

FJP3305 High Voltage Fast-Switching NPN Power Transistor

- High Voltage Capability
- · High Switching Speed
- Suitable for Electronic Ballast and Switching Regulator

1.Base 2.Collector 3.Emitter

Absolute Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage	700	V
V _{CEO}	Collector-Emitter Voltage	400	V
V _{EBO}	Emitter-Base Voltage	9	V
I _C	Collector Current (DC)	4	A
I _{CP}	Collector Current (Pulse)	8	Α
I _B	Base Current	2	A
P _C	Collector Dissipation (T _C = 25°C)	75	W
T _J	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-65 ~ 150	°C

Electrical Characteristics $T_C = 25$ °C unless otherwise noted

Symbol	Parameter	Conditions	Min.	Тур.	Max	Units
BV _{CBO}	Collector-Base Breakdwon Voltage	$I_C = 500\mu A, I_E = 0$	700			V
BV _{CEO}	Collector-Emitter Breakdown Voltage	$I_C = 5mA, I_B = 0$	400			V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_E = 500\mu A, I_C = 0$	9			V
I _{CBO}	Collector Cut-off Current	V _{CB} = 700V, I _E = 0			1	μΑ
I _{EBO}	Emitter Cut-off Current	$V_{EB} = 9V, I_{C} = 0$			1	μΑ
h _{FE1} h _{FE2}	DC Current Gain *	V _{CE} = 5V, I _C = 1A V _{CE} = 5V, I _C = 2A	19 8		35 40	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_C = 1A, I_B = 0.2A$ $I_C = 2A, I_B = 0.5A$ $I_C = 4A, I_B = 1A$			0.5 0.6 1.0	V V V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_C = 1A, I_B = 0.2A$ $I_C = 2A, I_B = 0.5A$			1.2 1.6	V V
f _T	Current Gain Bandwidth Product	$V_{CE} = 10V, I_{C} = 0.5A$	4			MHz
C _{ob}	Output Capacitance	V _{CB} = 10V, f = 1MHz		65		pF
t _{ON}	Turn On Time	V _{CC} = 125V, I _C = 2A			0.8	μs
t _{STG}	Storge Time	$I_{B1} = -I_{B2} = 0.4A$ $R_1 = 62.5\Omega$			4.0	μs
t _F	Fall Time	11 - 02.052			0.9	μs

^{*} Pulse Test: PW $\leq 300 \mu s$, Duty Cycle $\leq 2\%$

h_{FE} Classification

Classification	H1	H2
h _{FE1}	19 ~ 28	26 ~ 35

Typical Performance Characteristics

Figure 1. Static Characteristic

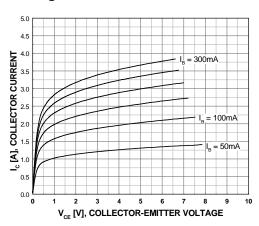


Figure 3. DC Current Gain (O-Grade)

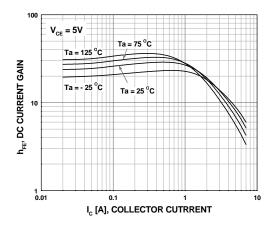


Figure 5. Saturatin Voltage (O-Grade)

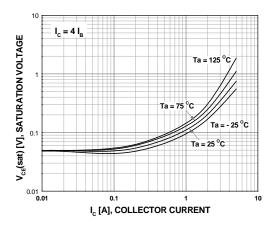


Figure 2. DC Current Gain (R-Grade)

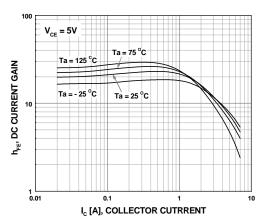


Figure 4. Saturation Voltage (R-Grade)

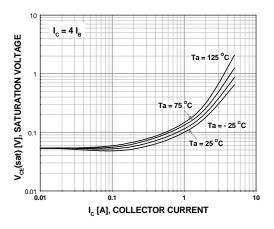
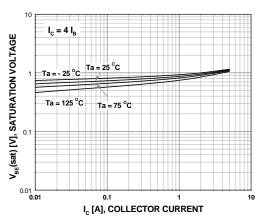



Figure 6. Saturation Voltage (R-Grade)

Typical Performance Characteristics (Continued)

Figure 7. Saturation Voltage (O-Grade)

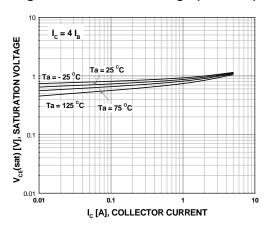


Figure 8. Switching Time

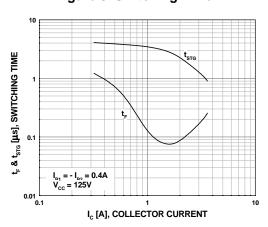


Figure 9. Reverse Biased Safe Operating Area Figure 1

I_{st}=2A, R_{sz}=0 V_{cc}=50V, L=1mH

Figure 10. Forward Biased Safe Operating Area

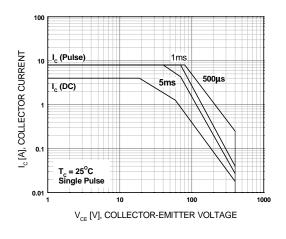
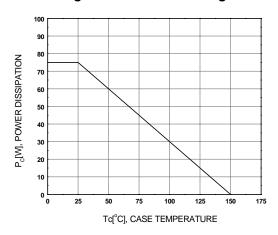
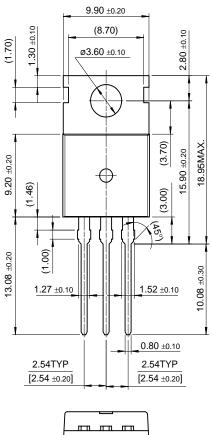
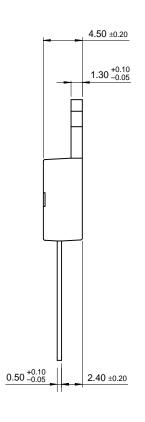



Figure 11. Power Derating


 V_{CE} [V], COLLECTOR-EMITTER VOLTAGE



4

Mechanical Dimensions

TO-220

10.00 ±0.20

Dimensions in Millimeters

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	IntelliMAX™	POP™	SPM™
ActiveArray™	FASTr™	ISOPLANAR™	Power247™	Stealth™
Bottomless™	FPS™	LittleFET™	PowerEdge™	SuperFET™
CoolFET™	FRFET™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
$CROSSVOLT^{TM}$	GlobalOptoisolator™	MicroFET™	PowerTrench [®]	SuperSOT™-6
DOME™	GTO™	MicroPak™	QFET [®]	SuperSOT™-8
EcoSPARK™	HiSeC™	MICROWIRE™	QS TM	SyncFET™
E ² CMOS™	I ² C™	MSX™	QT Optoelectronics™	TinyLogic [®]
EnSigna™	i-Lo™	MSXPro™	Quiet Series™	TINYOPTO™
FACT™	ImpliedDisconnect™	OCX™	RapidConfigure™	TruTranslation™
FACT Quiet Series™		OCXPro™	RapidConnect™	UHC™
Across the board. Arour The Power Franchise [®] Programmable Active D		OPTOLOGIC [®] OPTOPLANAR™ PACMAN™	μSerDes™ SILENT SWITCHER [®] SMART START™	UltraFET [®] UniFET™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I15

Search:

Go

DATASHEETS, SAMPLES, BUY TECHNICAL INFORMATION APPLICATIONS DESIGN CENTER SUPPORT COMPANY INVESTORS MY F.

Line 1: **\$Y** (Fairchild logo)

Home >> Find products >>

FJP3305

NPN Silicon Transistor

Contents

Features

- Qualification Support
- Product status/pricing/packaging Order Samples
- Models

Features

- High Voltage Capability
- High Speed Switching
- Suitable for Electronic Ballast and Switching Regulator

BUY

Datasheet Download this datasheet

e-mail this datasheet

Related Links

Request samples

How to order products

Product Change Notices (PCNs)

Support

Sales support

Quality and reliability

Design center

back to top

This page **Print version**

Product status/pricing/packaging

Product	Product status	Pb-free Status	Pricing*	Package type	Leads	Packing method	Package Marking Convention**
FJP3305	Full Production	Full Production	\$0.418	TO-220	3	BULK	<u>Line 1:</u> \$Y (Fairchild logo) <u>Line 2:</u> &3 <u>Line 3:</u> J3305
FJP3305H1TU	Full Production	Full Production	\$0.418	<u>TO-220</u>	3	RAIL	<u>Line 1:</u> \$Y (Fairchild logo) <u>Line 2:</u> &3 <u>Line 3:</u> J3305-1
FJP3305H2TU	Full Production	Full Production	\$0.418	<u>TO-220</u>	3	RAIL	<u>Line 1:</u> \$Y (Fairchild logo) <u>Line 2:</u> &3 <u>Line 3:</u> J3305-2
FJP3305TU	Full Production		\$0.426	TO-220	3	RAIL	

		Line 2: &3 Line 3: J3305
Full Production		
Troduction		

^{*} Fairchild 1,000 piece Budgetary Pricing

** A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a Fairchild distributor to obtain samples

Indicates product with Pb-free second-level interconnect. For more information click here.

Package marking information for product FJP3305 is available. Click here for more information .

back to top

Models

Package & leads	Condition	Temperature range	Vcc range	Software version	Revision date
		PSPICE			
TO-220-3	<u>Electrical</u>	-65°C to 150°C	0V to 8V	OrCAD 10.3	May 11, 2007

back to top

Qualification Support

Click on a product for detailed qualification data

Product
FJP3305
FJP3305H1TU
FJP3305H2TU
FJP3305TU

back to top

© 2007 Fairchild Semiconductor

