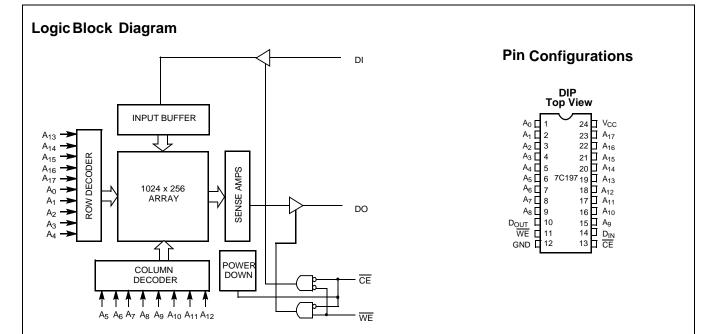


256Kx1 Static RAM

Features

- High speed
 - 25 ns
- CMOS for optimum speed/power
- Low active power
 - 880 mW
- Low standby power
 - 220 mW
- TTL-compatible inputs and outputs
- · Automatic power-down when deselected

Functional Description


The CY7C197N is a high-performance CMOS static RAM organized as 256K words by 1 bit. Easy memory expansion is provided by an active LOW Chip Enable (CE) and three-state drivers. The CY7C197N has an automatic power-down feature, reducing the power consumption by 75% when deselected.

<u>Writing</u> to the device is <u>accomplished</u> when the Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs are both LOW. Data on the input pin (D_{IN}) is written into the memory location specified on the address pins $(A_0$ through A_{17}).

<u>Reading</u> the device is accomplished by taking chip enable (\overline{CE}) LOW while Write Enable (\overline{WE}) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data output (D_{OUT}) pin.

The out<u>put</u> pin stays in a high-imped<u>ance</u> state when Chip Enable (CE) is HIGH or Write Enable (WE) is LOW.

The CY7C197N utilizes a die coat to insure alpha immunity.

Selection Guide

	-25	-45
Maximum Access Time (ns)	25	45
Maximum Operating Current (mA)	95	
Maximum Standby Current (mA)	30	30

Cypress Semiconductor Corporation Document #: 001-06495 Rev. ** 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised February 2, 2006

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	–65°C to +150°C
Ambient Temperature with Power Applied	–55°C to +125°C
Supply Voltage to Ground Potential (Pin 24 to Pin 12)	–0.5V to +7.0V
DC Voltage Applied to Outputs in High Z State ^[1]	–0.5V to V _{CC} + 0.5V

Electrical Characteristics Over the Operating Range

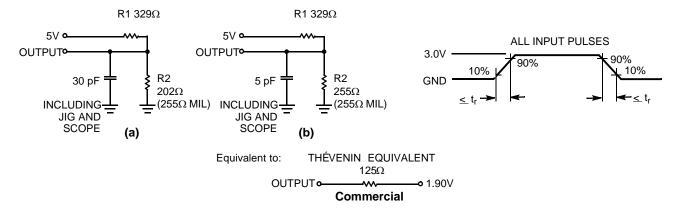
DC Input Voltage ^[1] 0.5V to V _{CC} + 0.5	ίV
Output Current into Outputs (LOW)	ıΑ
Static Discharge Voltage>2001 (per MIL-STD-883, Method 3015)	V
Latch-Up Current >200 m	ıΑ

Operating Range

Range	Ambient Temperature	v _{cc}	
Commercial	0°C to +70°C	5V ± 10%	

			-2	25, -45	
Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA	2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} =12.0 mA		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage ^[1]		-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-5	+5	mA
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disabled	-5	+5	mA
I _{OS}	Output Short Circuit Current ^[2]	V _{CC} = Max., V _{OUT} = GND		-300	mA
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max., I_{OUT} = 0 \text{ mA}, f = f_{MAX} = 1/t_{RC}$		95	mA
I _{SB1}	Automatic CE Power-Down Current—TTL Inputs ^[3]	$\begin{array}{l} \text{Max. } V_{CC}, \ \overline{CE} \geq V_{IH}, \ V_{IN} \geq V_{IH} \ \text{or} \\ V_{IN} \leq V_{IL}, \ f = f_{MAX} \end{array}$		30	mA
I _{SB2}	Automatic CE Power-Down Current—CMOS Inputs ^[3]	$\begin{array}{l} \text{Max. } V_{\text{CC}}, \overline{\text{CE}} \geq V_{\text{CC}} - 0.3V, \\ V_{\text{IN}} \geq V_{\text{CC}} - 0.3V \text{ or } V_{\text{IN}} < 0.3V \end{array}$		15	mA

Capacitance^[4]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	10	pF

Note:

1. $V_{(min.)} = -2.0V$ for pulse durations of less than 20 ns. 2. Not more than one output shoul<u>d</u> be shorted at one time. Duration of the short circuit should not exceed 30 seconds. 3. A pull-up resistor to V_{CC} on the CE input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given. 4. Tested initially and after any design or process changes that may affect these parameters. 5. $t_r = \le 5$ ns for the -25 and slower speeds.

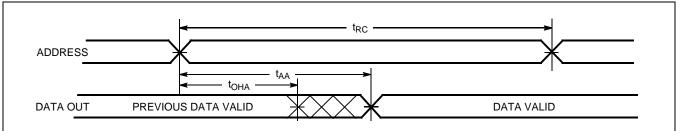
AC Test Loads and Waveforms^[5]

Switching Characteristics Over the Operating Range^[8]

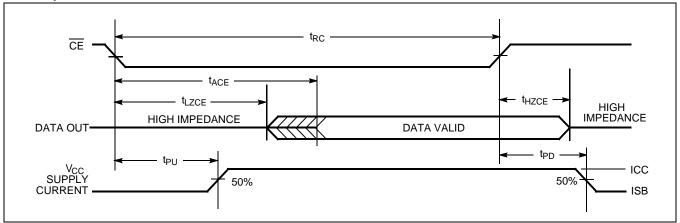
		-:	25	-4	45	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
READ CYCLE	Ĺ	•		•		
t _{RC}	Read Cycle Time	25		45		ns
t _{AA}	Address to Data Valid		25		45	ns
t _{OHA}	Output Hold from Address Change	3		3		ns
t _{ACE}	CE LOW to Data Valid		25		45	ns
t _{LZCE}	CE LOW to Low Z ^[9]	3		3		ns
t _{HZCE}	CE HIGH to High Z ^[9, 10]	0	11	0	15	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		20		30	ns
WRITE CYCL	E ^[11]	•	•	•		
t _{WC}	Write Cycle Time	25		45		ns
t _{SCE}	CE LOW to Write End	20		40		ns
t _{AW}	Address Set-Up to Write End	20		40		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	20		30		ns
t _{SD}	Data Set-Up to Write End	15		20		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[9]	3		3		ns
t _{HZWE}	WE LOW to High Z ^[9, 10]	0 11 0			15	ns

Note:

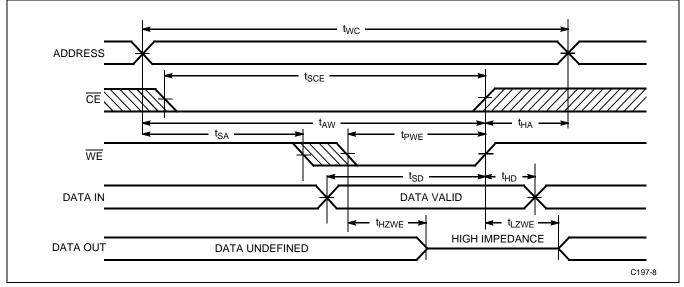
6. Tested initially and after any design or process changes that may affect these parameters.


7. $t_r = \le 5$ ns for the -25 and slower speeds.

7. t_r = ≤ 5 hs for the -25 and slower speeds.
8. Test conditions assume signal transition time of 5 ns or less for -25 and slower speeds, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified l_{QL}/l_{OH} and 30-pF load capacitance.
9. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} and t_{HZWE} is less than t_{LZWE} for any given device.
10. t_{HZCE} and t_{HZWE} are specified with C_L = 5 pF as in part (b) in AC Test Loads and Waveforms. Transition is measured ±500 mV from steady-state voltage.
11. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

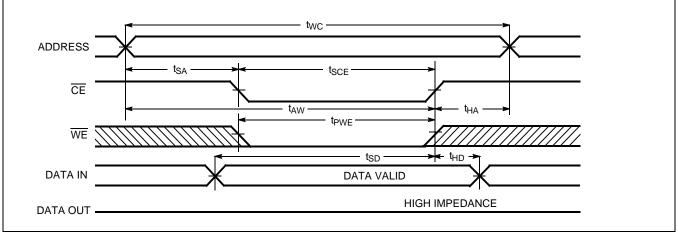


Switching Waveforms

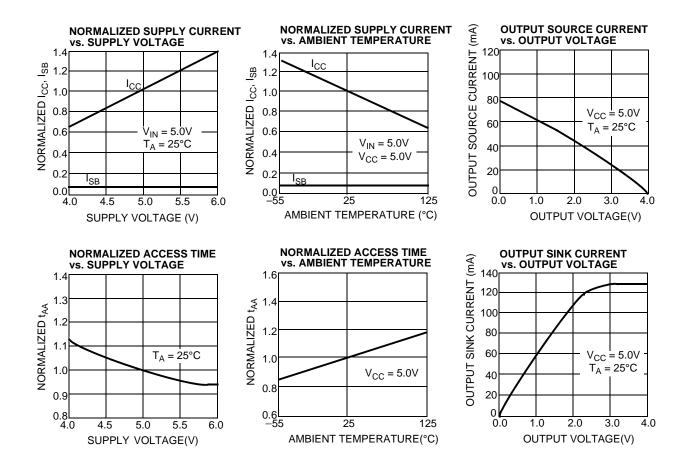


Read Cycle No. 2^[12]

Write Cycle No. 1 (WE Controlled)^[11]

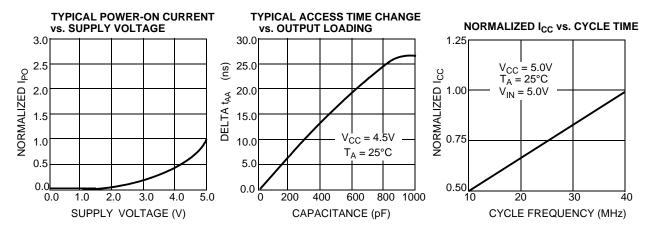


- Notes: 12. WE is HIGH for read cycle. 13. Device is continuously selected, $\overline{CE} = V_{II}$. 14. If \overline{CE} goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.



Switching Waveforms (continued)

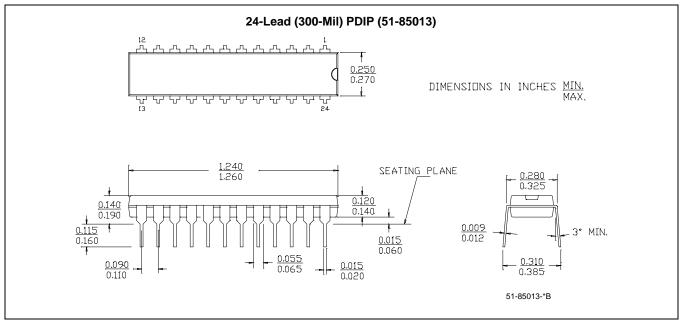
Write Cycle No. 2 (CE Controlled)^[11, 14]



Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

CY7C197N Truth Table


CE	WE	Input/Output	Mode
Н	Х	High Z	Deselect/Power-Down
L	Н	Data Out	Read
L	L	Data In	Write

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
25	CY7C197N-25PXC	51-85013	24-Lead (300-Mil) Molded DIP (Pb-free)	Commercial
45	CY7C197N-45PXC	51-85013	24-Lead (300-Mil) Molded DIP (Pb-free)	Commercial

Please contact local sales representative regarding availability of these parts.

Package Diagram

All products and company names mentioned in this document may be the trademarks of their respective holders.

Document #: 001-06495 Rev. **

Page 6 of 7

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems applications implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

Document Title: CY7C197N 256Kx1 Static RAM Document Number: 001-06495				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	424111	See ECN	NXR	New Data Sheet