Ultralow Power, Rail-to-Rail Output Operational Amplifiers

OP181/0P281/OP481

FEATURES

Low Supply Current: $4 \mu \mathrm{~A} /$ Amplifier max
Single-Supply Operation: 2.7 V to 12 V
Wide Input Voltage Range
Rail-to-Rail Output Swing
Low Offset Voltage: 1.5 mV
No Phase Reversal
APPLICATIONS
Comparator
Battory Rowered Instrumentation
Safety Monit ring

PIN CONFIGURATIONS
8-Lead SO
(S Suffix)

8-Lead SO
(S Suffix)
8-Lead Epoxy DIP
(P Suffix)

8-Lead Epoxy DIP (P Suffix)

NOTE: PIN ORIENTATION IS EQUIVALENT FOR EACH PACKAGE VARIATION

14-Lead TSSOP
(RU Suffix)

REV. 0

[^0]One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700

World Wide Web Site: http://www.analog.com Fax: 617/326-8703
© Analog Devices, Inc., 1996

OP181/OP281/OP481-SPECIFICATIONS

ELECTRICAL SPECIFICATIONS (@ $\mathrm{V}_{\mathrm{S}}=+3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

NOTES

${ }^{1} V_{\text {OS }}$ is tested under no load condition.
Specifications subject to change without notice.

ELECTRICAL SPECIFICATIONS $\left(@ v_{\mathrm{s}}=+5.0 \mathrm{v}, \mathrm{v}_{\mathrm{cn}}=2.5, \mathrm{~V}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted')

NOTES

${ }^{1} \mathrm{~V}_{\mathrm{OS}}$ is tested under a no load condition.
Specifications subject to change without notice.

OP181/OP281/OP481-SPECIFICATIONS

ELECTRICAL SPECIFICATIONS (@ $V_{S}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

NOTES

${ }^{1} V_{\text {OS }}$ is tested under no load condition.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	6 V
Input Voltage	Gnd to $\mathrm{V}_{\mathrm{S}}+10 \mathrm{~V}$
Differential Input Voltage	$\pm 3.5 \mathrm{~V}$
Output Short-Circuit Duration to Gnd	Indefinite
Storage Temperature Range	
P, S, RU Package	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
OP181/OP281/OP481G	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature Range	
P, S, RU Package	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature Range (Soldering, 60 sec)	$+300^{\circ} \mathrm{C}$

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
OP181GP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin Plastic DIP	N-8
OP181GS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin SOIC	SO-8
OP281GP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin Plastic DIP	N-8
OP281GS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin SOIC	SO-8
OP281GRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin TSSOP	RU-8
OP481GP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14-Pin Plastic DIP	N-14
OP481GS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14-Pin SOIC	SO-14
OP481GRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14-Pin TSSOP	RU-14

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP181/OP281/OP481 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

OP181/OP281/OP481-Typical Characteristics

Eigurez Input Offset Voltage
Figure 4. Input Bias Current vs. Temperature

Figure 7. Output Voltage to Supply Rail vs. Load Current

Figure 2. Input Offset Voltage Distribution

Figure 5. Input Bias Current vs. Common-Mode Voltage

Figure 8. Output Voltage to Supply Rail vs. Load Current

Figure 3. Input Offset Voltage vs. Temperature

Figure 6. Input OffsetCurrentw
Temperature

Figure 9. Output Voltage to Supply Rail vs. Load Current

Figure 13. Open-Loop Gain and Phase vs. Frequency

Figure 16. CMRR vs. Frequency

Figure 11. Open-Loop Gain and Phase vs. Frequency

Figure 12. Open-Loop Gain and Phase vs. Frequency

Figure 14. Closed-Loop Gain vs. Frequency

Figure 17. PSRR vs. Frequency

Figure 15. Voltage Noise Densityvs.
Frequency

Figure 18. Small Signal Overshoot vs. Load Capacitance

OP181/OP281/OP481

Figute 19. Maximum Output Swing (Froquenč

Figure 22. Supply Current/Amplifier vs. Temperature

Figure 25. Small Signal Transient Response

Figure 20. Maximum Output Swing vs. Frequency

Figure 23. Supply Current/Amplifier vs. Supply Voltage

Figure 26. Large Signal Transient Response

Figure 21. Supply Current/Amplifier vs. Temperature

$\begin{aligned} & \text { Figure 24. Small Signell Transient } \\ & \text { Response }\end{aligned}$

Figure 27. Large Signal Transient Response

Figure 29. Channel Separation vs.

Frequency
Figure 30. Saturation Recovery Time

Figure 31. Saturation Recovery Time

OP181/OP281/OP481

APPLICATIONS

THEORY OF OPERATION

The OPx81 family of op amps is comprised of extremely low powered, rail-to-rail output amplifiers, requiring less than $4 \mu \mathrm{~A}$ of quiescent current per amplifier. Many other competitors' devices may be advertised as low supply current amplifiers but draw significantly more current as the outputs of these devices are driven to a supply rail. The OPx81's supply current remains under $4 \mu \mathrm{~A}$ even with the output driven to either supply rail. Supply currents should meet the specification as long as the inputs and outputs remain within the range of the power supplies.
Figure 32 shows a simplified schematic of the OP181. A bipolar differential pair is used in the input stage. PNP transistors are used to allow the input stage to remain linear with the commonmode range exending to ground. This is an important consideraton for sinsle stpply ppplications. The bipolar front end also ont ibutes less n ϕ ise han a MOS front end with only nanoamps of bias currents. The output of the op ampeonsists of a pair of CMOS transistors eomnnon soye ondiguration. This setupallows the oytuat of amplifler to strins to within milizelts of either fupply rail. Th headxoom required py the damagethe device. output stage is limuted by the amquit of current being driyen into the load. The lower output furrent, the close th \not output can go to either supply rail. Figures 7,8 ard d sh ϕ w the output voltage headroom versus load current. This beehavid is typical of rail-to-rail output amplifiers.

Figure 32. Simplified Schematic of the OP181

Input Overvoltage Protection

The input stage to the OPx81 family of op amps consists of a PNP differential pair. If the base voltage of either of these input transistors drops to more than 0.6 V below the negative supply, the input ESD protection diodes will become forward biased, and large currents will begin to flow. In addition to possibly damaging the device, this will create a phase reversal effect at the output. To prevent these effects from happening, the input current should be limited to less than 0.5 mA .

This can be done quite easily by placing a resistor in series with the input to the device. The size of the resistor should be proportional to the lowest possible input signal excursion and can be found using the following formula:

$$
R=\frac{V_{E E}-V_{I N, M I N}}{0.5 \times 10^{-3}}
$$

where: $V_{E E}$ is the negative power supply for the amplifier, and
$V_{I N, M I N}$ is the lowest input voltage excursion expected
For example, an OP181 is to be used with a single supply voltage of 5 V where the input signal could possibly go as low as -1.0 V . Because the amplifier is powered from a single supply, V_{EE} is ground, so the necessary series resistance should be $2 \mathrm{k} \Omega$.

Input Offset Voltage Nulling

The OPx81 family of op amps was designed for low offset voltages less than 1 mV . The single OP181 does provide two offset adjust terminals, should the user require greater precision. In general, these terminals should be used only to zero amplifier offsets and should not be used to adjust system offset voltages.
A $20 \mathrm{k} \Omega$ potentiometer connected to the offset adjust terminals, with the wiper connected to V_{EE}, can be used to reduce the offset voltage of the amplifier. The OP181 should be connected in the unity-gain configuration (as shown in Figure 33) or in a gain configuration. The potentiometer should be adjusted until $V_{\text {OUT }}$ is minimized. The wiper of the potentiometer must be connected to V_{EE}; connecting it to the positive supply rail could

Figure 33. Offset Voltage Nulling Circuit

Input Common-Mode Voltage Range

The OPx81 is rated with an input common-mode voltage range from $V_{E E}$ to 1 volt under $V_{C C}$. However, the op amp can still operate even with a common-mode voltage that is slightly less than V_{EE}. Figure 34 shows an OP181 configured as a difference amplifier with a single supply voltage of +3 V . Negative dc voltages are applied at both input terminals creating a commonmode voltage that is less than ground. A 400 mV p-p input signal is then applied to the noninverting input. Figure 35 shows a picture of the input and output waves. Notice how the output of the amplifier also drops slightly negative without distortion.

Figure 34. OP181 Configured as a Difference Amplifier Operating at $V_{C M}<0 \mathrm{~V}$

Figure 35. Input and Output Signals with $V_{C M}<0 V$

Figure 36. Output of the Op Amp Recovering from Saturation

Capacitive Loading

Most low supply current amplifiers have difficulty driving capacitive loads due to the higher currents required from the output stage for such loads. Higher capacitance at the output will increase the amount of overshoot and ringing in the amplifier's step response and could even affect the stability of the device. However, through careful design of the output stage and its high phase margin, the OPx81 family can tolerate some degree of capacitive loading. Figure 37 shows the step response of an OP181 with a 10 nF capacitor connected at the output. Notice that the overshoot of the output does not exceed more than 10% with such a load, even with a supply voltage of only +3 V .

Figure 37. Ringing and Overshoot of the Output of the Amplifier

A Micropower Reference Voltage Generator

Many single supply circuits are configured with the circuit biased to $1 / 2$ of the supply voltage. In these cases, a falseground reference can be created by using a voltage divider buffered by an amplifier. Figure 38 shows the schematic for such a circuit.

The two $1 \mathrm{M} \Omega$ resistors generate the reference voltage while drawing only $1.5 \mu \mathrm{~A}$ of current from a 3 V supply. A capacitor connected from the inverting terminal to the output of the op amp provides conpepsation to aldow for a bypass capacitor to be connected at the reftrence outplut. This bypass capacitor helps

Figure 38. A Micropower Bias Voltage Generator

A Window Comparator

The extremely low power supply current demands of the OPx81 family make it ideal for use in long life battery powered applications such as a monitoring system. Figure 39 shows a circuit that uses the OP281 as a window comparator.

Figure 39. Using the OR281 as a Window Comparator The threshold lim ts ser the windor are set by V_{H} and V_{L}, provided that $\mathrm{N}_{\mathrm{H}}>\mathrm{y}_{\mathrm{L}}$. The outhut of 21 will stay the the negative rail, in this caseground as lopg as the iqpu voltage is
 between V_{L} and V_{H}, theourpute of both op amps will be $\phi \mathrm{V}$. With no current flowing in either D1 or D2, the base of $Q 1$ will stay at ground, putting the transistor in cand fording Kout to the positive supply rail. If the input voltage rises abote V_{H}, the output of A2 stays at ground, but the output of A1 will goto the positive rail, and D1 will conduct current. This creates a base voltage that will turn on Q1 and drive $\mathrm{V}_{\text {Out }}$ low. The same condition occurs if $\mathrm{V}_{\text {IN }}$ falls below V_{L} with A2's output going high, and D 2 conducting current. Therefore, $\mathrm{V}_{\text {Out }}$ will be high if the input voltage is between V_{L} and V_{H}, and $\mathrm{V}_{\text {OUT }}$ will be low if the input voltage moves outside of that range.
The R1 and R2 voltage divider sets the upper window voltage, and the R3 and R4 voltage divider sets the lower voltage for the window. For the window comparator to function properly, V_{H} must be a greater voltage than V_{L}.

$$
\begin{aligned}
V_{H} & =\frac{R 2}{R 1+R 2} \\
V_{L} & =\frac{R 4}{R 3+R 4}
\end{aligned}
$$

The $2 \mathrm{k} \Omega$ resistor connects the input voltage to the input terminals to the op amps. This protects the OP281 from possible excess current flowing into the input stages of the devices. D1 and D2 are small-signal switching diodes (1N4446 or equivalent), and Q1 is a 2 N 2222 or equivalent NPN transistor.

A Low-Side Current Monitor

In the design of power supply control circuits, a great deal of design effort is focused on ensuring a pass transistor's long-term reliability over a wide range of load current conditions. As a result, monitoring and limiting device power dissipation is of prime importance in these designs. Figure 40 shows an example of a +5 V , single-supply current monitor that can be incorporated into the design of a voltage regulator with fold-back current limiting or a high current power supply with crowbar protection. The design capitalizes on the OP181's commonmode range that extends to ground. Current is monitored in the power supply return path where a 0.1Ω shunt resistor, $\mathrm{R}_{\text {SENSE }}$,
creates a very small voltage drop. The voltage at the inverting terminal becomes equal to the voltage at the noninverting terminal through the feedback of Q1, which is a 2 N 2222 or equivalent NPN transistor. This makes the voltage drop across R1 equal to the voltage drop across $R_{\text {SENSE }}$. Therefore, the current through Q1 becomes directly proportional to the current through $\mathrm{R}_{\text {SENSE }}$, and the output voltage is given by:

$$
V_{O U T}=V_{E E}-\left(\frac{R 2}{R 1} \times R_{S E N S E} \times I_{L}\right)
$$

The voltage drop across $R 2$ increases with I_{L} increasing, so $\mathrm{V}_{\text {Out }}$ decreases with higher supply current being sensed. For the element values shown, the $\mathrm{V}_{\text {OUT }}$ transfer characteristic is $-2.5 \mathrm{~V} / \mathrm{A}$, decreasing from V_{EE}.

Because of its quick overdrive recovery time, an OP281 can be configured as a full-wave rectifier for low frequency ($<500 \mathrm{~Hz}$) applications. Figure 41 shows the schematic.

Figure 41. Single Supply Full- and Half-Wave Rectifiers Using an OP281

Figure 42. Full-Wave Rectified Signal

Amplifier A1 is used as a voltage follower that will only track the input voltage when it is greater than 0 V . This provides a halfwave rectification of the input signal to the noninverting terminal of amplifier A2. When A1's output is following the input, the inverting terminal of A2 will also follow the input from the virtual ground between the inverting and noninverting terminals of A2. With no potential difference across R1, no current flows through either R1 or R2, therefore the output of A2 will also follow the input. Now, when the input voltage goes below 0 V , the noninverting terminal of A2 becomes 0 V . This makes A2 work as an inverting amplifier with a gain of 1 and provides a full-wave rectified version of the input signal. A $2 \mathrm{k} \Omega$ resistor in series with A1's noninverting input protects the device when the input signal becomes less than ground.
A Battery Powered Telephone Headset Amplifier Figure 43 shpws how OP281 can be used as a two-way amplifier n a telephope headset. One side of the OP281 can be used as an amplifier for the midrophone, whie the other side can be used 20 drive the speaker. At typical elenhone headset
usearon speak rand anelectuet nicrophone that requires supply + oltage and a biasing resisto

Figure 43. A Battery Powered Telephone Headset Two-Way Amplifier
The OP281-A op amp provides about 29 dB of gain for audio signals coming from the microphone. The gain is set by the $300 \mathrm{k} \Omega$ and $11 \mathrm{k} \Omega$ resistors. The gain bandwidth product of the amplifier is 95 kHz , which, for the set gain of 28 , yields a -3 dB rolloff at 3.4 kHz . This is acceptable since telephone audio is band limited for 300 kHz to 3 kHz signals. If higher gain is required for the microphone, an additional gain stage should be used, as adding any more gain to the OP281 would limit the audio bandwidth. A $2.2 \mathrm{k} \Omega$ resistor is used to bias the electret microphone. This resistor value may vary depending on the specifications on the microphone being used. The output of the microphone is ac coupled to the noninverting terminal of the op amp. Two $1 \mathrm{M} \Omega$ resistors are used to provide the dc offset for single supply use.

The OP281-B amplifier can provide up to 15 dB of gain for the headset speaker. Incoming audio signals are ac coupled to a $10 \mathrm{k} \Omega$ potentiometer that is used to adjust the volume. Again, two $1 \mathrm{M} \Omega$ resistors provide the dc offset with a $1 \mu \mathrm{~F}$ capacitor establishing an ac ground for the volume control potentiometer. Because the OP281 is a rail-to-rail output amplifier, it would have difficulty driving a 600Ω speaker directly. Here, a class AB buffer is used to isolate the load from the amplifier and also provide the necessary current drive to the speaker. By placing the buffer in the feedback loop of the op amp, crossover distortion can be minimized. Q1 and Q2 should have minimum betas of 100 . The 600Ω speaker is ac coupled to the emitters to prevent any quiescent current from flowing in the speaker. The $1 \mu \mathrm{~F}$ coupling capacitor makes an equivalent high pass filter cutoff at 265 Hz with a 600Ω load attached. Again, this does not pose a problem, as it is outside the frequency range for telephone audio signals.
The circuit in Figure 43 draws around $250 \mu \mathrm{~A}$ of current. The class AB buffer has a quiescent current of $140 \mu \mathrm{~A}$ while roughly $100 \mu \mathrm{~A}$ is drawn by the microphone itself. A CR2032 3 V lithim battery has a life expectancy of 160 mA hours, which m ans this circuit could run continuously for 640 hours on a

* INPUT STAGE

Q1	4	1	3	PIX		
Q2	6	7	5	PIX		
I1	99	8	$1.28 E-6$			
EOS	7	2	POLY(1)	$(12,98)$	$80 \mathrm{E}-6$	1
IOS	1	2	$1 \mathrm{E}-10$			
RC1	4	50	500 E 3			
RC2	6	50	500 E 3			
RE1	3	8	108			
RE2	5	8	108			
V1	99	13	DC	.9		
V2	99	14	DC	.9		
D1	3	13	DX			
D2	5	14	DX			
\star						
\star CMRR 76 dB,	ZERO AT 1 kHz					
\star						

OP181/OP281/OP481

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

8-Lead Plastic DIP
($\mathrm{N}-8$)

14-Lead Plastic DIP
($\mathrm{N}-14$)

14-Lead Narrow Body SOIC

8-Lead TSSOP
(RU-8)

14-Lead TSSOP
(RU-14)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

