

MM74C02

Quad 2-Input NAND, GateQuad 2-Input NOR Gate, Hex Inverter

The MM74C00, MM74C02, and MM74C04 logic gates employ complementary MOS (CMOS) to achieve wide power supply operating range, low power consumption, high noise immunity and symmetric controlled rise and fall times. With features such as this the 74C logic family is close to ideal for use in digital systems. Function and pin out compatibility with series 74 devices minimizes design time for those designers already familiar with the standard 74 logic family.

All inputs are protected from damage due to static discharge by diode clamps to V_{CC} and GND.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

October 1987 Revised May 2002

MM74C00 • MM74C02 • MM74C04 Quad 2-Input NAND Gate • Quad 2-Input NOR Gate • Hex Inverter

General Description

The MM74C00, MM74C02, and MM74C04 logic gates employ complementary MOS (CMOS) to achieve wide power supply operating range, low power consumption, high noise immunity and symmetric controlled rise and fall times. With features such as this the 74C logic family is close to ideal for use in digital systems. Function and pin out compatibility with series 74 devices minimizes design time for those designers already familiar with the standard 74 logic family.

All inputs are protected from damage due to static discharge by diode clamps to $\rm V_{CC}$ and GND.

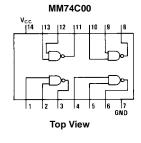
Features

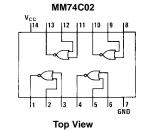
■ Wide supply voltage range: 3V to 15V

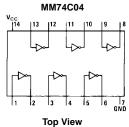
■ Guaranteed noise margin: 1V

 \blacksquare High noise immunity: 0.45 $\rm V_{CC}$ (typ.)

■ Low power consumption: 10 nW/package (typ.)


■ Low power: TTL compatibility: Fan out of 2 driving 74L


Ordering Code:


Order Number	Package Number	Package Description
MM74C00M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74C00N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
MM74C02N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
MM74C04M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74C04N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code

Connection Diagrams

Absolute Maximum Ratings(Note 1)

Power Dissipation (P_D)

Dual-In-Line 700 mW Small Outline 500 mW

Lead Temperature

(Soldering, 10 seconds) 300°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

DC Electrical Characteristics

Min/Max limits apply across the guaranteed temperature range unless otherwise noted

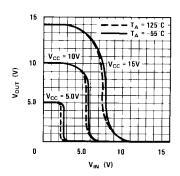
Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO CN	ios					
V _{IN(1)} Logical "1" Input Voltag	Logical "1" Input Voltage	V _{CC} = 5.0V	3.5			V
		V _{CC} = 10V	8.0			
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 5.0V			1.5	V
		V _{CC} = 10V			2.0	
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0V, I_{O} = -10 \mu A$	4.5			V
		$V_{CC} = 10V$, $I_{O} = -10 \mu A$	9.0			
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5.0V, I_{O} = 10 \mu A$			0.5	V
		$V_{CC} = 10V, I_{O} = 10 \mu A$			1.0	
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current	V _{CC} = 15V, V _{IN} = 0V	-1.0	-0.005		μΑ
Icc	Supply Current	V _{CC} = 15V		0.01	15	μΑ
LOW POWER	TO CMOS	•				
V _{IN(1)}	Logical "1" Input Voltage	74C, V _{CC} = 4.75V	V _{CC} – 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	74C, V _{CC} = 4.75V			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	74C, $V_{CC} = 4.75V$, $I_{O} = -10 \mu A$	4.4			V
V _{OUT(0)}	Logical "0" Output Voltage	74C, $V_{CC} = 4.75V$, $I_{O} = 10 \mu A$			0.4	V
CMOS TO LO	W POWER	•				
V _{IN(1)}	Logical "1" Input Voltage	74C, V _{CC} = 4.75V	4.0			V
V _{IN(0)}	Logical "0" Input Voltage	74C, V _{CC} = 4.75V			1.0	V
V _{OUT(1)}	Logical "1" Output Voltage	74C, $V_{CC} = 4.75V$, $I_{O} = -360 \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	74C, $V_{CC} = 4.75V$, $I_{O} = 360 \mu A$			0.4	V
	VE (see Family Characteristics Da	a Sheet) TA = 25°C (short circuit current)				
I _{SOURCE}	Output Source Current	$V_{CC} = 5.0V, V_{IN(0)} = 0V, V_{OUT} = 0V$	-1.75			mA
I _{SOURCE}	Output Source Current	$V_{CC} = 10V, V_{IN(0)} = 0V, V_{OUT} = 0V$	-8.0			mA
I _{SINK}	Output Sink Current	$V_{CC} = 5.0V, V_{IN(1)} = 5.0V, V_{OUT} = V_{CC}$	1.75			mA
I _{SINK}	Output Sink Current	V _{CC} = 10V, V _{IN(1)} = 10V, V _{OUT} = V _{CC}	8.0			mA

AC Electrical Characteristics (Note 2)

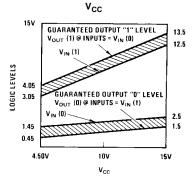
 $T_A = 25^{\circ}C$, $C_L = 50$ pF, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
MM74C00, MN	//74C02, MM74C04	•	•	U		
t _{pd0} , t _{pd1} Propagation Delay Time to Logical "1" or "0"	Propagation Delay Time to	V _{CC} = 5.0V		50	90	ns
	Logical "1" or "0"	V _{CC} = 10V		30	60	
C _{IN}	Input Capacitance	(Note 3)		6.0		pF
C _{PD}	Power Dissipation Capacitance	Per Gate or Inverter (Note 4)		12		pF

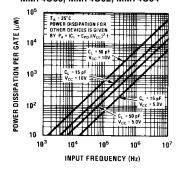
Note 2: AC Parameters are guaranteed by DC correlated testing.

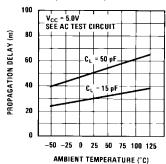

Note 3: Capacitance is guaranteed by periodic testing.

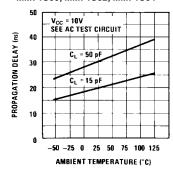
Note 4: C_{PD} determines the no load AC power consumption of any CMOS device.

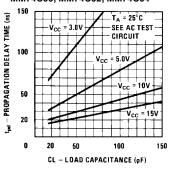

For complete explanation see Family Characteristics Application Note—AN-90.

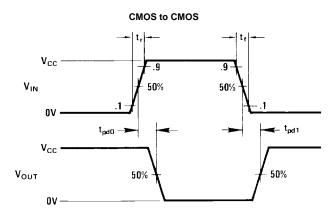
Typical Performance Characteristics

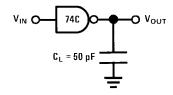

Gate Transfer Characteristics


Guaranteed Noise Margin Over Temperature vs.

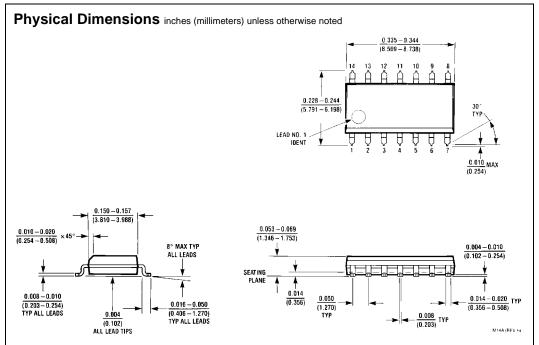

Power Dissipation vs. Frequency MM74C00, MM74C02, MM74C04


Propagation Delay vs. Ambient Temperature MM74C00, MM74C02, MM74C04


Propagation Delay vs. Ambient Temperature MM74C00, MM74C02, MM74C04



Propagation Delay Time vs. Load Capacitance MM74C00, MM74C02, MM74C04



Switching Time Waveforms and AC Test Circuit

Delays measured with input $t_{\rm r},\,t_{\rm f} \leq 20$ ns.

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.740 - 0.770 (18.80 - 19.56)0.090 (2.286) 14 13 12 11 10 9 8 14 13 12 INDEX AREA 0.250 ± 0.010 (6.350 ± 0.254) PIN NO. 1 PIN NO. 1 IDENT 1 2 3 4 5 6 7 1 2 3 $\frac{0.092}{(2.337)}$ DIA 0.030 MAX (0.762) DEPTH OPTION 1 OPTION 02 $\frac{0.135 \pm 0.005}{(3.429 \pm 0.127)}$ 0.300 - 0.320 $\frac{0.630 - 8.128}{(7.620 - 8.128)}$ $\frac{0.145 - 0.200}{(3.683 - 5.080)}$ 0.060 4° TYP Optional (1.651) $\frac{0.008 - 0.016}{(0.203 - 0.406)}$ TYP 0.020 (0.508) 0.125 - 0.150 0.075 ± 0.015 $\overline{(3.175 - 3.810)}$ (1.905 ± 0.381) (7.112) MIN 0.014 - 0.0230.100 ± 0.010 (2.540 ± 0.254) (0.356 - 0.584)0.050 ± 0.010 TYP 0.325 ^{+0.040} -0.015 (1.270 - 0.254)8.255 + 1.016

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

N144 (REV.F)