 thru H/-5051, HI-5046A, HI-5047A

CMOS Analog Switches

This family of CMOS analog switches offers low resistance switching performance for analog voltages up to the supply rails and for signal currents up to 80 mA . "ON" resistance is low and stays reasonably constant over the full range of operating signal voltage and current. roN remains exceptionally constant for Input voltages between +5 V and -5 V and currents up to 50 mA . Switch impedance also changes very little over temperature, particularly between $0^{\circ} \mathrm{C}$ and $75^{\circ} \mathrm{C}$. ron is nominally 25Ω for $\mathrm{HI}-5048$ through $\mathrm{HI}-5051$ and $\mathrm{HI}-5046 \mathrm{~A}$ and $\mathrm{HI}-5047 \mathrm{~A}$ and 50Ω for $\mathrm{HI}-5040$ through HI-5047.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
- Class Q Military
- Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FOR REFERENCE ONLY

HI-5040 thru HI-5051, HI-5046A and HI-5047A

Features

- Wide Analog Signal Range . $\pm 15 \mathrm{~V}$
- Low "ON" Resistance (Typ) 25Ω
- High Current Capability (Typ) .80 mA
- Break-Before-Make Switching
- Turn-On Time (Typ) . $370 n 8$
- Turn-Off Time (Typ) . $280 n 8$
- No Latch-Up
- Input MOS Gates are Protected from Electrostatic Discharge
- DTL, TTL, CMOS, PMOS Compatible

Applications

- High Frequency Switching
- Sample and Hold
- Digital Filters
- Operational Amplifier Gain Switching

Description

This family of CMOS analog switches offers low resistance switching performance for analog voltages up to the supply rails and for signal currents up to 80 mA . "ON" resistance is low and stays reasonably constant over the full range of operating signal voltage and current. rON remains exceptionally constant for input voltages between +5 V and -5 V and currents up to 50 mA . Switch impedance also changes very little over temperature, particularly between $0^{\circ} \mathrm{C}$ and $75^{\circ} \mathrm{C}$. roN is nominally 25Ω for $\mathrm{HI}-5048$ through $\mathrm{HI}-5051$ and HI -5046A and HI-5047A and 50』 for HI-5040 through HI-5047.
All devices provide break-before-make switching and are TTL and CMOS compatible for maximum application versatility. Performance is further enhanced by Dielectric Isolation processing which insures latch-free operation with very low input and output leakage currents (0.8 nA at $25^{\circ} \mathrm{C}$). This family of switches also features very low power operation (1.5 mW at $25^{\circ} \mathrm{C}$).

There are 14 devices in this switch series which are differentiated by type of switch action and value of RON (see Functional Description). All devices are available in 16 lead DIP packages. The HI-5040 and HI-5050 switches can directly replace $\mathrm{IH}-5040$ series devices except IH5048, and are functionally compatible with the DG180 and DG190 family. Each switch type is available in the $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ performance grades.

Functional Description

PART NUMBER	TVPE	rON
HI-5040	SPST	50Ω
HI-5041	Dual SPST	50Ω
HI-5042	SPDT	50Ω
HI-5043	Dual SPDT	50Ω
HI-5044	DPST	50Ω
HI-5045	Dual DPST	50Ω
HI-5046	DPDT	50Ω
HI-5046A	DPDT	25Ω
HI-5047	4PST	50Ω
HI-5047A	4PST	25Ω
HI-5048	Dual SPST	25Ω
HI-5049	Dual DPST	25Ω
HI-5050	SPDT	25Ω
HI-5051	Dual SPDT	25Ω

Functional Block Dlagram

TYPICAL DIAGRAM

Ordering Information

PART NUMBER	TEMP. RANGE ($\left.{ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
H13-5040-5	0 to 75	16 Ld PDIP	E16.3
Hil-5040-2	-55 to 125	16 Ld CERDIP	F16.3
H11-5040-5	0 to 75	16 Ld CERDIP	F16.3
H13-5041-5	0 to 75	16 Ld PDIP	E16.3
H11-5041-5	0 to 75	16 Ld CERDIP	F16.3
HI1-5041-2	-55 to 125	16 Ld CERDIP	F16.3
H13-5042-5	0 to 75	16 Ld PDIP	E16.3
H11-5042-5	0 to 75	16 Ld CERDIP	F16.3
H11-5042-2	-55 to 125	16 Ld CERDIP	F16.3
Hit-5043-7	0 to 75 +96 Hr . Burn-In	16 Ld CERDIP	F16.3
HI1-5043-2	-55 to 125	16 Ld CERDIP	F16.3
HI3-5043-5	0 to 75	16 Ld PDIP	E16.3
H11-5043-5	0 to 75	16 Ld CERDIP	F16.3
HI1-5044-5	0 to 75	16 Ld CERDIP	F16.3
HI3-5044-5	0 to 75	16 Ld PDIP	E16.3
HI1-5045-5	0 to 75	16 Ld CERDIP	F16.3
H11-5045-2	-55 to 125	16 Ld CERDIP	F16.3
H13-5045-5	0 10 75	16 Ld PDIP	E16.3
H11-5046-2	. 55 to 125	16 Ld CERDIP	F16.3
HI1-5046-5	01075	16 Ld CERDIP	F16.3
H13-5046-5	0 to 75	16 Ld PDIP	E16.3
HI3-5046A-5	0 to 75	16 Ld PDIP	E16.3
H11-5046A-2	-55 to 125	16 Ld CERDIP	F16.3
H11-5046A-5	0 to 75	16 Ld CERDIP	F16.3
H11-5047-5	0 to 75	16 Ld CERDIP	F16.3
H11-5047-2	-55 to 125	16 Ld CERDIP	F16.3
H13-5047-5	0 to 75	16 Ld PDIP	E16.3
HI1-5047A-5	0 to 75	16 Ld CERDIP	F16.3
HIt-5047A-2	-55 to 125	16 Ld CERDIP	F16.3
HI3-5047A-5	0 to 75	16 Ld PDIP	E16.3
H11-5048-5	0 to 75	16 Ld CERRDIP	F16.3
H13-5048-5	0 to 75	16 Ld PDIP	E16.3
H11-5048-2	- 55 to 125	16 Ld CERDIP	F16.3

PART NUMBER	TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. NO.
HI1-5049-5	0 to 75	16 Ld CERDIP	F16.3
HI1-5049-2	-55 to 125	16 Ld CERDIP	F16.3
H13-5049-5	0 to 75	16 Ld PDIP	E16.3
H11-5050-5	0 to 75	16 Ld CERDIP	F16.3
H11-5050-2	-55 to 125	16 Ld CERDIP	F16.3
H13-5050-5	0 to 75	16 Ld PDIP	E16.3
HI1-5051-5	0 to 75	16 Ld CERDIP	F16.3
Hi1-5051-2	-55 to 125	16 Ld CERDIP	F16.3
Hi1-5051-7	0 to 75 +96 Hr . Burn-in	16 Ld CERDIP	F16.3
HI4P5051-5	0 to 75	20 Ld PLCC	N20.35
H13-5051-5	0 to 75	16 Ld PDIP	E16.3
H11-5040/883	-55 to 125	16 Ld CERDIP	F16.3
H11-5041/883	-55 to 125	16 Ld CERDIP	F16.3
H11-5042/883	-55 to 125	16 Ld CERDIP	F16.3
H11-5043/883	-55 to 125	16 Ld CERDIP	F16.3
H11-5044/883	-55 to 125	16 Ld CERDIP	F16.3
H11-5045/883	-55 to 125	16 Ld CERDIP	F16.3
H11-5046/883	. 55 to 125	16 Ld CERDIP	F16.3
H11-5046A/883	-55 to 125	16 Ld CERDIP	F16.3
H11-5047/883	- 55 to 125	16 Ld CERDIP	F16.3
H11-5047A/883	-55 to 125	16 Ld CERDIP	F16.3
H11-5048/883	-55 to 125	16 Ld CERDIP	F16.3
H11-5049/883	-55 to 125	16 Ld CEROIP	F16.3
H11-5050/883	-55 to 125	16 Ld CERDIP	F16.3
H11-5051/883	- 55 to 125	16 Ld CERDIP	F16.3
H14-5043/883	-55 to 125	20 Lead CLCC	J20.A
H14-5045/883	-55 to 125	20 Lead CLCC	J20.A
H14-5051/883	-55 to 125	20 Lead CLCC	J20.A
HI9P5043-5	0 to 75	16 Ld SOIC	M16.15
HI9P5045-5	0 to 75	16 Ld SOIC	M16.15
HI9P5051-5	0 to 75	16 Ld SOIC	M16.15
HI9P5043-9	-40 to 85	16 Ld SOIC	M16.15
HI9P5051-9	-40 to 85	16 Ld SOIC	M16.15

H1-5040 Series

Pin Configurations Switch States are Loglc "0" Input

SINGLE CONTROL		
DPDT H1-5046 (50), H1-5046A (25 ()	4PST HI-5047 (50月), H1-5047A (25ת)	
DUAL CONTROL		

NOTE: Unused pins may be internally connected. Ground all unused pins.

Switch Functions Switch States are Logic "1" Input

	DUAL SPST H1-5041 (50న)	SPDT HI-5042 (50 (
DUAL SPDT HI-5043 (50న)		DUAL DPST Hl-5045 (50 $)$
DPDT HI-5046 (50) , Hl-5046A (25 (4PST Hi-5047 (50 2), HI-5047A (25 $)$	DUAL SPST Hi-5048 (25 ${ }^{2}$)
DUAL DPST HI-5049 (25R)		

Absolute Maximum Ratings

Supply Voltage ($\mathrm{V}+\mathrm{V}$ -) . 36 V
V_{R} to Ground . V_{+}, V-
Digital and Analog input Voltage $\ldots+V_{\text {SUPPLY }}+4 V_{1}-V_{\text {SUPPLY }}-4 V$
Analog Current (S to D) Continurus. 30 mA
Analog Current (S to D) Peak. 80 mA

Operating Conditions

Temperature Range

H1-50XX-2	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
H1-50XX-5, -7	. $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
H1-50XX-9	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	${ }^{8} \mathrm{Jc}\left({ }^{\circ} \mathrm{C}\right.$
CERDIP Package	85	
SOIC Package	120	N/A
PDIP Package	100	N/A
PLCC Package	80	N/A
CLCC Package	65	14

Maximum Junction Temperature
Plastic Packages.
Ceramic Packages . $175^{\circ} \mathrm{C}$
Maximum Storage Temperature $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Meximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$ (PLCC, SOIC - Lead Tips Only)

CAUT7ON: Stresses above those listed in "Absothte Maximum Ratings" may cause permanent damage to the devce. Thts is a strass only rating and operation of the device at these of any other comctions above those indicated in the operational sections of this specification is not implled.
NOTE:

1. $\theta_{\text {JA }}$ is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{R}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{AH}}$ (Logic Level High) $=2,4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}$ (Logic Level Low) $=+0.8 \mathrm{~V}$, $V_{L}=+5 V$, Unless Otherwise Specified. For Test Condilions, Consult Performance Characteristics, Unused Pins are Grounded

Parameter	TEST CONDITIONS	$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	- $55^{\circ} \mathrm{C}$ ro $125^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$ TO $75^{\circ} \mathrm{C}$			UNTTS
			min	TYP	max	MIN	Trp	max	
SWITCHING CHARACTERISTICS									
ton, Switch On Time	(Note 5)	25	-	370	500	-	370	500	ns
toff, Switch Off Time	(Note 5)	25	-	280	500	-	280	500	ns
Charge Injection	(Note 3)	25	-	5	20	-	5	-	mV
"Off Isolation"	(Note 4)	25	75	80	-	-	80	-	dB
"Crosstalk'	(Note 4)	25	80	88	-	-	88	-	dB
$\mathrm{C}_{\text {S(OFF), }}$ Input Switch Capacitance		25	-	11	-	\cdot	11	-	pF
$\mathrm{C}_{\text {D(OFF) }}$, Output Switch Capacitance		25	-	11	-	-	11	\cdot	pF
$\mathrm{C}_{\text {D(ON) }}$, Output Switch Capacitance		25	-	22	-	-	22	-	pF
C_{A}, Digital Input Capactance		25	-	5	-	-	5	-	PF
CDS(Off), Drain-To-Source Capactance		25	-	0.5	-	-	0.5	-	pF

DIGITAL INPUT CHARACTERISTICS

$V_{\text {AL }}$, Input Low Threshold		Full	-	-	0.8	-	-	0.8
$V_{\text {AH, Input High Threshold }}$		Full	2.4	-	-	2.4	-	-
$I_{\text {A }}$, Input Leakage Current (High or Low)		Full	-	0.01	1.0	-	0.01	1.0

analog switch characteristics

Analog Signal Range		Full	-15	-	+15	-15	-	+15	v
ron, On Resistance	(Note 2A)	25	-	50	75	-	50	75	Ω
		Full	-	-	150	-	-	150	Ω
ron, On Resistance	(Note 2B)	25	-	25	45	-	25	45	Ω
		Full	-	-	50	-	-	50	Ω
ron. Channel-to-Channel Match	(Note 2A)	25	-	2	10	-	2	10	Ω
ron. Channel-to-Channel Match	(Note 2B)	25	-	1	5	-	1	5	Ω

Electrical Speclfications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{A}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{AH}}$ (Logic Level High) $=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}$ (Logic Level Low) $=+0.8 \mathrm{~V}$, $V_{L}=+5 V$, Unless Otherwise Specifled. For Test Conditions, Consult Performance Characteristics, Unused PIns are Grounded (Continued)

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { TEMP } \\ & \left.\mathbf{p}^{\circ} \mathrm{C}\right) \end{aligned}$	$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$ TO $75^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	max	MIN	TYP	Max	
$I_{S(\text { OFF })}=I_{D(\text { OFF })}$, Off Input or Output Leakage Current		25	-	0.8	2	-	0.8	2	nA
		Full	\bullet	100	200	-	100	200	nA
${ }^{1} \mathrm{D}(\mathrm{ON}$, On Leakage Current		25	-	0.01	2	-	0.01	2	nA
		Full	-	2	200	-	2	200	nA
POWER REQUIREMENTS									
P_{D}, Quiescent Power Dissipation		25	-	1.5	\bullet	\bullet	1.5	-	mW
It, I-, L_{L}, I_{R}		25	-	-	0.2	-	-	0.3	mA
1+, +15V Quiescent Current	(Note 5)	Full	-	-	0.3	\cdot	-	0.5	mA
1-, -15V Qulescent Current	(Note 5)	Full	-	-	0.3	-	-	0.5	mA
LL. +5V Quiescent Current	(Note 5)	Full	"	-	0.3	-	\cdot	0.5	mA
I_{R}, Ground Quiescent Current	(Note 5)	Full	-	-	0.3	-	-	0.5	mA

NOTES:
2. VOUT $= \pm 10 \mathrm{~V}$, IOUT $=\mp 1 \mathrm{~mA}$
A). For HI-5040 thru Hi-5047
B). For HI-5048 thru HI-5051, HI-5046A/5047A.
3. $V_{I N}=0 V, C_{L}=10,000 \mathrm{pF}$.
4. $\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{f}=100 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.
5. $V_{A L}=O V, V_{A H}=5 \mathrm{~V}$.

Switching Waveforms

Top: TTL Input (1V/Div.)
$V_{A H}=5 \mathrm{~V}, V_{A L}=0 \mathrm{~V}$
Bottom: Output (2V/Div.) Horizontal: 200ns/Div.

FIGURE 1.

Top: CMOS Input (5V/Div.) $V_{A H}=10 \mathrm{~V}, V_{A L}=0 \mathrm{~V}$
Bottom: Output (5V/Div.) Horizontal: 200ns/Div.

FIGURE 2.

Typical Performance Curves and Test Circuits

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=3 \mathrm{~V}$ and $V_{A L}=0.8 V$, Unless Otherwise Specified

FIGURE 3. "ON" RESISTANCE vs ANALOG SIGNAL LEVEL, SUPPLY VOLTAGE AND TEMPERATURE

FIGURE 4. "ON" RESISTANCE vs ANALOG SIGNAL LEVEL. AND POWER SUPPLY VOLTAGE

FIGURE 5. NORMALIIED "ON" RESISTANCE vS TEMPERATURE

FIGURE 6. ONOFF LEAKAGE CURRENT v TEMPERATURE

"ON" RESISTANCE vE ANALOG CURRENT

FIGURE 7. NORMALIZED "ON" RESISTANCE va ANALOG CURRENT

OFF ISOLATION $=20 \log \left(\frac{V_{I N}}{V_{O U T}}\right)$

FIGURE 8. "OFF" ISOLATION vE FREQUENCY

$$
\text { CROSSTALK }=20 \log \left(\frac{\mathrm{~V}_{\mathrm{IN}}}{\mathrm{~V}_{\mathrm{OUT}}}\right)
$$

FIGURE 9. CROSSTALK vs FREQUENCY

FIGURE 10. POWER CONSUMPTION vE FREQUENCY
Switching Characteristics

FIGURE 11. ONOFF SWITCH TMME va LOGIC LEVEL

FGURE 12. SWITCHING TIMES FOR POSTIVE dIGITAL TRANSITION

FIGURE 13. SWITCHING TIMES FOR NEGATIVE DIGITAL TRANSTIION

Switching Characteristics (Continued)

NOTE: Connect V_{+}to V_{L} for minimizing power consumption when driving from CMOS circuits.
FIGURE 14. TTL/CMOS REFERENCE CIRCUIT (NOTE)

Switching Characteristics (Continued)

FIGURE 15. SWITCH CELL

NOTES:

1. All N-Channel bodies to V-, all P-Channel bodies to V+except as shown.
2. For further information refer to Appilcation Notes AN520, AN521, AN531, AN532 and AN557.

FIGURE 16. DIGITAL INPUT BUFFER AND LEVEL SHIFTER

