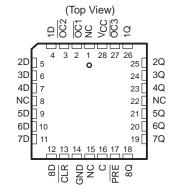
SN74ALS29845, SN74ALS29846 8-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

SDAS150 - D3118 - JUNE 1988

- 3-State Buffer-Type Outputs Drive Bus Lines Directly
- Bus-Structured Pinout
- Provides Extra Bus Driving Latches Necessary For Wider Address/Data Paths or Buses With Parity
- Buffered Control Inputs to Reduce DC Loading
- Power-Up High-Impedance State
- Package Options Include Plastic "Small Outline" Packages, Plastic Chip Carriers, and Standard Plastic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

description

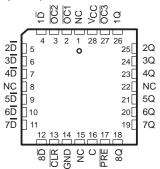
These 8-bit latches feature three-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.


The eight latches are transparent D-type. The 'ALS29845 has noninverting data (D) inputs. The 'ALS29846 has inverting \overline{D} inputs. Since \overline{CLR} and \overline{PRE} are independent of the clock, taking the \overline{CLR} input low will cause the eight Q outputs to go low. Taking the \overline{PRE} input low will cause the eight Q outputs to go high. When both \overline{PRE} and \overline{CLR} are taken low, the outputs will follow the preset condition.

The buffered output control inputs ($\overline{OC1}$, $\overline{OC2}$, and $\overline{OC3}$) can be used to place the eight outputs in either a normal logic state (high or low levels) or a high-impedance state. The outputs are also in the high-impedance state during power-up and power-down conditions. The outputs remain in the high-impedance state while the device is powered-down. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive the bus lines in a bus-organized system without need

SN74ALS29845 . . . DW or NT Package (Top View)

OC1	1	24	v _{cc}
OC2	2	23	OC3
1D [3	22] 1Q
2D [4	21] 2Q
3D [5	20	3Q
4D [6	19] 4Q
5D [7	18] 5Q
6D [8	17] 6Q
7D [9	16] 7Q
8D [10	15] 8Q
CLR [11	14	PRE
GND [12	13] C


SN74ALS29845 . . . FN Package

SN74ALS29846 . . . DW or NT Package (Top View)

OC1	1	U	24	þ	Vcc	
OC2	2		23		OC3	
1D	3		22		1Q	
2D [4		21		2Q	
3D	5		20		3Q	
4D	6		19	þ	4Q	
5D [7		18	þ	5Q	
6D [8		17	þ	6Q	
7D [9		16	þ	7Q	
8D [10		15	þ	8Q	
CLR	11		14	þ	PRE	
GND [12		13		С	

SN74ALS29846 . . . FN Package (Top View)

NC — No internal connection

SDAS150 - D3118 - JUNE 1988

description (continued)

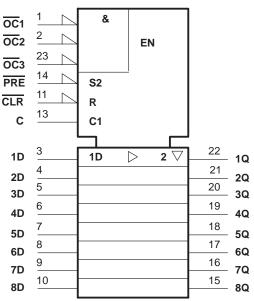
for interface or pullup components. The output controls do not affect the internal operation of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

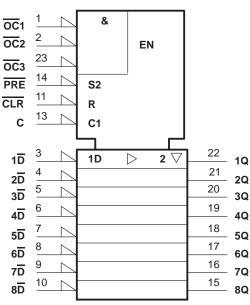
The SN74ALS29845 and SN74ALS29846 are characterized for operation from 0°C to 70°C

FUNCTION TABLES

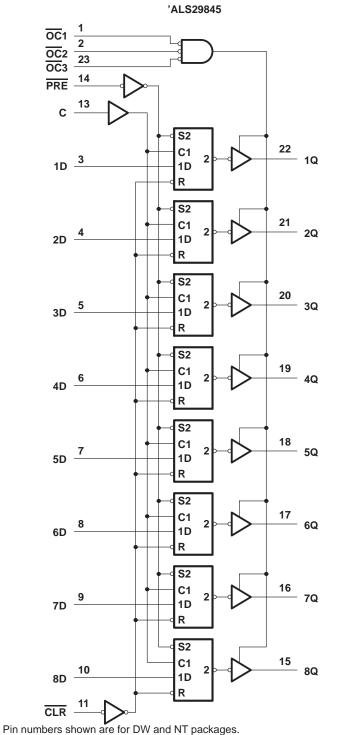
'ALS29845

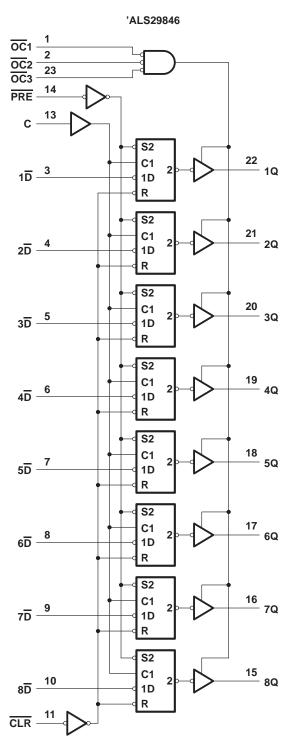
′Δ	LS29	846


	INPUTS									
PRE	CLR	OC1	OC2	OC3	С	D	Q			
L	Χ	L	L	L	Χ	Х	Н			
Н	L	L	L	L	Χ	Χ	L			
Н	Н	L	L	L	Н	L	Н			
Н	Н	L	L	L	Н	Н	L			
Н	Н	L	L	L	L	Χ	Q ₀			
Х	Χ	X	Χ	Н	Χ	Χ	Z			
Х	Χ	X	Н	Χ	Χ	Χ	Z			
. X	Χ	Н	Χ	Χ	Χ	Χ	Z			


	INPUTS										
PRE	CLR	OC1	OC2	OC3	С	D	Q				
L	Х	L	L	L	Х	Χ	Н				
Н	L	L	L	L	Χ	Χ	L				
Н	Н	L	L	L	Н	L	Н				
Н	Н	L	L	L	Н	Н	L				
Н	Н	L	L	L	L	Χ	Q ₀				
Х	X	X	Χ	Н	Χ	Χ	Z				
Х	X	X	Н	Χ	Χ	Χ	Z				
Х	Χ	Н	Χ	Χ	Χ	Χ	Z				

logic symbols†


ALS29846



[†] This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for DW and NT packages.

logic diagrams (positive logic)

SN74ALS29845, SN74ALS29846 8-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

SDAS150 - D3118 - JUNE 1988

recommended operating conditions

			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage			5		4.75	5	5.25	V
ViH	High-level input voltage					2			V
V _{IL}	Low-level input voltage							0.8	V
loh	High-level output current							- 24	mA
lOL	Low-level output current							48	mA
		PRE low	5			8			
t _W	Pulse duration	CLR low	6			8			ns
		C high	4			6			
,	Catura time a historia a mahla C	Data	2.5			2.5			
t _{su}	Setup time before enable C↓	PRE or CLR, inactive state	12			14			ns
t _h	Hold time, data after enable $C\!\!\downarrow$		4.5			4.5			ns
TA	Operating free-air temperature			25		0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
VIK	$V_{CC} = 4.75 \text{ V}, \qquad I_{I} = -18 \text{ mA}$			-1.2	V
V	$V_{CC} = 4.75 \text{ V}, \qquad I_{OH} = -15 \text{ mA}$	2.4	3.3		\ /
VOH	$V_{CC} = 4.75 \text{ V}, \qquad I_{OH} = -24 \text{ mA}$	2	3.1		V
V _{OL}	$V_{CC} = 4.75 \text{ V}, \qquad I_{OL} = 48 \text{ mA}$		0.35	0.5	V
lozh	$V_{CC} = 5.25 \text{ V}, \qquad V_{O} = 2.7 \text{ V}$			20	μΑ
lozL	$V_{CC} = 5.25 \text{ V}, \qquad V_{O} = 0.4 \text{ V}$			- 20	μΑ
lį	$V_{CC} = 5.25 \text{ V}, \qquad V_{I} = 5.5 \text{ V}$			0.1	mA
l _{IH}	$V_{CC} = 5.25 \text{ V}, \qquad V_{I} = 2.7 \text{ V}$			20	μΑ
I _{ΙL}	$V_{CC} = 5.25 \text{ V}, \qquad V_{I} = 0.4 \text{ V}$			- 0.2	mA
ΙΟ [§]	$V_{CC} = 5.25 \text{ V}, \qquad V_{O} = 0$	- 75		- 250	mA
Icc	V _{CC} = 5.25 V, Outputs low		55	85	mA

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A 25^{\circ}\text{C}$.

[§] Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

SN74ALS29845, SN74ALS29846 8-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS

SDAS150 - D3118 - JUNE 1988

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		CC = 5 \ A = 25°			MIN TO MIN TO I		UNIT
	(1)	(001101)		MIN	TYP	MAX	MIN	TYP	MAX	
^t PLH			Cı = 50	2	5.7	8	2		9.5	
^t PHL]		C _L = 50 pF	2	6.2	8	2		9.5	ns
tPLH	D	Any Q	C _L = 300 pF		10	12.5			14	113
^t PHL			оц = 300 рі		10	14			14	
tPLH .			Ct = 50		8	10.5			12	
^t PHL			С _L = 50 pF		7.5	10			12]
tPLH	С	Any Q	Ct = 300			15			16	ns
t _{PHL}			C _L = 300 pF			15			16	
tPLH .	PRE	Any Q	$C_L = 50 pF$		6.5	9			12	ns
t _{PHL}	CLR	Any Q	$C_L = 50 pF$		7	10			13	ns
^t PZH			Cı = 50		7.3	12			14	
^t PZL	ос	Any Q	С _L = 50 pF		9.7	12			14	ns
^t PZH		/ wily &	C ₁ = 200			17			20	113
^t PZL			C _L = 300 pF			21			23	
^t PHZ			C. – 50		10.4	14			15	
tPLZ	ос	Λην. Ο	C _L = 50 pF		4.7	11			12	ne l
^t PHZ		Any Q	C _L = 5 pF		3.4	8			9	ns
t _{PLZ}			OL – 2 bi		3.8	8			9	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

SDAS150 - D3118 - JUNE 1988

PARAMETER MEASUREMENT INFORMATION

SWITCH POSITION TABLE

TEST	S 1	S2
tPLH	Closed	Closed
tPHL	Closed	Closed
tPZH	Open	Closed
tPZL	Closed	Open
tPHZ	Closed	Closed
tPLZ	Closed	Closed

Missing illustration

NOTES: A. C_L includes proge and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by henerators having the following characteristics: PRR \leq 10 MHz, Z_0 = 50 Ω , $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.

Figure 1

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated