National Semiconductor is now part of Texas Instruments.

Search http://www.ti.com/ for the latest technical information and details on our current products and services.

DS26F31MQML Quad High Speed Differential Line Drivers

General Description

The DS26F31M is a quad differential line driver designed for digital data transmission over balanced lines. The DS26F31M meets all the requirements of EIA Standard RS-422 and Federal Standard 1020. It is designed to provide unipolar differential drive to twisted-pair or parallel-wire transmission lines.

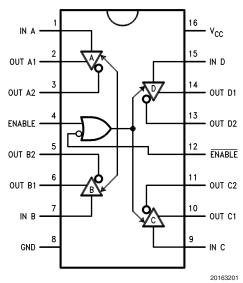
The DS26F31M offers improved performance due to the use of state-of-the-art L-FAST bipolar technology. The L-FAST technology allows for higher speeds and lower currents by utilizing extremely short gate delay times. Thus, the DS26F31M features lower power, extended temperature range, and improved specifications.

The circuit provides an enable and disable function common to all four drivers. The DS26F31M features TRI-STATE® outputs and logical OR-ed complementary enable inputs. The inputs are all LS compatible and are all one unit load.

The DS26F31M offers optimum performance when used with the DS26F32 Quad Differential Line Receiver.

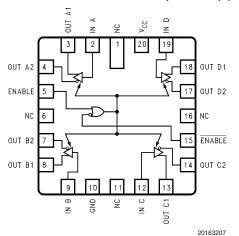
Features

- Operation from single +5.0V supply
- Outputs won't load line when V_{CC} = 0V
- Output short circuit protection
- Meets the requirements of EIA standard RS-422
- High output drive capability for 100Ω terminated transmission lines


Ordering Information

NS Part Number	SMD Part Number	NS Package Number	Package Description
DS26F31ME/883	5962-7802302M2A	E20A	20LD Leadless Chip Carrier
DS26F31MJ/883	5962-7802302MEA	J16A	16LD Ceramic DIP
DS26F31MW/883	5962-7802302MFA	W16A	16LD Ceramic FlatPack
DS26F31MWG/883	5962-7802302MZA	WG16A	16LD Ceramic SOIC
DS26F31MJ-QMLV	5962-7802302VEA	J16A	16LD Ceramic DIP
DS26F31MJFQMLV	5962F7802302VEA	J16A	16LD Ceramic DIP
	300k rd(Si)		
DS26F31MW-QMLV	5962-7802302VFA	W16A	16LD Ceramic FlatPack
DS26F31MWFQMLV	5962F7802302VFA	W16A	16LD Ceramic FlatPack
	300k rd(Si)		
DS26F31MWGFQMLV	5962F7802302VZA	WG16A	16LD Ceramic SOIC
	300k rd(Si)		

TRI-STATE® is a registered trademark of National Semiconductor Corporation.


Connection and Logic Diagrams

16-Lead Ceramic DIP Pictured

Top View See NS Package Numbers J16A, W16A, or WG16A

20-Lead Ceramic Leadless Chip Carrier (E)

See NS Package Number E20A

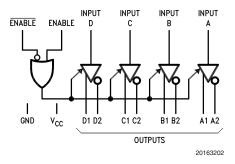


FIGURE 1. Logic Symbol

Absolute Maximum Ratings (Note 1)

Storage Temperature Range $-65^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +175^{\circ}\text{C}$ Lead Temperature (Soldering, 60 sec.) 300°C Supply Voltage 7.0V Input Voltage 7.0V Output Voltage 5.5V Maximum Power Dissipation at 25 $^{\circ}\text{C}$ (Note 3) 450mW

Thermal Resistance

 θ_{JA}

Ceramic DIP, derate above +25°C @ 11.4mW/°C 88°C/mW

Ceramic Flatpack, derate above +25°C @ 6.6 mW/°C 151°C/mW

Leadless Chip Carrier, derate above +25°C @ 12.3 mW/°C 81°C/mW

 θ_{JC}

Ceramic DIP 14°C/mW
Ceramic Flatpack 13°C/mW
Leadless Chip Carrier 15°C/mW

Recommended Operating Range

Temperature $-55^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$ Supply Voltage 4.5V to 5.5V

Radiation Features

 DS26F31MJFQMLV
 300 krads (Si)

 DS26F31MWFQMLV
 300 krads (Si)

 DS26F31MWGFQMLV
 300 krads (Si)

Quality Conformance Inspection

Mil-Std-883, Method 5005 - Group A

Subgroup	Description	Temp °C
1	Static tests at	25
2	Static tests at	125
3	Static tests at	-55
4	Dynamic tests at	25
5	Dynamic tests at	125
6	Dynamic tests at	-55
7	Functional tests at	25
8A	Functional tests at	125
8B	Functional tests at	-55
9	Switching tests at	25
10	Switching tests at	125
11	Switching tests at	-55
12	Settling time at	25
13	Settling time at	125
14	Settling time at	-55

DS26F31M Electrical Characteristics DC Parameters (Note 8)

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub-
Syllibol	Faranieter	Conditions	Notes	IVIIII	IVIAX		groups
V _{IH}	Logical "1" Input Voltage	$V_{CC} = 4.5V$	(Note 4)	2.0		V	1, 2, 3
V _{IL}	Logical "0" Input Voltage	$V_{CC} = 5.5V$	(Note 4)		0.8	V	1, 2, 3
V _{OH}	Logical "1" Output Voltage	$V_{CC} = 4.5V, I_{OH} = -20mA,$		2.5		V	1, 2, 3
		$V_{IL} = 0.8V, V_{IH} = 2V$					
V _{OL}	Logical "0" Output Voltage	$V_{CC} = 4.5V, I_{OL} = 20mA,$			0.5	V	1, 2, 3
		$V_{IL} = 0.8V, V_{IH} = 2V$					
I _{IH}	Logical "1" Input Current	$V_{CC} = 5.5V, V_{I} = 2.7V$	(Note 7)	-2.0	20	μΑ	1, 2, 3
I _{IL}	Logical "0" Input Current	$V_{CC} = 5.5V, V_{I} = 0.4V$	(Note 7)	100	-200	μΑ	1, 2, 3
I _I	Input Reverse Current	$V_{CC} = 5.5V, V_{I} = 7V$	(Note 7)	-0.01	0.1	mA	1, 2, 3
l _{oz}	TRI-STATE Output Current	$V_{CC} = 5.5V, V_{O} = 0.5V$			-20	μΑ	1, 2, 3
		$V_{CC} = 5.5V, V_{O} = 2.5V$			20	μΑ	1, 2, 3
Vı	Input Clamp Voltage	$V_{CC} = 4.5V, I_{I} = -18mA$			-1.5	V	1, 2, 3
I _{SC Min}	Output Short Circuit Current	$V_{CC} = 5.5V, V_{O} = 0V$		-30		mA	1, 2, 3
I _{SC Max}	Output Short Circuit Current	$V_{CC} = 5.5V, V_{O} = 0V$			-150	mA	1, 2, 3
I _{CC Dis}	Power Supply Current	$V_{CC} = 5.5V, V_I = 0.8V \text{ or } 2V,$			50	mA	1, 2, 3
		VEn = 0.8V, VEn = 2V					
I _{CC En}	Power Supply Current	V _{CC} = 5.5V, VEn = 2V,			40	mA	1, 2, 3
		V <u>En</u> = 0.8V					

AC Parameters - Propagation Delay Time

The following conditions apply, unless otherwise specified.

AC: $V_{CC} = 5V$, $C_L = 50 pF$ or equivalent impedance provided by diode load

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
t _{PLH}	Input to Output		(Note 5)		16	nS	9
			(Note 5)		24	nS	10, 11
		C _L = 30pF	(Note 6)		15	nS	9
			(Note 6)		23	nS	10, 11
t _{PHL}	Input to Output		(Note 5)		17	nS	9
			(Note 5)		25	nS	10, 11
		$C_L = 30pF$	(Note 6)		15	nS	9
			(Note 6)		23	nS	10, 11
t _{LZ}	Disable Time		(Note 5)		38	nS	9
			(Note 5)		56	nS	10, 11
		C _L = 10 pF	(Note 6)		35	nS	9
			(Note 6)		53	nS	10, 11
t _{HZ}	Disable Time		(Note 5)		23	nS	9
			(Note 5)		30	nS	10, 11
		C _L = 10 pF	(Note 6)		20	nS	9
			(Note 6)		27	nS	10, 11
t _{ZL}	Enable Time		(Note 5)		28	nS	9
			(Note 5)		40	nS	10, 11
		C _L = 30pF	(Note 6)		25	nS	9
			(Note 6)		37	nS	10, 11

DS26F31M Electrical Characteristics (Continued)

AC Parameters - Propagation Delay Time (Continued)

The following conditions apply, unless otherwise specified.

AC: $V_{CC} = 5V$, $C_{L} = 50$ pF or equivalent impedance provided by diode load

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
t _{zH}	Enable Time		(Note 5)		32	nS	9
			(Note 5)		52	nS	10, 11
		C _L = 30 pF	(Note 6)		30	nS	9
			(Note 6)		50	nS	10, 11
Skew	Output to Output		(Note 5)		6.0	nS	9
			(Note 5)		9.0	nS	10, 11
		$C_L = 30pF$	(Note 6)		4.5	nS	9
			(Note 6)		7.0	nS	10, 11

DC Drift Parameters

This section applies to -QMLV devices only and shall be read & recorded at $T_A = +25^{\circ}C$ before and after each burn-in & Subgroup B5, and shall not change by more than the limits indicated. The delta rejects shall be included in the PDA calculations.

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
V _{OH}	Logical "1" Output Voltage	$V_{CC} = 4.5V, I_{OH} = -20mA,$ $V_{IL} = 0.8V, V_{IH} = 2V.$		-250	250	mV	1
V _{OL}	Logical "0" Output Voltage	$V_{CC} = 4.5V, I_{OL} = 20mA,$ $V_{IL} = 0.8V, V_{IH} = 2V.$		-50	50	mV	1
I _{CC En}	Power Supply Current	$V_{CC} = 5.5V, V_1 = 0.8V \text{ or } 2V,$ VEn = 2V, VEn = 0.8V.		-8.0	8.0	mA	1
I _{CC Dis}	Power Supply Current	$V_{CC} = 5.5V$, $V_{I} = 0.8V$ or 2V, $VEn = 0.8V$, $VEn = 2V$.		-8.0	8.0	mA	1

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are referenced to ground unless otherwise specified.

Note 3: Power dissipation must be externally controlled at elevated temperatures.

Note 4: Parameter tested go-no-go only.

Note 5: Tested at 50pF, system capacitance exceed 10 and 30pF.

Note 6: Testing at 50pF guarantees limits at 10 and 30pF.

Note 7: The minimum limits apply to device Class Q & V. The limits specified for the INPUT LOW CURRENT represents the numerical range in which this parameter will pass.

Note 8: Pre and post irradiation limits are identical to those listed under AC and DC electrical characteristics, except as listed in the Post Radiation Limits Table — if applicable. Radiation end point limits for the noted parameters are guaranteed only for the conditions, as specified.

Test Circuit and Timing Waveforms

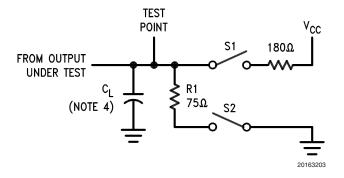


FIGURE 2. AC Load Test Circuit for TRI-STATE Outputs

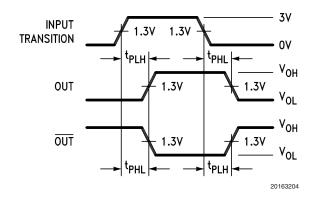


FIGURE 3. Propagation Delay (Notes 1, 2)

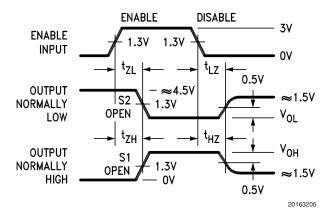


FIGURE 4. Enable and Disable Times (Note 2)

Note 9: Diagram shown for Enable Low. Switches S1 and S2 open.

Note 10: S1 and S2 of Load Circuit are closed except where shown.

Note 11: Pulse Generator for all Pulses: Rate \leq 1.0 MHz, Z_{O} = $50\Omega,\,t_{f}$ \leq 6.0 ns, t_{f} \leq 6.0 ns.

Note 12: C_L includes probe and jig capacitance.

Typical Application

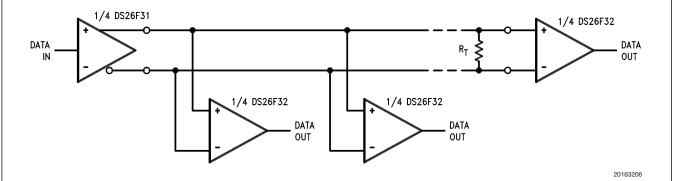
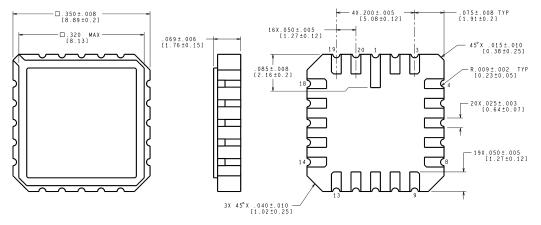
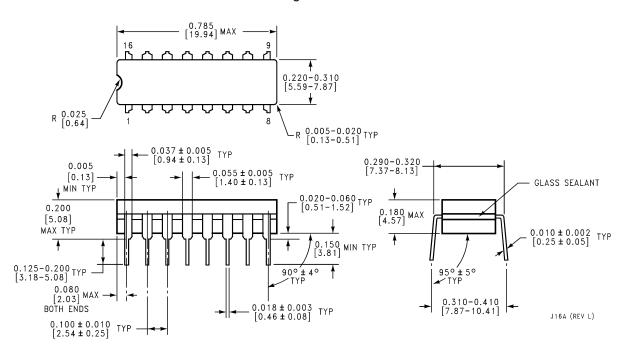
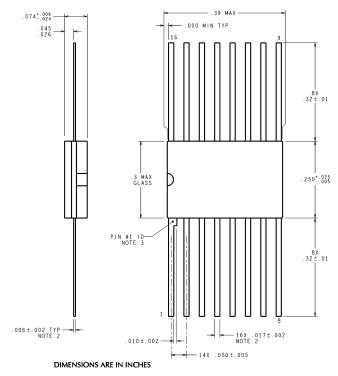



FIGURE 5. Typical Application

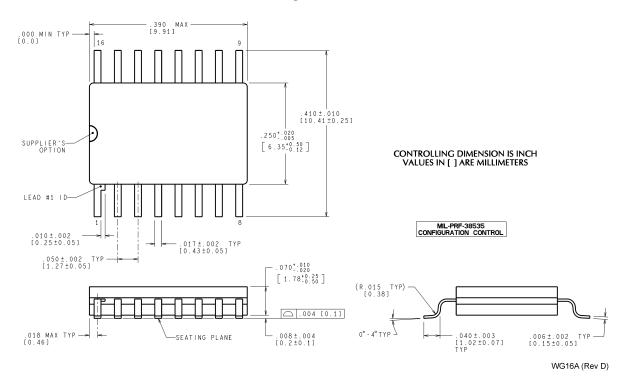
Revision History Released Revision Section Originator Changes 03/01/06 A New Release, Corporate format L. Lytle 1 MDS data sheet converted into one Corp. data sheet format. MNDS26F31M-X-RH Rev 0B0 will be archived.


Physical Dimensions inches (millimeters) unless otherwise noted

CONTROLLING DIMENSION IS INCH VALUES IN [] ARE MILLIMETERS


E20A (Rev F)

20-Lead Ceramic Leadless Chip Carrier (E) NS Package Number E20A


16-Lead Ceramic Dual-In-Line Package (J) NS Package Number J16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Ceramic Flatpak (W) NS Package Number W16A

W16A (Rev T)

16-Lead Ceramic SOIC (WG) NS Package Number WG16A

Notes

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Tel: 81-3-5639-7560