
	REVISIONS																			
LTR					[DESCR		١					DA	TE (YI	R-MO-E	DA)		APPR	OVED	
С					oilerplate orial cha				imilar p	art num	ber for			90-0)2-06		W. H	leckma	n	
D	Changes in accordance with NOR 5962-R010-00.								00-07-07 Monica L. Poelking											
Е	Incor	porated	d revisio	on D an	d updat	ted boil	erplate	and edi	torial cl	hanges	through	nout.		00-0	9-27		Moni	ca L. P	oelking	
	And a LTG	rporated revision D and updated boilerplate and editorial changes throughout added Rochester Electronics as a source of supply CAGE CODE 3V146. –						ô. –												
REV	E	Е	E																	
SHEET	35	36	37																	
REV	Е	Е	E	Е	E	E	Е	Е	Е	E	Е	Е	Е	E	E	Е	E	Е	Е	E
SHEET	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
REV STATUS				RE\	/		Е	Е	Е	Е	E	Е	Е	E	E	Е	Е	Е	Е	E
OF SHEETS				SHE	ET		1	2	3	4	5	6	7	8	9	10	11	12	13	14
PMIC N/A					PARED effery T					DEFENSE SUPPLY CENTER COLUMBUS										
STAN MICRO DRA		CUIT			CKED Tim H. N					COLUMBUS, OHIO 43216										
				PROVE William		kman			MICROCIRCUIT, DIGITAL, 16-BIT N-CHANNEL MICROPROCESSOR, MONOLITHIC SILICON											
AND AGENCIES OF THE DEPARTMENT OF DEFENSE 85-10-08																				
AMS	SC N/A	L		REV	ISION		E				ZE A		GE CC 67268				85	010		
										SHE	ET		1	OF	37					

DSCC FORM 2233 APR 97

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883	-	Test Method Standard Microcircuits.
MIL-STD-973	-	Configuration Management.
MIL-STD-1835	-	Interface Standard Electronic Component Case Outlines.

HANDBOOKS

DEPARTMENT OF DEFENSE

MIL-HDBK-103 -	List of Standard Microcircuit Drawings (SMD's).
MIL-HDBK-780 -	Standard Microcircuit Drawings.

(Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 Item requirements. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used This drawing has been modified to allow the manufacturer to use the alternate die/fabrication requirements of paragraph A.3.2.2 of MIL-PRF-38535 or other alternative approved by the Qualifying Activity.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.

3.2.1 Case outlines. The case outlines shall be as specified on figure 1 or in accordance with 1.2.2 herein.

- 3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.
- 3.2.3 <u>Functional block diagram</u>. The functional block diagram shall be as specified on figure 3.
- 3.2.4 <u>Timing waveforms</u>. The timing waveforms shall be as specified on figure 4.

STANDARD MICROCIRCUIT DRAWING	SIZE A		85010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		E	3

3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.

3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103 (see 6.7 herein). For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device.

3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.7 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein. For Class Q product built in accordance with A.3.2.2 of MIL-PRF-38535 or other alternative approved by the Qualifying Activity, the QD certification mark shall be used in place of the QML or Q certification mark.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change</u>. Notification of change to DSCC-VA shall be required in accordance with MIL-PRF-38535, appendix A.

3.9 <u>Verification and review</u>. DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

STANDARD	SIZE		
MICROCIRCUIT DRAWING	Α		85010
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL E	SHEET 4

TABLE I. Electrical performance characteristics.									
Test	Symbol	$\begin{array}{ll} & \text{Conditions} & \underline{1}/\\ -55^\circ\text{C} \leq \text{T}_\text{C} \leq +125^\circ\text{C}\\ & \text{V}_{\text{CC}} = 5.0 \text{ V} \pm 5\%\\ & \text{unless otherwise specified} \end{array}$	Device type	Group A subgroups	Lin Min	nits Max	Unit		
Low-level input voltage	V _{IL}		01, 02	1,2,3	-0.5	+0.8	V		
High-level input voltage (AlLexcept X1) and (RES)	V _{IH1}		01, 02	1,2,3	2.0	V _{CC} +0.5	V		
High-level input voltage at (RES)	V _{IH2}		01, 02	1,2,3	3.0	V _{CC} +0.5	V		
Low-level output voltage	V _{OL}	$I_{OL} = 2.5 \text{ mA for S0-S2}$ $I_{OL} = 2.0 \text{ mA for all}$ other outputs	01, 02	1,2,3		0.45	V		
High-level output voltage	V _{OH}	I _{OH} = -400 μA	01, 02	1,2,3	2.4		V		
Power supply current	Icc	V _{CC} = 5.25 V	01, 02	1,2,3		600	mA		
Input leakage current	IIL	$0 \text{ V} < \text{V}_{\text{IN}} < \text{V}_{\text{CC}}$	01, 02	1,2,3		±10	μA		
Output leakage current	I _{OL}	0.45V < V _{OUT} < V _{CC}	01, 02	1,2,3		±10	μA		
Low-level clock output voltage	V _{CLO}	I _{OUT} = 4.0 mA	01, 02	1,2,3		0.6	V		
High-level clock output voltage	V _{сно}	I _{OUT} = -200 μA	01, 02	1,2,3	4.0		V		
Low-level clock input voltage	V _{CL1}		01, 02	1,2,3	-0.5	+0.6	V		
High-level clock input voltage	V _{CH1}		01, 02	1,2,3	3.9	V _{CC} +1.0	V		
Functional tests		See 4.3.1d	01, 02	7,8					
Input capacitance	C _{IN}	See 4.3.1c	01, 02	4		10	рF		
I/O capacitance	C _{IO}	See 4.3.1c	01, 02	4		20	рF		

See footnotes at end of table.

STANDARD	SIZE		
MICROCIRCUIT DRAWING	Α		85010
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL E	SHEET 5

	TABLE	E I. Electrical performa	ance chara	acteristics	s - Continued.				
Test	Symbol	$\begin{array}{l} \mbox{Conditions} & \underline{2}\\ -55^{\circ}\mbox{C} \leq T_{C} \leq +12\\ V_{CC} = 5.0 \ V \pm 5\\ \mbox{unless otherwise sp} \end{array}$	5°C %	Device type	e Group A subgroups	Limits Min	Max	Unit	
Data in setup (A/D)	t _{DVCL}	C _L = 20 to 200 pF, a	II	01,02	9,10,11	20		ns	
Data in hold (A/D)	t _{CLDX}	outputs		01,02	9,10,11	10		ns	
Asynchronous ready (ALREADY) active setup time	t _{ARYHCH}			01,02	9,10,11	20		ns	
AREADY inactive setup time	t _{ARYLCL}			01,02	9,10,11	38		ns	
AREADY hold time	t _{CHARYX}			01,02	9,10,11	15		ns	
Synchronous ready (SREADY) transition setup time	tsrycl			01,02	9,10,11	35		ns	
SREADY transition hold time	t _{CLSRY}			01,02	9,10,11	15		ns	
Hold setup <u>2</u> /	t _{HVCL}			01,02	9,10,11	25		ns	
INTR, NMI, TEST, TIMERIN setup <u>2</u> /	t _{INVCH}		-		01,02	9,10,11	25		ns
DRQ0, DRQ1, setup	t _{INVCL}		-	01,02	9,10,11	25		ns	
Address valid delay	t _{CLAV}			01	9,10,11	5	59	ns	
			-	02	9,10,11	5	63	ns	
Address hold	t _{CLAX}		-	01	9,10,11	5		ns	
			-	02	9,10,11	5		ns	
Address float delay	t _{CLAZ}		-	01	9,10,11	t _{CLAX}	35	ns	
				02	9,10,11	t _{CLAX}	44	ns	
Address valid to clock high	t _{AVCH}			01,02	9,10,11	10		ns	
See footnotes at end of tabl	e.								
STAN MICROCIRCU		/ING	SIZ A				85	5010	
DEFENSE SUPPLY COLUMBUS, O	CENTER CO	DLUMBUS			REVISION LEVEL E		SHEET	6	

		Conditions <u>1</u> /	Device	Group A	Lim	Unit	
Test	Symbol	$-55^{\circ}C \le T_C \le +125^{\circ}C$ $V_{CC} = 5.0 V \pm 5\%$ unless otherwise specified	type	subgroups	Min	Max	
Command lines float delay	t _{CHCZ}	$C_L = 20$ to 200 pF, all outputs	01 02	9,10,11 9,10,11		45 56	ns ns
Command lines valid delay (after float)	t _{CHCV}		02 01 02	9,10,11 9,10,11 9,10,11		55 76	ns
ALE width	t _{LHLL}		02	9,10,11	t _{CLCL}	70	ns ns
					-35		
ALE active delay	t _{CHLH}		01	9,10,11		35	ns
		4	02	9,10,11		44	ns
ALE inactive delay	t _{CHLL}		01	9,10,11		35	ns
			02	9,10,11		44	ns
Address hold to ALE inactive	t _{LLAX}		01	9,10,11	t _{CHCL}		ns
					-25		
			02	9,10,11	t _{CHCL}		ns
		1			-30		
Data valid delay	t _{CLDV}		01	9,10,11	5	44	ns
			02	9,10,11	5	55	ns
Data hold time	t _{CLDOX}		01,02	9,10,11	5		ns
Data hold after WR	t _{WHDX}		01	9,10,11	t _{CLCL}		ns
					-40		
			02	9,10,11	t _{CLCL}		ns
					-50		
Control active delay 1	t _{CVCTV}		01	9,10,11	5	70	ns
		1	02	9,10,11	5	87	ns
Control active delay 2	t _{CHCTV}		01	9,10,11	5	73	ns
		1	02	9,10,11	5	76	ns
	t _{CVDEX}		01	9,10,11	10	70	ns
DEN inactive delay (non-write cycle)			02	9,10,11	10	87	ns

STANDARD	SIZE		
MICROCIRCUIT DRAWING	Α		85010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		E	7

	ТА	BLE I. Electrical performance	characteristi	<u>cs</u> - Continued.			
- .		Conditions <u>1</u> /	Device	Group A	Lin	Unit	
Test	Symbol	$\begin{array}{l} -55^\circ\text{C} \leq \text{T}_\text{C} \leq +125^\circ\text{C} \\ \text{V}_\text{CC} = 5.0 \text{ V} \pm 5\% \\ \text{unless otherwise specified} \end{array}$	type	subgroups	Min	Max	
Address float to RD active	t _{AZRL}	C _L = 20 to 200 pF, all outputs	01,02	9,10,11	0		ns
	t _{CLRL}		01	9,10,11	10	70	ns
RD active delay			02	9,10,11	10	87	ns
	t _{CLRH}		01	9,10,11	10	55	ns
RD inactive delay			02	9,10,11	10	76	ns
RD inactive to	t _{RHAV}		01	9,10,11	tcLCL		ns
address active			02	9,10,11	-40 t _{CLCL}		ns
					-50		
HLDA valid delay	t _{CLHAV}		01,02	9,10,11	5	67	ns
 RD width	t _{RLRH}		01,02	9,10,11	2t _{CLCL}		ns
WR width	t _{WLWH}		01,02	9,10,11	-50 2t _{CLCL}		ns
Address valid to ALE low	t _{AVAL}		01	9,10,11	-40 t _{CLCH}		ns
					-25		
			02	9,10,11	t _{CLCH}		ns
<u></u>		4	0.1	0.40.44	-45		
Status active delay	t _{CHSV}		01	9,10,11	10	55	ns
	<u> </u> .	4	02	9,10,11	10	76	ns
Status inactive delay	t _{CLSH}		01	9,10,11	10	65	ns
Timer output dates	4		02	9,10,11	10	76	ns
Timer output delay	t _{CLTMV}	$C_L = 100 \text{ pF} \text{ maximum}$	01 02	9,10,11		60 75	ns
Control inactive delay	tour		02	9,10,11 9,10,11		75 55	ns
Control mactive delay	tсvстх	C _L = 20 to 200 pF, all outputs	02	9,10,11		76	ns ns

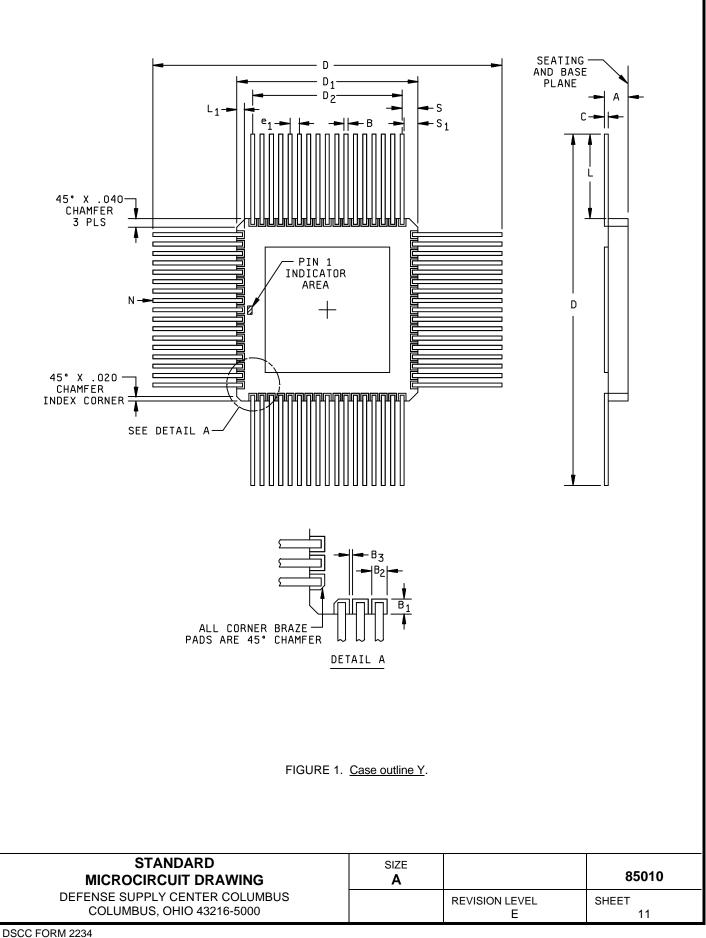
See footnotes at end of table.

STANDARD	SIZE		
MICROCIRCUIT DRAWING	Α		85010
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL E	SHEET 8

		I. <u>Electrical performance charact</u> Conditions <u>1</u> /	Device	Group A	Limits		Unit
Test	Symbol	$-55^{\circ}C \le T_C \le +125^{\circ}C$ $V_{CC} = 5.0 V \pm 5\%$ unless otherwise specified	type	subgroups	Min	Max	Offic
Reset delay	t _{CLRO}	$C_L = 20$ to 200 pF, all	01	9,10.11		60	ns
		outputs	02	9,10.11		75	ns
Queue status delay	t _{CHQSV}		01	9,10.11		35	ns
			02	9,10.11		44	ns
Chip-select active	t _{CLCSV}		01	9,10.11	5	66	ns
delay		-	02	9,10.11	5	80	ns
Chip-select hold from command inactive	tcxcsx		01,02	9,10.11	35		ns
Chip-select inactive delay	t _{CHCSX}		01,02	9,10.11	5	47	ns
CLKIN period	t _{CKIN}		01	9,10.11	62.5	250	ns
			02	9,10.11	83	250	ns
CLKIN fall time	t _{CKHL}	3.5 V to 1.0 V <u>3</u> /	01,02	9,10.11		10	ns
CLKIN rise time	t _{CKLH}	1.0 V to 3.5 V <u>3</u> /	01,02	9,10.11		10	ns
CLKIN low time	t _{CLCK}	1.5 V <u>3</u> /	01	9,10.11	25		ns
			02	9,10.11	33		ns
CLKIN high time	tснск	1.5 V <u>3</u> /	01	9,10.11	25		ns
			02	9,10.11	33		ns
CLKIN to CLKOUT skew	t _{CICO}	$C_L = 20$ to 200 pF, all outputs	01	9,10.11		50	ns
			02	9,10.11		62.5	ns
CLKOUT period	t _{CLCL}		01	9,10.11	125	500	ns
			02	9,10.11	167	500	ns
CLKOUT low time	t _{CLCH}	1.5 V <u>3</u> /	01,02	9,10,11	1/2 t _{CLCL}		ns
					-7.5		

See footnotes at end of table I.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000


SIZE A

REVISION LEVEL E 85010

TABLE I. Electrical performance characteristics - Continued.								
						Lim	nits	Unit
Test	Symbol	$-55^{\circ}C \le T_C \le +125^{\circ}C$ $V_{CC} = 5.0 V \pm 5\%$ unless otherwise specified	type	subgroups	Min	Max		
CLKOUT high time	t _{CHCL}	1.5 V <u>3</u> /	01,02	9,10,11	1/2 t _{CLCL}		ns	
					-7.5			
CLKOUT rise time	t _{CH1CH2}	1.0 V to 3.5 V <u>3</u> /	01,02	9,10,11		15	ns	
CLKOUT fall time	t _{CL2CL1}	3.5 V to 1.0 V <u>3</u> /	01,02	9,10,11		15	ns	

<u>1</u>/ All AC parameters tested as per circuit on figure 4.
<u>2</u>/ Setup requirements only to guarantee recognition at next CLK.
<u>3</u>/ Voltage indicated refer to voltage measurements on waveforms in figure 4.

STANDARD MICROCIRCUIT DRAWING	SIZE A		85010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		E	10

Dimensions						
Symbol	Inc	hes	Millimeters			
	Min	Max	Min	Max		
А	.080	.106	2.03	2.69		
В	.016	.020	0.41	0.51		
B1	.040	.060	1.02	1.52		
B ₂	.030	.040	0.76	1.02		
B3	.005	.020	0.13	0.51		
С	.008	.012	0.20	0.30		
D	1.640	1.870	41.66	47.50		
D ₁	.935	.970	23.75	24.64		
D ₂	.800	BSC	20.32 BSC			
e ₁	.050	BSC	1.27	BSC		
L	.375	.450	9.53	11.43		
L ₁	.040	.060	1.02	1.52		
N	68 PINS		68 F	PINS		
S	.66	.087	1.68	2.21		
S ₁	.050		1.27			

FIGURE 1. Case outline Y - Continued.

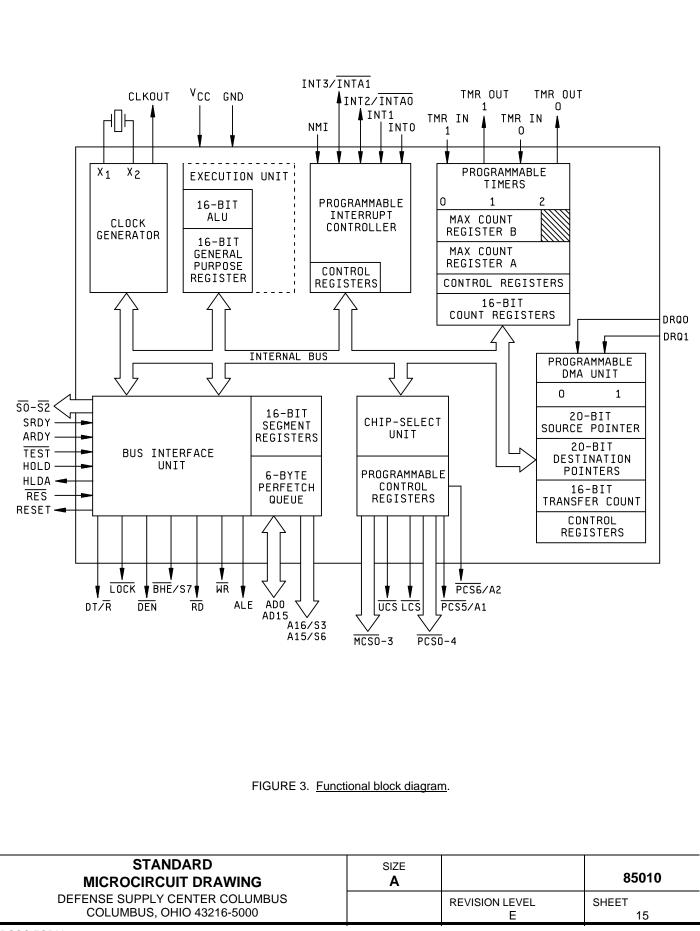
STANDARD MICROCIRCUIT DRAWING	SIZE A		85010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		E	12

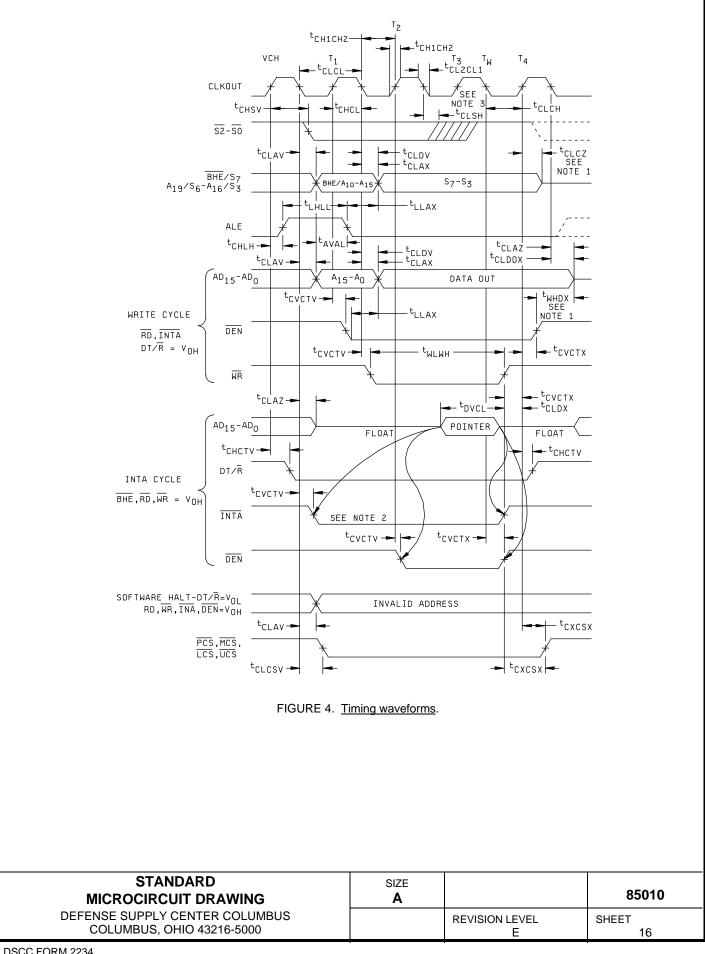
Device type		All	
Case outline		Y	
Pin number	Pin symbol	Pin number	Pin symbol
1	V _{cc}	35	V _{cc}
2	AD4	36	INT2/INTA0
3	AD12	37	INT3/INTA1
4	AD5	38	DT/R
5	AD13	39	DEN
6	AD6	40	MCS0
7	AD14	41	MCS1
8	AD7	42	MCS2
9	AD15	43	MCS3
10	A16/S3	44	UCS
11	A17/S4	45	<u>LC</u> S
12	A18/S5	46	<u>PCS6</u> /A2
13	<u>_A19/</u> S6	47	P <u>CS5/A</u> 1
14	<u>BHE</u> /S7	48	PCS4
15	_WR/QS1_	49	PCS3
16	RD/QSMD	50	_PCS2
17	ALE/QS0	51	PCS1
18	V _{SS}	52	V _{SS}
19	X1	53	PCS0
20	X2	54	RES
21	RESET	55	TMR OUT 1
22	CLKOUT	56	TMR OUT 0
23	ARDY	57	TMR IN 1
24	<u>S2</u>	58	TMR IN 0
25	<u></u>	59	DRQ1
26	S0	60	DRQ0
27	HLDA	61	AD0
28	HOLD	62	AD8
29	SRDY	63	AD1
30	LOCK	64	AD9
31	TEST	65	AD2
32	NMI	66	AD10
33	INT0	67	AD3
34	INT1	68	AD11

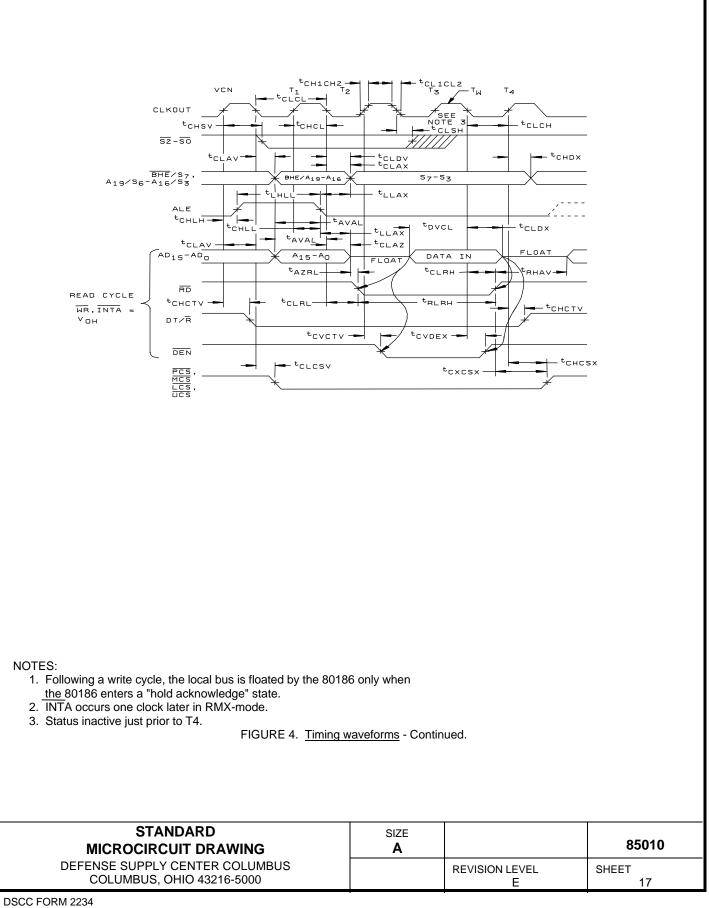
FIGURE 2. Terminal connections.

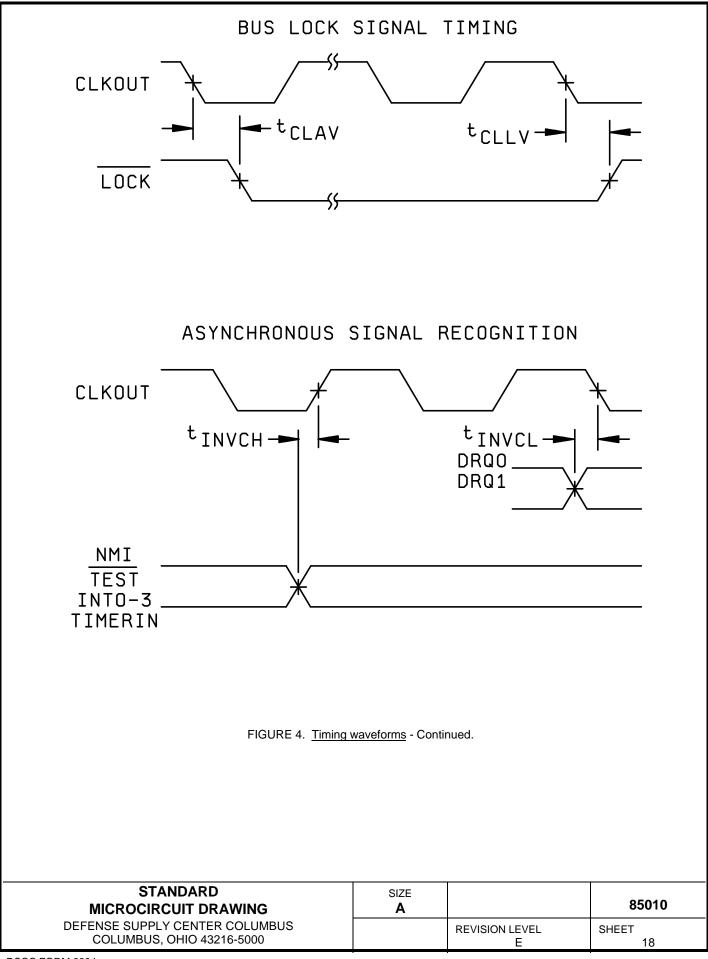
STANDARD SIZ	ZE		
MICROCIRCUIT DRAWING A	A I		85010
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	REVISION	E SHEE	т 13

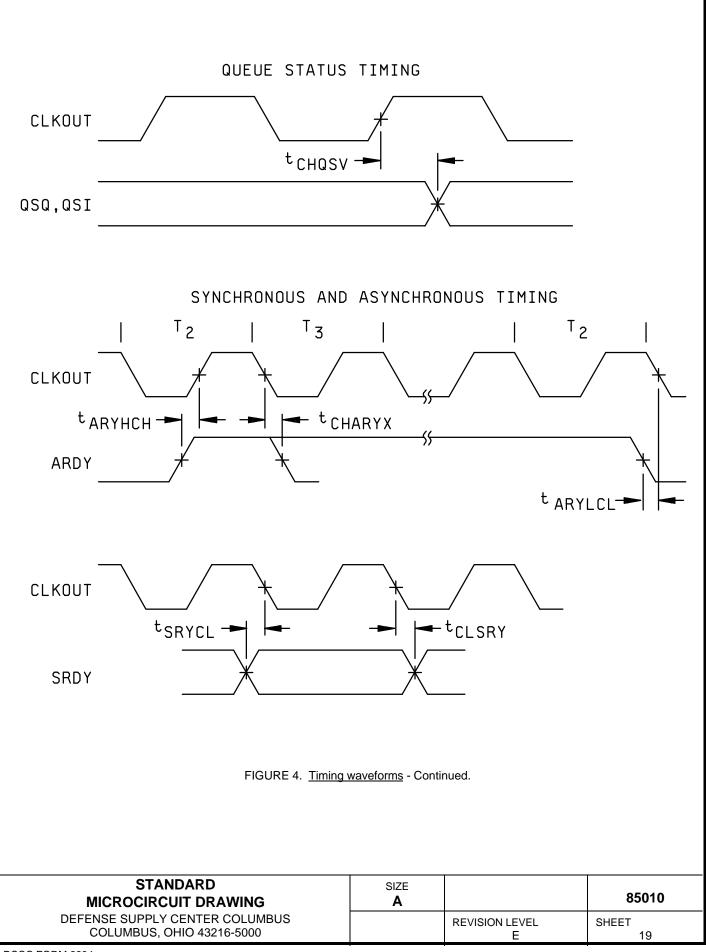
CASE Z	_				
		L K J H G			
ТОР		F E D	00 00 00	BOTTOM	
PIN		C B A	000		0 0 0
IDENTI		I	DENTIF		

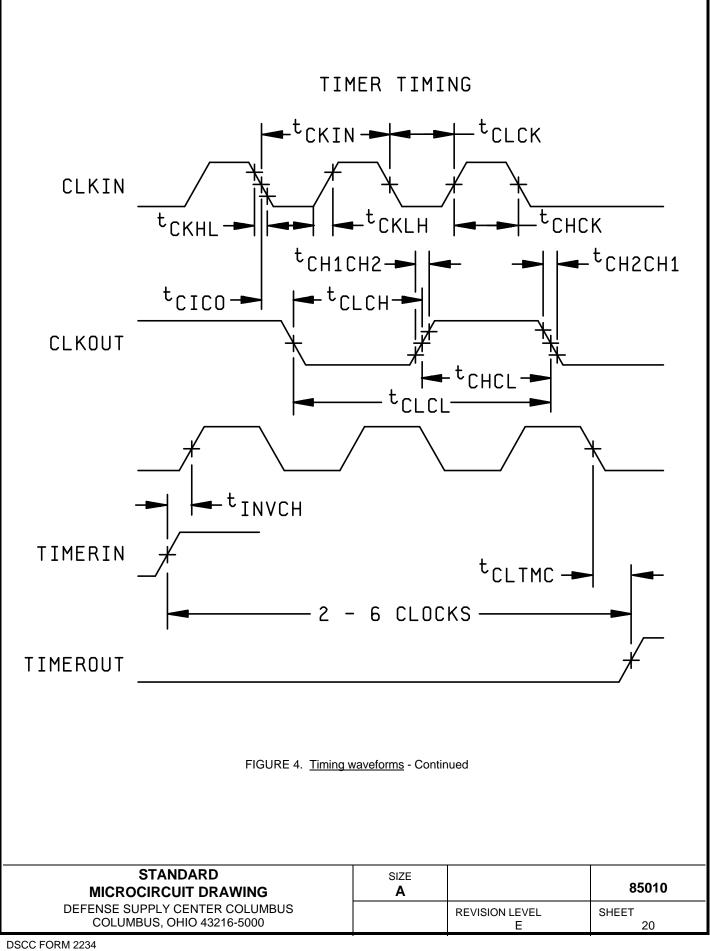

Case outline Z


Symbol	Location	Symbol	Location	Symbol	Loc	ation
V _{CC} , V _{CC}	F1, F11	A16/S3	A2	RD/QSMD	A5	
V _{SS} , V _{SS}	L6, A6	AD15	B1	ARDY	B9	
Reset	B8	AD14	C1	SRDY	C11	
X1, X2	B7, A7	AD13	D1	LOCK	D10)
CLKOUT	A8	AD12	E1	SO	A10)
RES	L5	AD11	F2	<u></u> S1	B10)
TEST	D11	AD10	G2	S2	A9	
TMR IN 0	L3	AD9	H2	HOLD	C10)
TMR IN 1	K3	AD8	J2	(input)		
TMR OUT 0	L4	AD7	B2	HLDA	B11	
TMR OUT 1	K4	AD6	C2	(output)		
DRQ0	L2	AD5	D2	UCS	L10	
DRQ1	K2	AD4	E2	LCS	К9	
NM1	E10	AD3	G1	MCS0-3	J10	, J11, K10, K11
INTO, INT1	E11, F10	AD2	H1	PCS0	K5	
INT2/INTA0	G10	AD1	J1	PCS1-4	K6,	L7, K7, L8
INT3/INTA1	G11	AD0	K1	PCS5/A1	K8	
A19/S6	B4	BHE/S7	A4	PCS6/A2	L9	
A18/S5	A3	ALE/QS0	B6	DT/R	H10)
A17/S4	B3	WR/QS1	B5	DEN	H11	
FIGURE 2. Terminal connections - Continued.						
MIC	STANDARD ROCIRCUIT DR		SIZE A			85010
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000				REVISION LEVEL		SHEET


14


Е


DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000





4. QUALITY ASSURANCE PROVISIONS

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

MIL-STD-883 test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	<u>1</u> / 1, 2, 3, 7, 8, 9, 10, 11
Group A test requirements (method 5005)	<u>2</u> / 1, 2, 3, 4, 7, 8 ,9, 10, 11
Groups C and D end-point electrical parameters (method 5005)	2, 8(+125°C only), 10 or 1,2,3,7,8

TABLE II. Electrical test requirements.

 $\underline{1}$ PDA applies to subgroup 1.

2/ Subgroups 10 and 11, if not tested, shall be guaranteed to the specified limits in table I.

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

4.3.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
- c. Subgroup 4 (C_{IN}, and C_{I/O} measurements) shall be measured only for the initial test and after process or design changes which may affect input capacitance. A minimum sample size of 5 devices with zero failures shall be required.

d. Subgroups 7 and 8 shall include verification of the programming set. See table III.

STANDARD	SIZE		
MICROCIRCUIT DRAWING	Α		85010
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL E	SHEET 22

TABLE III. Instruction set summary.							
Function	Format			Clock cycles	Comments		
DATA TRANSFER MOV = Move:							
Register to register/memory	1000100w	mod reg r/m]	1/12			
Register/memory to register	1000101w	mod reg r/m		2/9			
Immediate to register/memory	1100011w	mod req r/m	data data if W = 1	12-13	8/16-bit		
Immediate to register	1011w reg	data	data if W = 1	3-4	8/16-bit		
Memory to accumulator	1010000w	addr-low	addr-high	9			
Accumulator to memory	1010001w	addr-low	addr-high	8			
Register/memory to segmet register	10001110	mod 0 reg r/m]	2/9			
Segment register to register/memory	10001100	mod 0 reg r/m		2/11			
PUSH = Push:			_				
Memory	11111111	mod 1 1 0 r/m		16			
Register	01010 reg]	10			
Segment register	0 0 0 reg 1 1 0]	9			
Immediate	011010s0	data	data if s = 0	10			
PUSHA = Push All	01100000						
POP = Pop:			1				
Memory	10001111	mod 0 0 0 r/m	J	20			
Register	01011 reg		•	10			
Segment register	0 0 0 reg 1 1 1	(reg 01)		8			
POPA = Pop All	01100001			51			
XCHG = Exchange:	T		1				
Register/memory with register	1000011w	mod reg r/m	J	4/17			
Register with accumulator	10010 reg			3			
IN = Input from:	г <u> </u>		1				
Fixed port	1110010w	port		10			
Variable port	1110110w			8			
STANDAR MICROCIRCUIT D		SIZE A			85010		
DEFENSE SUPPLY CENT	ER COLUMBUS	A	REVISION LEVEL	SI	HEET		
COLUMBUS, OHIO 4		E		23			

TABLE III. Instruction set summary - Continued.				
Function	Format		Cic	ock Comments
OUT = Output to:				
Fixed port	1110011w po	rt	9	
Variable port	1110111wW		7	
XLAT = Translate byte to AL	11010111		11	
LEA = Load EA to register	10001101 mod reg	g r/m	6	
LDS = Load pointer to DS	11000101 mod reg	g r/m (m	<u>od ≠ 11)</u> 18	
LES = Load pointer to ES	11000100 mod reg	g r/m (m	od ≠ 11) 18	
LAHF = Load AH with flags	10011111		2	
SAHF = Store AH into flags	10011110		3	
PUSHF = Push flags	10011100		9	
POPF = Pop flags	10011101		8	
SEGMENT = Segment Override:				
CS	00101110		2	
DS	00110110		2	
ES	00100110		2	
ARITHMETIC				
ADD = Add:				
Reg/memory with register to either	00000dw mod re	g r/m	3/1	0
Immediate to register/memory	100000sw mod00) 0 r/m data	data if s w = 01 $4/1$	6
Immediate to accumulator	0000010w da	ata data if v	<u>v = 1</u> 3/4	8/16-bit
ADC = Add with carry:				
Reg/memory with register to either	0 0 0 1 0 0 d w mod reg	g r/m	3/1	0
Immediate to register/memory	100000sw mod 0	I 0 r/m data	data if s w = 01 $4/1$	6
Immediate to accumulator	0001010w da	ata data if v	v = 1 3/4	8/16-bit
INC = Increment:	r			
Register/memory	1111111 m mod 0 () 0 r/m	3/1	5
Register	01000 reg		3	
STANDA MICROCIRCUIT		SIZE A		85010
DEFENSE SUPPLY CEN	TER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO	43216-5000	ļ	E	24

TABLE III. Instruction set summary - Continued.					
Function	Format			Clock cycles	Comments
Sub = Subtract:					
Reg/memory and register to either	001010dw mod reg	r/m	:	3/10	
Immediate from register/memory	100000 w mod 10			4/16	
Immediate from accumulator	0010110w da	ta da	ata if w = 1	3/4	8/16-bit
SSB = Subtract with borrow:	r	1			
Reg/memory and register to either	000110dw mod rec	r/m	·····	3/10	
Immediate from register/memory	100000sw mod01	1 r/m da	ata data if s w = 01	4/16	
Immediate from accumulator	0001110w da	ta da	ata if w = 1	3/4	8/16-bit
DEC = Decrement:	I	1			
Register/memory	1111111 w mod 0 0	1 r/m		3/15	
Register	01001 reg			3	
CMP = Compare:	· · · · ·	7			
Register/memory with register	0011101w mod reg	r/m	:	3/10	
Register with register/memory	0011100w mod reg	r/m		3/10	
Immediate with register/memory	100000sw mod11	1 r/m da	ata data if s w = 01	3/10	
Immediate with accumulator	0011110w da	ata da	ata if w = 1	3/4	8/16-bit
NEG = Change sign	1111011w mod01	1 r/m	:	3	
AAA = ASCII adjust for add	00110111			8	
DAA = Decimal adjust for add	00100111			4	
AAS = ASCII adjust for subtract	00111111			7	
DAS = Decimal adjust for substract	00101111			4	
	Г Г				
MUL = Multiply (unsigned):	1111011w moc10	0 r/m		~~ ~~	
Register-Byte Register-Word Memory-Byte				26-28 35-37	
Memory-Word				32-34 41-43	
IMUL = Integer multiply (signed):	1111011w mod10	1 r/m			
Register-Byte Register-Word				25-28 34-37	
Memory-Byte Memory-Word				31-34 40-43	
					<u> </u>
STANDAF	20	SIZE			
MICROCIRCUIT E		A			85010
DEFENSE SUPPLY CENT COLUMBUS, OHIO			REVISION LEVEL	SH	EET
	+3210-3000		E		25

	TABLE III. Instruction	set summary - Cor	ntinued.		
Function	Format			ock Comments cles	
ARITHMETIC (Continued):		a star data		05/	
IMUL = Integer immediate multiply (signed)	011010s1 mod re	g r/m data	data if s = 0 22- 29-	25/ 32	
DIV = Divide (unsigned):	1111011w mod1	1 0 r/m			
Register-Byte register-Word Memory-Byte Memory-Word			29 38 35 44		
IDIV = Integer divide (signed):	1111011w mod 1	1 1 r/m			
Register-Byte Register-Word Memory-Byte Memory-Word			44- 53- 50- 59-	-61 -58	
AAM = ASCII adjust for multiply	11010100 0000	1010	19		
AAD = ASCII adjust for divide	11010101 0000	1010	15		
CBW = Convert byte to word	10011000		2		
CWD = Convert word to double word	10011001		4		
LOGIC					
Shift/rotate instructions:	1101000 w mod T		2/1	5	
Register/memory by 1			5+1		
Register/memory by CL	1 1 0 1 0 0 1 w mod T	ΓΤ r/m	3+1 17-		
Register/memory by count	1 1 0 0 0 0 0 w mod T	FT r/m cc	5+1 17-		
	T 00 00 01 01 10 10	1 RÓR 0 RCL 1 RCR 0 SHL/SAL 1 SHR			
STANDAR MICROCIRCUIT D		SIZE A		85010	
DEFENSE SUPPLY CENT COLUMBUS, OHIO 4	ER COLUMBUS		REVISION LEVEL E	SHEET 26	

	TABLE III. Instruction s	set summary - Con	ntinued.	
Function	Format		Clo cyc	ck Comments les
AND = And:				
Reg/memory and register to either	001000dw mod reg	ı r/m	3/1	0
Immediate to register/memory	100000w mod 10	00 r/m data	data if $w = 1$ 4/1	6
Immediate to accumulator	0010010w d	lata data	if w = 1 3/4	8/16-bit
TEST = And function to flags,				
no result:				
Register/memory and register	1000010w mod reg	ı r/m	3/1	0
Immediate data and register/memory	1111011w mod00	0 r/m data	data if $w = 1$ 4/1	0
Immediate data and accumulator	1010100w da	ata data	if w = 1 3/4	8/16-bit
		ala Uala	<u>II W = 1</u> 5/4	6/ 10-bit
OR = Or:	·			
Reg/memory and register to either	0 0 0 0 1 0 d w mod reg	r/m	3/1	0
Immediate to register/memory	100000w mod00	1 r/m data	data if w = 1 4/1	6
Immediate to accumulator			if w = 1 3/4	8/16-bit
XOR = Exclusive or:				
Reg/memory and register to either	001100dw mod reg	r/m	3/1	0
Immediate to register/memory	100000w mod11	0 r/m data	data if $w = 1$ 4/1	6
Immediate to accumulator	0011010w	data data	if w = 1 3/4	8/16-bit
NOT = Invert register/memory	1111011w moc01	0 r/m	3	
STRING MANIPULATION:				
MOVS = Move byte/word	1010010w		14	
CMPS = Compart byte/word	1010011w		22	
SCAS = Scan byte/word	1010111w		15	
LODS = Load byte/wd to AL/AX	1010110w		12	
STOS = Store byte/wd from AL/A	1010101w		10	
INS = input byte/wd from DX port	0110110w		14	
OUTS = Output byte/wd to DX port	0110111w		14	
STANDAF MICROCIRCUIT I		SIZE A		85010
DEFENSE SUPPLY CENT	TER COLUMBUS			SHEET
COLUMBUS, OHIO	43216-5000		E	27

	TABLE III. Ins	truction s	et summary	<u>v</u> - Conti	nued.		
Function	Format					Clock cycles	Comments
STRING MANIPULATION (Continued): Repeated by count in CX							
MOVS = Move string	11110010	10100	10w			8+8n	
CMPS = Compare string	1111001z	10100	11w			5+22n	
SCAS = Scan string	1111001z	10101	11w			5+15n	
LODS = Load string	11110010	10101	1 0 w			6+11n	
STOS = Store string	11110010	10101	0 1 w			6+9n	
INS = Input string	11110010	01101	10 w			8+8n	
OUTS = Output str9ng	11110010	01101	11w	7		8+8n	
CONTROL TRANSFER							
CALL = Call:							
Direct within segment	11101000	disp-	low d	disp-high		14	
Register/memory indirect within segment	11111111	mod 0 1	0 r/m			13/19	
				_	_		
Direct intersegment	10011010	seg	ment offset]	23	
		seg	ment selecto	or]		
Indirect intersegment	11111111	mod 0 1	1 r/m			38	
JMP = Unconditional jump:							
Short/long	11101011	dis	o-low			13	
Direct within segment	11101001	dis	o-low	disp	-high	13	
Register/memory indirect within	11111111	mod 1 0	0 r/m			11/17	
segment					_		
Direct intersegment	11101010	seg	ment offset			13	
		seg	ment selecto	or]		
Indirect intersegment	11111111	mod 1 0	1 r/m			26	
RET = Return from CALL:		-					
Within segment	11000011					16	
Within seg adding immed to SP	1100010	data	low	data-	high	18	
Intersegment	11001011					22	
Intersegment adding immediate to SP	11001010	data	low	data-	high	25	
STANDARI MICROCIRCUIT DI			SIZE A				85010
DEFENSE SUPPLY CENTE COLUMBUS, OHIO 43	R COLUMBUS					5	SHEET
COLUMBUS, OHIO 43	0210-0000				E		28

TABLE III. Instruction set summary - Continued.				
Function	Format		Cloc cycle	k Comments
CONTROL TRANSFER (Continued):	·	_		
JE/JZ = Jump on equal zero	01110100 disp		4/13	JMP not
				tokon/IMD
JL/JNGE = Jump on less/not greater	0111100 disp	7	4/13	taken/JMP taken
or equal		_		
JLE/JNG = Jump on less or equal/ not greater	01111110 disp		4/13	
JB/JNAE = Junp on below/not above or equal	01110010 disp		4/13	
JBE/JNA = Jump on below or equal/not above	01110110 disp		4/13	
JP/JPE = Jump on parity/parity even	01111010 disp		4/13	
JO = Jump on overflow	01110000 disp		4/13	
JS = Jump on sign	01111000 disp		4/13	
JNE/JNZ = Jump on not equal/ not zero	01110101 disp		4/13	
JNL/JGE = Jump on not less/ greater or equal	01111101 disp		4/13	
JNLE/JG = Jump on not less or equal/greater	01111111 disp		4/13	
JNB/JAE = Jump on not below/ above or equal	01110011 disp		4/13	
JNBE/JA = Jump on not below/ or equal/above	01110111 disp		4/13	
JNP/JPO = Jump on not par/par odd	01111011 disp		4/13	
JNO = Jump on not overflow	01110001 disp		4/13	
JNS = Jump on not sign	01111001 disp		4/13	
JCXZ = Jump on CX zero	11100011 disp		5/15	
LOOP = Loop CX times	11100010 disp	_	6/16	
LOOPZ/LOOPE = Loop while zero/ equal	11100001 disp		6/16	LOOP not taken/LOOP taken
LOOPNZ/LOOPNE = Loop while not zero/equal	1110000 disp		6/16	
STANDAR		SIZE		05040
MICROCIRCUIT D DEFENSE SUPPLY CENT		A		85010
COLUMBUS, OHIO 4			REVISION LEVEL E	SHEET 29

Comments if INT.	Clock cycles 15 25 22+16 (n-1) 8	a-low data-high L	Format	Function ENTER = Enter procedure L = 0
if INT	25 22+16 (n-1)	a-low data-high L	11001000	
if INT	25 22+16 (n-1)			L = 0
if INT	22+16 (n-1)			
if INT	(n-1)			L = 1
if INT.	8			L>1
if INT.			11001001	LEAVE = Leave procedure
if INT.				INT = Interrupt:
if INT.	47	e	11001101	Type specified
taken/	45		11001100	Гуре 3
taken/ if INT. not taken	48/4		11001110	NTO = Interrupt on overflow
	28		11001111	IRET = Interrupt return
	33-35	eg r/m	01100010 m	BOUND = Detect value out of range
				PROCESSOR CONTROL
	2		11111000	CLC = Clear carry
	2		11110101	CMC = Complement carry
	2		11111001	STC = Set carry
	2		1111100	CLD = Clear direction
	2		1111101	STD = Set direction
	2		11111010	CLI = Clear interrupt
	2		11111011	STI = Set interrupt
	2		11110100	HLT = Halt
if <u>test</u> = 0	6		10011011	WAIT = Wait
= 0	2		11110000	OCK = Bus lock prefix
	6	mod III r/m	10011777	ESC = Processor extension escape
	Ũ		(TTT LLL are opcode	
if <u>tes</u> = 0	6	mod LLL r/m processor extension)	10011011 11110000 10011TTT	HLI = Halt WAIT = Wait LOCK = Bus lock prefix ESC = Processor extension escape

NOTES:

The effective address (EA) of the memory operand is computed according to the mod and r/m fields:

if mod = 11 then r/m is treated as a REG field

if mod = 00 then $DISP = 0^*$, disp-low and disp-high are absent

if mod = 01 then DISP = disp-low sign-extended to 16-bits, disp-high is absent

if mod = 10 then DISP = disp-high: disp-low

if r/m = 000 then EA = (BX) + (SI) + DISP

if r/m = 001 then EA = (BX) + (DI) + DISP

if r/m = 010 then EA = (BP) + (SI) + DISP

if r/m = 011 then EA = (BP) + (DI) + DISP

if r/m = 100 then EA = (SI) + DISP

if r/m = 101 then EA = (DI) + DISP

if r/m = 110 then EA = (BP) + DISP*

if r/m = 111 then EA = (BX) + DISP

DISP follows 2nd byte of instruction (before data if required)

*Except if mod = 00 and r/m = 110 then EA = disp-high: disp-low.

EA calculation time is 4 clock cycles for all modes, and is included in the execution times given whenever appropriate.

SEGMENT OVERRIDE PREFIX

0 0 1 reg 1 1 0

reg is assigned according to the following:

reg Register Segment

- 00 ES 01 CS
- 10 SS
- 11 DS

REG is assigned according to the following table:

16-Bit(w = 1) 8-Bit(w = 0)

000 AX	000 AL
001 CX	001 CL
010 DX	010 DL
011 BX	011 BL
100 SP	100 AH
101 BP	101 CH
110 SI	110 DH
111 DI	111 BH

The physical addresses of all operands addressed by the BP register are computed using the SS segment register. The physical addresses of the destination operands of the string primitive operations (those addressed by the DI register) are computed using the ES segment, which may not be overridden.

STANDARD MICROCIRCUIT DRAWING	SIZE A		85010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		E	31

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal.

6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0674.

6.5 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43216-5000, or telephone (614) 692-0674.

6.6 <u>Symbols, definitions and functional descriptions</u>. The symbols, definitions, and functional descriptions for this device shall be as follows:

STANDARD MICROCIRCUIT DRAWING	SIZE A		85010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		E	32

Symbol	Name and function			
V _{CC}	System power: +5 volt power supply.			
V _{SS}	System ground.			
RESET	Reset output indicates that the 80186 CPU is being reset, and can be used as a system reset. It is active HIGH, synchronized with the processor clock, and lasts an integer number of clock periods corresponding to the length of the RES signal.			
X1, X2	Crystal inputs, X1 and X2, provide an external connection for a fundamental mode parallel resonant crystal for the internal crystal oscillator. X1 can interface to an external clock instead of a crystal. In this case, minimize the capacitance on X2 or drive X2 with complemented X1. The input or oscillator frequency is internally divided by two to generate the clock signal (CLKOUT).			
CLKOUT	Clock output provides the system with a 50 percent duty cycle waveform. All device pin timings are specified relative to CLKOUT.			
RES	System reset causes the 80186 to immediately terminate its present activity, clear the internal logic, and enter a dormant state. This signal may be asynchronous to the <u>80186</u> clock. The 8018 <u>6</u> begins fetching instructions approximately 7 clock cycles after RES is returned HIGH. RES is required to be LOW for greater than 4 clock cycles and is internally synchronized. For proper initialization, the LOW-to-HIGH transition of RES must occur no sooner than 50 microseconds after power up. This input is provided with a Schmitt-trigger to facilitate power-on RES generation via an RC network. When RES occurs, the 80186 will drive the status lines to an inactive level for one clock, and then three-state them.			
TEST	TEST is examined by the WAIT instruction. If the TEST input is HIGH when "WAIT" execution begins, instruction execution will suspend. TEST will be resampled until it goes LOW, at which time execution will resume. If interrupts are enabled while the 80186 is waiting for TEST, interrupts will be serviced. The input is synchronized internally.			
TMR IN 0, TMR IN 1	Timer inputs are used either as clock or control signals, depending upon the programmed timer mode. These inputs are active HIGH (or LOW-to-HIGH transi-tions are counted) and internally synchronized.			
TMR OUT 0, TMR OUT 1	Timer outputs are used to provide single pulse or continuous waveform gener- ation, depending upon the timer mode selected.			
DRQ0 DRQ1				ggered, and
NMI	Non-maskable interrupt is an edge-trig internally. A transition from a LOW to is latched internally. An NMI duration of synchronized.	HIGH initiates the	interrupt at the next instruct	ion boundary. NMI
	STANDARD	SIZE		05040
DEFENSE SUF	CIRCUIT DRAWING PPLY CENTER COLUMBUS	Α	REVISION LEVEL	85010 SHEET
COLUMB CFORM 2234	US, OHIO 43216-5000		E	33

INTO, INT1, Maskable interrupt requests can be requested by strobing one of these pins. INT2/INTA0 When configured as inputs, these pins are active HIGH. Interrupt requests INT3/INTA1 are synchronized internally. INT2 and INT3 may be configured via software to provide active-LOW interrupt-acknowledge output signals. All interrupt inputs may be configured via software to be either edge-or level-triggered. To ensure recognition, all interrupt requests must remain active until the interrupt is acknowleded. When iRMX mode is selected, the function of these pins changes. Address bus outputs (16-19) and bus cycle status (3-6) reflect the four most A19/S6, significant address bits during T1. These signals are active HIGH. During A18/S5, A17/S4. T2, T3, Tw, and T4, status information is available on these lines as A16/S3 encoded below: High Low S6 Processor cycle DMA cycle S3, S4, and S5 are defined as LOW during T₂-T₄. Address/data bus (0-15) signals constitute the time multiplexed memory or I/O address $AD_{15}-AD_0$ (T_1) and data $(T_2, T_3, T_W, and T_4)$ bus. The bus is active HIGH A₀ is analogous to BHE for the lower byte of the data bus, pins D_7 through D_0 . It is LOW during T_1 when a byte is to be transferred onto the lower portion of the bus in memory of I/O operations. BHE/S7 During T_1 the bus high enable signal should be used to determine if data is to be enabled onto the most significant half of the data bus, pins D_{15} - D_8 . BHE is LOW during T1 for read, write, and interrupt acknowledge cycles when a byte is to be transferred on the higher half of the bus. The S7 status information is available during T₂, T₃, and T₄. S7 is logically equivalent to BHE. The signal is active LOW, and is three-stated OFF during bus HOLD. BHE and A0 encodings **BHE** value A0 value Function 0 0 Word transfer 0 Byte transfer on upper half of data bus 1 (D15-D8) Byte transfer on lower half of data bus 1 0 (D7-D0) Reserved 1 1 ALE/QS0 Address latch enable/queue status 0 is provided by the 80186 to latch the address into the address latches. ALE is active HIGH. Addresses are guaranteed to be valid on the trailing edge of ALE. The ALE rising edge is generated off the rising edge of the CLKOUT immediately preceding T_1 of the associated bus cycle. The trailing edge is generated off the CLKOUT rising edge in T₁. Note that ALE is never floated.

WR/QS1 Write strobe/queue status 1 indicates that the data on the bus is to be written into a memory or an I/O device. WR is active for T_2 , T_3 , and T_W of any write cycle. It is active LOW, and floats during "HOLD." It is driven HIGH for one clock during reset and then floated. When the 80186 is in queue status mode, the ALE/QS0 and WR/QS1 pins provide information about processor instruction queue interaction. QS1 QS0 Queue operation 0 0 No queue operation 0 First opcode byte fetched from the queue 1 Subsequent byte fetched from the queue 1 1 0 Empty the queue 1 RD/QSMD Read strobe indicates that the 80186 is performing a memory or I/O read cycle. RD is active LOW for T₂, T₃, and T_W of an<u>y re</u>ad cycle. It is guaranteed not to go LOW in T₂ until after the address bus is floated. RD is active LOW, and floats during "HOLD." RD is driven HIGH for one clock during reset, and then the output driver is floated. A weak internal pull-up mechanism on the RD line holds it HIGH when the line is not driven. During RESET the pin is sampled to determine whether the 80186 should provide ALE, WR, and RD, or if the queue-status should be provided. RD should be connected to GND to provide queue-status data. Asynchronous ready informs the 80186 that the addressed memory space or I/O device ARDY will complete a data transfer. The ARDY input pin will accept an asynchronous input, and is active HIGH. Only the rising edge is internally synchronized by the 80186. This means that the falling edge of ARDY must be synchronized to the 80186 clock. If connected to V_{CC}, no WAIT states are inserted. Asynchronous ready (ARDY) or synchronous ready (SRDY) must be active to terminate a bus cycle. SRDY Synchronous ready must be synchronized externally to the 80186. The use of SRDY provides a relaxed system-timing specification on the ready input. This is accomplished by eliminating the one-half clock cycle which is required for internally resolving the signal level when using the ARDY input. This line is active HIGH. If this line is connected to V_{CC}, no WAIT states are inserted. Asynchronous ready (ARDY) or synchronous ready (SRDY) must be active before a bus cycle is terminated. If unused, this line should be tied LOW. **STANDARD** SIZE MICROCIRCUIT DRAWING Α DEFENSE SUPPLY CENTER COLUMBUS **REVISION LEVEL** SHEET COLUMBUS, OHIO 43216-5000 Е

85010

35

LOCK

LOCK output ind<u>icates</u> that other system bus<u>mast</u>ers are not to gain control o<u>f the</u> system bus while LOCK is active LOW. The LOCK signal is requested by the LOCK prefix instruction and is activated at the beginning of the first data cycle associated with the instruction following the LOCK prefix. It remains active until the <u>completion</u> of the <u>instru</u>ction following the LOCK prefix. No prefetches will occur while LOCK is asserted. LOCK is active LOW, is driven HIGH for one clock during RESET, and then floated. If unused, this line should be tied LOW.

S0, S1, S2

Bus cycle status S0-S2 are encoded to provide bus-transaction information.

80186 bus cycle status information					
S2	 S1		Bus cycle initiated		
0 0 0 1 1 1 1	0 1 1 0 1 1	0 1 0 1 0 1	Interrupt acknowledge Read I/O Write I/O Halt Instruction fetch Read data from memory Write data to memory Passive (no bus cycle)		

The status pins float during "HOLD."

 $\overline{S2}$ may be used as a logical M/IO indicator, and $\overline{S1}$ as a DT/R indicator.

The status lines are driven HIGH for one clock during reset, and then floated until a bus cycle begins.

 $\begin{array}{lll} \mbox{HOLD (input)} & \mbox{HOLD indicates that another bus master is requesting the local bus. The HOLD} \\ \mbox{HLDA (output)} & \mbox{HOLD indicates that another bus master is requesting the local bus. The HOLD} \\ \mbox{input is active HIGH. HOLD may be asynchronous with respect to the 80186 clock.} \\ \mbox{The 80186 will issue a HLDA (HIGH) in response to a HOLD request at the end of T_4 or T_1. Simultaneous with the issuance of HLDA the 80186 will float the local bus and control lines. After HOLD is detected as being LOW, the 80186 will lower HLDA. When the 80186 needs to run another bus cycle, it will again drive the local bus and control lines. \\ \end{array}$

STANDARD	SIZE		
MICROCIRCUIT DRAWING	Α		85010
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL E	SHEET 36

	UCS	Upper memory chip select is an active defined upper portion (1 <u>K-25</u> 6K block) address range activating UCS is softw) of memory. This	line is not floated during bu		
	LCS	Lower memory chip select is active LOW whenever a memory reference is made to the define <u>portion</u> (1K-256K) of memory. This line is not floated during bus HOLD. The address range a LCS is software programmable.				
	MCS0-3	Mid-range memory chip select signals mid-range portion <u>of me</u> mory (8K-512 ranges activating MCS0-3 are softwar	K). These lines ar			
	PCS0 PCS1-4	Peripheral chip select signals 0-4 are a the defined peripheral area (64K byte during bus HOLD. The address range	I/O space). <u>These</u>	lines are not floated	ble.	
	PCS5/A1	Peripheral chip select 5 or latched A_1 n provide an internally latched A_1 signal. When programmed to provide latched value of A_1 during a bus HOLD. A_1 is	The address rand A ₁ , rather than PC	ge activating PCS5 is softwa	are programmable.	
	PCS6/A2	Peripheral chip select 6 or latched A_2 may be programmed to provide a <u>seven</u> th eripheral chip select, or to provide an internally latched A_2 signal. The address <u>range</u> activating PCS6 is software programmable. When programmed to provide latched A_2 , rather than PCS6, this pin will retain the previously latched value of A_2 during a bus HOLD. A_2 is active HIGH.				
	DT/R	Data transmit/receive controls the dire LOW, data is transferred to the 80186				
	DEN Data enable is provided as a data bus transceiver output enable. DEN is active LOW during each memory and I/O access. DEN is HIGH whenever DT/R changes state.					
6.7 <u>Ap</u> have aç	proved sources of s greed to this drawing	<u>upply</u> . Approved sources of supply are g and a certificate of compliance (see 3.	listed in MIL-HDB 6 herein) has beer	K-103. The vendors listed in n submitted to and accepted	n MIL-HDBK-103 I by DSCC-VA	
	-	TANDARD IRCUIT DRAWING	SIZE A		85010	
	DEFENSE SUP	PLY CENTER COLUMBUS JS, OHIO 43216-5000		REVISION LEVEL E	SHEET 37	

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 00-09-27

Approved sources of supply for SMD 85010 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
8501001ZA	3V146	MG80186-8/B
8501001YA	3V146	MQ80186-8/B
8501002ZA	3V146	MG80186-6/B
8501002YA	3V146	MQ80186-6/B

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE <u>number</u> Vendor name and address

3V146

Rochester Electronics Inc. 10 Malcolm Hoyt Drive Newburyport, MA 01950

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.