MPC5606BK

1.3 Device comparison

Table 1 summarizes the functions of the blocks present on the MPC5606BK.

Table 1. MPC5606BK family comparison ${ }^{1}$

Feature	MPC5605BK			MPC5606BK		
Package	100 LQFP	144 LQFP	176 LQFP	100 LQFP	144 LQFP	176 LQFP
CPU	e200zOh					
Execution speed ${ }^{2}$	Up to 64 MHz					
Code flash memory	768 KB			1 MB		
Data flash memory	$64(4 \times 16) \mathrm{KB}$					
SRAM	64 KB			80 KB		
MPU	8-entry					
eDMA	16 ch					
10-bit ADC	Yes					
dedicated ${ }^{3}$	7 ch	15 ch	29 ch	7 ch	15 ch	29 ch
shared with 12-bit ADC	19 ch					
12-bit ADC	Yes					
dedicated ${ }^{4}$	5 ch					
shared with 10-bit ADC	19 ch					
Total timer I/O ${ }^{5}$ eMIOS	$\begin{aligned} & 37 \mathrm{ch}, \\ & 16 \text {-bit } \end{aligned}$	64 ch, 16-bit		$\begin{aligned} & 37 \text { ch, } \\ & 16 \text {-bit } \end{aligned}$	$\begin{aligned} & 64 \text { ch, } \\ & 16 \text {-bit } \end{aligned}$	
Counter / OPWM / ICOC ${ }^{6}$	10 ch					
O(I)PWM / OPWFMB / OPWMCB / ICOC ${ }^{7}$	7 ch					
O(I)PWM / ICOC ${ }^{8}$	7 ch	14 ch				
OPWM / ICOC ${ }^{9}$	13 ch	33 ch				
SCI (LINFlex)	4	6	8	4	6	8
SPI (DSPI)	3	5	6	3	5	6
CAN (FlexCAN)	6					
$\mathrm{I}^{2} \mathrm{C}$	1					
32 KHz oscillator	Yes					
GPIO 10	77	121	149	77	121	149
Debug	JTAG					

1 Feature set dependent on selected peripheral multiplexing; table shows example.
2 Based on $105^{\circ} \mathrm{C}$ ambient operating temperature.
3 Not shared with 12-bit ADC, but possibly shared with other alternate functions.
4 Not shared with 10-bit ADC, but possibly shared with other alternate functions.
5 Refer to eMIOS section of device reference manual for information on the channel configuration and functions.
6 Each channel supports a range of modes including Modulus counters, PWM generation, Input Capture, Output Compare.
7 Each channel supports a range of modes including PWM generation with dead time, Input Capture, Output Compare.
8 Each channel supports a range of modes including PWM generation, Input Capture, Output Compare, Period and Pulse width measurement.
9 Each channel supports a range of modes including PWM generation, Input Capture, and Output Compare.
${ }^{10}$ Maximum I/O count based on multiplexing with peripherals.

MPC5606BK Microcontroller Data Sheet, Rev. 2

1.4 Block diagram

Figure 1 shows a top-level block diagram of the MPC5606BK.

Legend:

ADC	Analog-to-Digital Converter
BAM	Boot Assist Module
FlexCAN	Controller Area Network
CFlash	Code flash memory
CMU	Clock Monitor Unit
CTU	Cross Triggering Unit
DFlash	Data flash memory
DSPI	Deserial Serial Peripheral Interface
eDMA	Enhanced Direct Memory Access
eMIOS	Enhanced Modular Input Output System
FMPLL	Frequency-Modulated Phase-Locked Loop
I'C 2 Inter-integrated Circuit Bus	
IMUX	Internal Multiplexer
INTC	Interrupt Controller
JTAG	JTAG controller

LINFlex	Serial Communication Interface (LIN support)
MC_CGM	Clock Generation Module
MC_ME	Mode Entry Module
MPU	Memory Protection Unit
NMI	Non-Maskable Interrupt
MC_PCU	Power Control Unit
MC_RGM	Reset Generation Module
PIT	Periodic Interrupt Timer
RTC	Real-Time Clock
SIUL	System Integration Unit Lite
SRAM	Static Random-Access Memory
SSCM	System Status Configuration Module
STM	System Timer Module
SWT	Software Watchdog Timer
WKPU	Wakeup Unit

Figure 1. MPC5606BK block diagram

2 Package pinouts and signal descriptions

2.1 Package pinouts

The available LQFP pinouts are provided in the following figures. For pin signal descriptions, please see Table 2.
Figure 2 shows the MPC5606BK in the 176 LQFP package.

Figure 2. 176 LQFP pinout

Figure 3 shows the MPC5606BK in the 144 LQFP package.

Figure 3. 144 LQFP pinout

Figure 4 shows the MPC5606BK in the 100 LQFP package.

Figure 4. 100 LQFP pinout

2.2 Pin muxing

Table 2 defines the pin list and muxing for this device.
Each entry of Table 2 shows all the possible configurations for each pin, via the alternate functions. The default function assigned to each pin after reset is indicated by AF0.

Table 2. Functional port pins

Port pin	PCR register	Alternate function ${ }^{1}$	Function		$0 \stackrel{\text { O}}{\bar{O}}$			Pin number		
								$\begin{gathered} 100 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 144 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 176 \\ \text { LQFP } \end{gathered}$
Port A										
PA[0]	PCR[0]	AFO AF1 AF2 AF3 -	GPIO[0] EOUC[0] CLKOUT E0UC[13] WKUP[19] ${ }^{4}$	SIUL eMIOS_0 MC_CGM eMIOS_0 WKUP	$\begin{gathered} \text { I/O } \\ \text { I/O } \\ \text { O } \\ \text { I/O } \\ \text { I } \end{gathered}$	M	Tristate	12	16	24
PA[1]	PCR[1]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[1] } \\ \text { EOUC[1] } \\ \text { NMI }^{5} \\ -\quad \\ \text { WKUP[2] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ \text { WKUP } \\ - \\ \text { WKUP } \end{gathered}$	$\begin{gathered} \text { I/O } \\ \text { I/O } \\ \text { I } \\ \hline- \end{gathered}$	S	Tristate	7	11	19
PA[2]	PCR[2]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[2] } \\ \text { EOUC[2] } \\ - \\ \text { MA[2] } \\ \text { WKUP[3] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ -\overline{1} \\ \text { WKC_0 } \end{gathered}$	$\begin{aligned} & \mathrm{I} / \mathrm{O} \\ & \mathrm{I} / \mathrm{O} \\ & \hline \mathrm{O} \\ & \mathrm{I} \end{aligned}$	S	Tristate	5	9	17
PA[3]	PCR[3]	AFO AF1 AF2 AF3 —	$\begin{gathered} \hline \text { GPIO[3] } \\ \text { E0UC[3] } \\ \text { LIN5TX } \\ \text { CS4_1 } \\ \text { EIRQ[0] } \\ \text { ADC1_S[0] } \end{gathered}$	SIUL eMIOS_0 LINFlex_5 DSPI_1 SIUL ADC_1	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ \mathrm{O} \\ \mathrm{I} \\ \mathrm{I} \end{gathered}$	J	Tristate	68	90	114
PA[4]	PCR[4]	AFO AF1 AF2 AF3 -	GPIO[4] E0UC[4] - CSO_1 LIN5RX WKUP[9] ${ }^{4}$	SIUL eMIOS_0 $-\quad-1$ DSPI_1 LINFlex_5 WKUP	I/O I/O I/O I I	S	Tristate	29	43	51
PA[5]	PCR[5]	$\begin{aligned} & \text { AF0 } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	GPIO[5] EOUC[5] LIN4TX \qquad	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ \text { LINFlex_4 } \\ - \end{gathered}$	$\begin{gathered} \hline \text { I/O } \\ \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ \hline \end{gathered}$	M	Tristate	79	118	146
PA[6]	PCR[6]	AFO AF1 AF2 AF3 -	GPIO[6] EOUC[6] CS1_1 EIRQ[1] LIN4RX	SIUL eMIOS_0 $-\overline{1}$ DSPI_1 SIUL LINFlex_4	$\begin{gathered} \text { I/O } \\ \text { I/O } \\ \hline-\bar{O} \\ 1 \\ 1 \end{gathered}$	S	Tristate	80	119	147

MPC5606BK Microcontroller Data Sheet, Rev. 2

Table 2. Functional port pins (continued)

Port pin	$\begin{gathered} \text { PCR } \\ \text { register } \end{gathered}$	Alternate function ${ }^{1}$	Function					Pin number		
								$\begin{gathered} 100 \\ \text { LQFP } \end{gathered}$	$\begin{aligned} & 144 \\ & \text { LQFP } \end{aligned}$	$\begin{gathered} 176 \\ \text { LQFP } \end{gathered}$
PA[7]	PCR[7]	AFO AF1 AF2 AF3 -	GPIO[7] EOUC[7] LIN3TX $-\quad$ EIRQ[2] ADC1_S[1]	$\begin{array}{\|c\|} \hline \text { SIUL } \\ \text { eMIOS_0 } \\ \text { LINFIe_3 } \\ \overline{\text { SIUL }} \\ \text { ADC_1 } \end{array}$	$\begin{gathered} 1 / 0 \\ 1 / 0 \\ 0 \\ \hline 1 \\ 1 \end{gathered}$	J	Tristate	71	104	128
PA[8]	PCR[8]	$\begin{gathered} \hline \text { AF0 } \\ \text { AF1 } \\ \text { AF2 } \\ \text { AF3 } \\ -\overline{N^{6}} \\ - \end{gathered}$	GPIO[8] EOUC[8] EOUC[14] EIRQ[3] ABS[0] LIN3RX		$\begin{aligned} & 1 / 0 \\ & 1 / 0 \\ & 1 / 0 \\ & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	S	Input, weak pull-up	72	105	129
PA[9]	PCR[9]	$\begin{aligned} & \hline \text { AFO } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \\ & \text { N/A } \end{aligned}$	$\begin{gathered} \hline \text { GPIO[9] } \\ \text { EOUC[9] } \\ \text { CS2_1 } \\ \text { FAB } \end{gathered}$	$\begin{array}{c\|} \hline \text { SIUL } \\ \text { eMIOS_0 } \\ \overline{-} \\ \text { DSPI_1 } \\ \text { BAM } \end{array}$	$\begin{aligned} & 1 / 0 \\ & 1 / 0 \\ & \hline- \\ & \hline \mathrm{I} \end{aligned}$	S	Pulldown	73	106	130
PA[10]	PCR[10]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[10] } \\ \text { EOUC[10] } \\ \text { SDA } \\ \text { LIN2TX } \\ \text { ADC1_S[2] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ \text { L}^{2} \mathrm{C} _0 \\ \text { LINFIex_2 } \\ \text { ADC_1 } \end{gathered}$	$\begin{aligned} & 1 / 0 \\ & 1 / 0 \\ & 1 / 0 \\ & 0 \\ & 1 \end{aligned}$	J	Tristate	74	107	131
PA[11]	PCR[11]	AF0 AF1 AF2 AF3 --	$\begin{gathered} \text { GPIO[11] } \\ \text { E0UC[11] } \\ \text { SCL } \\ \text { EIRQ[16] } \\ \text { LIN2RX } \\ \text { ADC1_S[3] } \end{gathered}$	$\begin{gathered} \hline \text { SIUL } \\ \text { eMISS_0 } \\ \text { I}^{2} C_{-} 0 \\ - \\ \text { SIUL } \\ \text { LINFlex_2 } \\ \text { ADC_1 } \end{gathered}$	$\begin{aligned} & 1 / 0 \\ & 1 / 0 \\ & 1 / 0 \\ & \hline 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	J	Tristate	75	108	132
PA[12]	PCR[12]	$\begin{gathered} \hline \text { AFO } \\ \text { AF1 } \\ \text { AF2 } \\ \text { AF3 } \\ - \end{gathered}$	$\begin{gathered} \text { GPIO[12] } \\ - \\ \text { EOCC[28] } \\ \text { CS3_1 } \\ \text { EIRQ[17] } \\ \text { SIN_0 } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ \text { DSPI_1 } \\ \text { SIUL } \\ \text { DSPI_0 } \end{gathered}$	$\begin{gathered} 1 / 0 \\ \hline 1 / 0 \\ 0 \\ 1 \\ 1 \end{gathered}$	S	Tristate	31	45	53
PA[13]	PCR[13]	$\begin{aligned} & \text { AF0 } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	GPIO[13] SOUT_0 EOUC[29]	$\begin{gathered} \hline \text { SIUL } \\ \text { DSPI_0 } \\ \text { eMIOS_0 } \\ \hline \end{gathered}$	$\begin{gathered} 1 / 0 \\ 0 \\ 1 / 0 \\ - \end{gathered}$	M	Tristate	30	44	52
PA[14]	PCR[14]	$\begin{aligned} & \text { AF0 } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	GPIO[14] SCK_0 CSO_0 EOUC[0] EIRQ[4]	$\begin{array}{\|c\|} \hline \text { SIUL } \\ \text { DSPI_0 } \\ \text { DSPI_0 } \\ \text { eMISS_0 } \\ \text { SIUL } \end{array}$	$\begin{aligned} & \text { I/O } \\ & 1 / 0 \\ & 1 / 0 \\ & 1 / 0 \\ & \text { I } \end{aligned}$	M	Tristate	28	42	50

Table 2. Functional port pins (continued)

Port pin	PCR register	Alternate function ${ }^{1}$	Function		$\xlongequal{\underline{\circ} \mathrm{O}}$			Pin number		
								$\begin{aligned} & 100 \\ & \text { LQFP } \end{aligned}$	$\begin{aligned} & 144 \\ & \text { LQFP } \end{aligned}$	$\begin{gathered} 176 \\ \text { LQFP } \end{gathered}$
PA[15]	PCR[15]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[15] } \\ \text { CSO_0 } \\ \text { SCK_0 } \\ \text { EOUC[1] } \\ \text { WKUP[10] } \end{gathered}$	SIUL DSPI_0 DSPI_0 eMIISS-0 WKUP	$\begin{aligned} & 1 / 0 \\ & 1 / 0 \\ & 1 / 0 \\ & 1 / 0 \\ & 1 \end{aligned}$	M	Tristate	27	40	48
Port B										
PB[0]	PCR[16]	$\begin{aligned} & \text { AF0 } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	GPIO[16] CANOTX EOUC[30] LINOTX	$\begin{array}{\|c\|} \hline \text { SIUL } \\ \text { FlexCAN_0 } \\ \text { eMIOS_0 } \\ \text { LINFlex_0 } \end{array}$	$\begin{gathered} 1 / 0 \\ 0 \\ \text { I/O } \\ 0 \end{gathered}$	M	Tristate	23	31	39
PB[1]	PCR[17]	$\begin{aligned} & \text { AFO } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \\ & - \\ & - \end{aligned}$	GPIO[17] EOUC[31] WKUP[4] ${ }^{4}$ CANORX LINORX	SIUL emIOS_0 $\overline{\text { WKUP }}$ FlexCAN_0 LINFlex_0	$\begin{gathered} \frac{1 / 0}{1 / 0} \\ \frac{-}{1} \\ 1 \\ 1 \end{gathered}$	S	Tristate	24	32	40
PB[2]	PCR[18]	$\begin{aligned} & \text { AF0 } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	$\begin{gathered} \text { GPIO[18] } \\ \text { LINOTXX } \\ \text { SDA } \\ \text { EOUC[30] } \end{gathered}$	SIUL LINFlex_0 I $^{2} C-0$ eMIOS_0	$\begin{gathered} \hline 1 / 0 \\ 0 \\ 1 / 0 \\ 1 / 0 \end{gathered}$	M	Tristate	100	144	176
PB[3]	PCR[19]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[19] } \\ \text { EOUC[31] } \\ \text { SCL } \\ \text { WKUP[11] } \\ \text { LINORX } \end{gathered}$		$\begin{aligned} & 1 / 0 \\ & 1 / 0 \\ & 1 / 0 \\ & \hline 1 \\ & 1 \end{aligned}$	S	Tristate	1	1	1
PB[4]	PCR[20]	AFO AF1 AF2 AF3 — -	$\begin{gathered} - \\ - \\ - \\ \mathrm{ADCO} \mathrm{P}[0] \\ \mathrm{ADC1} \mathrm{P}[0] \\ \mathrm{GPIO}[20] \end{gathered}$		$\begin{aligned} & - \\ & \overline{-} \\ & \hline \mathbf{1} \\ & 1 \\ & 1 \end{aligned}$	I	Tristate	50	72	88
PB[5]	PCR[21]	$\begin{aligned} & \text { AFO } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \\ & - \\ & - \end{aligned}$	$\begin{gathered} - \\ - \\ - \\ \mathrm{ADCO}[\mathrm{P}[1] \\ \mathrm{ADCO} 1 \mathrm{P}[1] \\ \mathrm{GPIO}[21] \end{gathered}$		$\begin{gathered} - \\ \frac{-}{-} \\ 1 \\ 1 \\ 1 \end{gathered}$	I	Tristate	53	75	91

Table 2. Functional port pins (continued)

Port pin	$\begin{array}{\|c\|} \hline \text { PCR } \\ \text { register } \end{array}$	Alternate function ${ }^{1}$	Function					Pin number		
								$\begin{gathered} 100 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 144 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 176 \\ \text { LQFP } \end{gathered}$
PB[6]	PCR[22]	$\begin{gathered} \text { AFO } \\ \text { AF1 } \\ \text { AF2 } \\ \text { AF3 } \\ - \\ - \end{gathered}$	- - - ADCO_P[2] ADC1_P[2] GPIO[22]		$\begin{aligned} & - \\ & \bar{Z} \\ & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	1	Tristate	54	76	92
PB[7]	PCR[23]	$\begin{gathered} \hline \text { AFO } \\ \text { AF1 } \\ \text { AF2 } \\ \text { AF3 } \\ - \\ - \end{gathered}$	- - - ADCO_P[3] ADC1_P[3] GPIO[23]	$\begin{gathered} - \\ \overline{-} \\ \text { ADC_00 } \\ \text { ADC } 1 \\ \text { SIUL } \end{gathered}$	$\begin{gathered} - \\ \overline{-} \\ \hline \mathbf{1} \\ 1 \\ 1 \end{gathered}$	1	Tristate	55	77	93
PB[8]	PCR[24]	AF0 AF1 AF2 AF3 - - - -	GPIO[24] - - OSC32K $^{-}$XTAL 7 WKUP[25] ADC0_S[0] ADC1_S[4]	$\begin{gathered} \text { SIUL } \\ - \\ - \\ \text { O- } \\ \text { WK32K } \\ \text { WDC_0 } \\ \text { ADC_1 } \end{gathered}$	$\begin{aligned} & \hline 1 \\ & \hline- \\ & - \\ & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	1	-	39	53	61
PB[9]	PCR[25]	$\begin{aligned} & \text { AFO } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \\ & - \\ & - \\ & - \end{aligned}$	GPIO[25] - - OSC32K_EXTAL 7 WKUP[26] ADCO_S[1] ADC1_S[5]	$\begin{gathered} \text { SIUL } \\ - \\ - \\ \text { O- } \\ \text { OS32K } \\ \text { WKUP } \\ \text { ADC_0 } \\ \text { ADC_1 } \end{gathered}$	$\begin{gathered} 1 \\ \hline- \\ \hline- \\ \hline 1 \\ 1 \\ 1 \end{gathered}$	1	-	38	52	60
PB[10]	PCR[26]	AF0 AF1 AF2 AF3 --	GPIO[26] - - WKUP[8] ${ }^{4}$ ADCO_S[2] ADC1_S[6]	$\begin{gathered} \hline \text { SIUL } \\ - \\ - \\ \text { WKUP } \\ \text { ADC_ } \\ \text { ADC_1 } \end{gathered}$	$\begin{gathered} 1 / 0 \\ \hline- \\ \hline- \\ 1 \\ 1 \end{gathered}$	J	Tristate	40	54	62
PB[11]	PCR[27]	$\begin{aligned} & \text { AFO } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	$\begin{gathered} \text { GPIO[27] } \\ \text { EOUC[3] } \\ \text { CSO_0 } \\ \text { ADCO_S[3] } \end{gathered}$	$\begin{gathered} \hline \text { SIUL } \\ \text { eMIOS_0 } \\ \overline{\text { DSPI_0 }} \\ \text { ADC_0 } \end{gathered}$	$\begin{aligned} & \text { 1/0 } \\ & 1 / 0 \\ & \hline 1 / 0 \\ & 1 \end{aligned}$	J	Tristate	-	-	97
PB[12]	PCR[28]	$\begin{gathered} \text { AF0 } \\ \text { AF1 } \\ \text { AF2 } \\ \text { AF3 } \\ - \end{gathered}$	$\begin{gathered} \hline \text { GPIO[28] } \\ \text { EOUC[4] } \\ \text { CS1_0 } \\ \text { ADCO_X[0] } \end{gathered}$	$\begin{gathered} \hline \text { SIUL } \\ \text { eMIOS_0 } \\ \overline{\text { DSPI_0 }} \\ \text { ADC_0 } \end{gathered}$	$\begin{gathered} 1 / 0 \\ 1 / 0 \\ \hline-\bar{o} \\ 1 \end{gathered}$	J	Tristate	61	83	101

Table 2. Functional port pins (continued)

Port pin	PCR register	Alternate function ${ }^{1}$	Function					Pin number		
								$\begin{gathered} 100 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 144 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 176 \\ \text { LQFP } \end{gathered}$
PB[13]	PCR[29]	AF0 AF1 AF2 AF3 -	$\begin{gathered} \hline \text { GPIO[29] } \\ \text { EOUC[5] } \\ - \\ \text { CS2_0 } \\ \text { ADC0_X[1] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ - \\ \text { DSPI_0 } \\ \text { ADC_0 } \end{gathered}$	$\begin{aligned} & 1 / 0 \\ & 1 / 0 \\ & \hline \mathrm{O} \\ & 1 \end{aligned}$	J	Tristate	63	85	103
PB[14]	PCR[30]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[30] } \\ \text { EOUC[6] } \\ \text { CS3_0 } \\ \text { ADC0_X[2] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ - \\ \text { DSPI_0 } \\ \text { ADC_0 } \end{gathered}$	$\begin{aligned} & \text { I/O } \\ & 1 / \mathrm{O} \\ & \hline \mathrm{O} \\ & \mathrm{I} \end{aligned}$	J	Tristate	65	87	105
PB[15]	PCR[31]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[31] } \\ \text { EOUC[7] } \\ \text { - } \\ \text { CS4_0 } \\ \text { ADC0_X[3] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ - \\ \text { DSPI_0 } \\ \text { ADC_0 } \end{gathered}$	$\begin{aligned} & \text { I/O } \\ & 1 / \mathrm{O} \\ & \hline \mathrm{O} \\ & \mathrm{I} \end{aligned}$	J	Tristate	67	89	107
Port C										
PC[0] ${ }^{8}$	PCR[32]	$\begin{aligned} & \text { AF0 } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	$\begin{gathered} \text { GPIO[32] } \\ \overline{\text { TDI }} \end{gathered}$	SIUL JTAGC \qquad	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \hline-1 \\ \hline \end{gathered}$	M	Input, weak pull-up	87	126	154
$\mathrm{PC}[1]^{8}$	PCR[33]	$\begin{aligned} & \text { AF0 } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	$\begin{gathered} \text { GPIO[33] } \\ -\quad \text { TDO } \end{gathered}$	SIUL JTAGC	$\frac{1 / \mathrm{O}}{\mathrm{o}}$	F^{9}	Tristate	82	121	149
PC[2]	PCR[34]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[34] } \\ \text { SCK_1 } \\ \text { CAN4TX } \\ \text { DEBUG[0] } \\ \text { EIRQ[5] } \end{gathered}$	SIUL DSPI_1 FlexCAN_4 SSCM SIUL	$\begin{gathered} \text { I/O } \\ \text { I/O } \\ \mathrm{O} \\ \mathrm{O} \\ \mathrm{I} \end{gathered}$	M	Tristate	78	117	145
PC[3]	PCR[35]	AFO AF1 AF2 AF3 - -	$\begin{gathered} \text { GPIO[35] } \\ \text { CSO_1 } \\ \text { MA[0] } \\ \text { DEBUG[1] } \\ \text { EIRQ[6] } \\ \text { CAN1RX } \\ \text { CAN4RX } \end{gathered}$	SIUL DSPI_1 ADC_0 SSCM SIUL FlexCAN_1 FlexCAN_4	$\begin{gathered} 1 / \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ 0 \\ 0 \\ \mathrm{O} \\ \mathrm{I} \\ \mathrm{I} \end{gathered}$	S	Tristate	77	116	144
PC[4]	PCR[36]	AFO AF1 AF2 AF3 — -	GPIO[36] E1UC[31] \qquad DEBUG[2] EIRQ[18] SIN 1 CAN3RX	SIUL eMIOS_1 $-\quad-1$ SSCM SIUL DSPI_1 FlexCAN_3	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \hline-\mathrm{O} \\ & \mathrm{I} \\ & \mathrm{I} \\ & \mathrm{I} \end{aligned}$	M	Tristate	92	131	159

Table 2. Functional port pins (continued)

Port pin	PCR register	Alternate function ${ }^{1}$	Function	$\overline{0}$$\mathbf{0}$을$\mathbf{0}$				Pin number		
								$\begin{gathered} 100 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 144 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 176 \\ \text { LQFP } \end{gathered}$
PC[5]	PCR[37]	AFO AF1 AF2 AF3 -	GPIO[37] SOUT_1 CAN3TX DEBUG[3] EIRQ[7]	SIUL DSPI_1 FlexCAN_3 SSCM SIUL	$\begin{gathered} 1 / \mathrm{O} \\ \mathrm{O} \\ \mathrm{O} \\ 0 \\ \mathrm{I} \end{gathered}$	M	Tristate	91	130	158
PC[6]	PCR[38]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[38] } \\ \text { LIN1TX } \\ \text { E1UC[28] } \\ \text { DEBUG[4] } \end{gathered}$	SIUL LINFlex_1 eMIOS_1 SSCM	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ \mathrm{O} \end{gathered}$	S	Tristate	25	36	44
PC[7]	PCR[39]	AFO AF1 AF2 AF3 -	GPIO[39] \qquad E1UC[29] DEBUG[5] LIN1RX WKUP[12] ${ }^{4}$	SIUL $-\overline{-1}$ eMIOS_1 SSCM LINFlex_1 WKUP	$\begin{gathered} \hline \mathrm{I} / \mathrm{O} \\ \hline \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ \mathrm{I} \\ \mathrm{I} \end{gathered}$	S	Tristate	26	37	45
PC[8]	PCR[40]	$\begin{aligned} & \text { AF0 } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	$\begin{gathered} \text { GPIO[40] } \\ \text { LIN2TX } \\ \text { EOUC[3] } \\ \text { DEBUG[6] } \end{gathered}$	SIUL LINFlex_2 eMIOS_0 SSCM	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ \mathrm{O} \end{gathered}$	S	Tristate	99	143	175
PC[9]	PCR[41]	AFO AF1 AF2 AF3 -	GPIO[41] EOUC[7] DEBUG[7] WKUP[13] ${ }^{4}$ LIN2RX	SIUL $-\overline{-}$ eMIOS_0 SSCM WKUP LINFlex_2	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \hline \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ \mathrm{I} \\ \mathrm{I} \end{gathered}$	S	Tristate	2	2	2
PC[10]	PCR[42]	$\begin{aligned} & \text { AF0 } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	$\begin{gathered} \text { GPIO[42] } \\ \text { CAN1TX } \\ \text { CAN4TX } \\ \text { MA[1] } \end{gathered}$	SIUL FlexCAN_1 FlexCAN_4 ADC_0	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ \mathrm{O} \\ \mathrm{O} \end{gathered}$	M	Tristate	22	28	36
PC[11]	PCR[43]	AFO AF1 AF2 AF3 - -	$\begin{gathered} \text { GPIO[43] } \\ - \\ - \\ \text { MA[2] } \\ \text { WKUP[5] } \\ \text { CAN1RX } \\ \text { CAN4RX } \end{gathered}$	SIUL - ADC_0 WKUP FlexCAN_1 FlexCAN_4	$\begin{gathered} \text { I/O } \\ \hline- \\ \hline \mathrm{O} \\ \mathrm{I} \\ \mathrm{I} \\ \mathrm{I} \end{gathered}$	S	Tristate	21	27	35
PC[12]	PCR[44]	AFO AF1 AF2 AF3 —	$\begin{gathered} \hline \text { GPIO[44] } \\ \text { EOUC[12] } \\ - \\ \text { EIRQ[19] } \\ \text { SIN_2 } \end{gathered}$	SIUL eMIOS_0 - SIUL DSPI_2	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \hline- \\ & \hline \text { I } \\ & \hline \end{aligned}$	M	Tristate	97	141	173
PC[13]	PCR[45]	$\begin{aligned} & \text { AF0 } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	$\begin{gathered} \text { GPIO[45] } \\ \text { EOUC[13] } \\ \text { SOUT_2 } \\ - \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ \text { DSPI_2 } \end{gathered}$	$\begin{gathered} \hline \mathrm{I} / \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ \hline \end{gathered}$	S	Tristate	98	142	174

Table 2. Functional port pins (continued)

Port pin	PCR register	Alternate function ${ }^{1}$	Function				$\begin{aligned} & \text { 毕 } \\ & \underset{\sim}{0} \\ & \underset{\sim}{c} \\ & \underset{\sim}{c} \end{aligned}$	Pin number		
								$\begin{gathered} 100 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 144 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 176 \\ \text { LQFP } \end{gathered}$
PC[14]	PCR[46]	AF0 AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[46] } \\ \text { EOUC[14] } \\ \text { SCK_2 } \\ - \\ \text { EIRQ[8] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ \text { DSPI_2 } \\ -\overline{1} \end{gathered}$	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \text { I/O } \\ & \hline- \end{aligned}$	S	Tristate	3	3	3
PC[15]	PCR[47]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[47] } \\ \text { EOUC[15] } \\ \text { CSO_2 } \\ \text { - } \\ \text { EIRQ[20] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ \text { DSPI_2 } \\ \text { SIUL } \end{gathered}$	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \text { I/O } \\ & \hline- \end{aligned}$	M	Tristate	4	4	4
Port D										
PD[0]	PCR[48]	AFO AF1 AF2 AF3 — -	$\begin{gathered} \text { GPIO[48] } \\ - \\ - \\ \text { WKUP[27] } \\ \text { ADC0_P[4] } \\ \text { ADC1_P[4] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ - \\ - \\ \text { WKUP } \\ \text { ADC_0 } \\ \text { ADC_1 } \end{gathered}$	1 - - I 1	1	Tristate	41	63	77
PD[1]	PCR[49]	AFO AF1 AF2 AF3 - -	$\begin{gathered} \text { GPIO[49] } \\ - \\ - \\ \text { WKUP[28] } \\ \text { ADC0_P[5] } \\ \text { ADC1_P[5] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ - \\ \overline{-} \\ \text { WKUP } \\ \text { ADC_0 } \\ \text { ADC_1 } \end{gathered}$	$\begin{gathered} 1 \\ - \\ \hline- \\ 1 \\ 1 \end{gathered}$	1	Tristate	42	64	78
PD[2]	PCR[50]	AF0 AF1 AF2 AF3 -	$\begin{gathered} \hline \text { GPIO[50] } \\ - \\ - \\ \text { ADC0_P[6] } \\ \text { ADC1_P[6] } \end{gathered}$	$\begin{gathered} \hline \text { SIUL } \\ - \\ \overline{-} \\ \text { ADC_0 } \\ \text { ADC_1 } \end{gathered}$	$\begin{gathered} 1 \\ \hline- \\ \hline 1 \\ 1 \end{gathered}$	1	Tristate	43	65	79
PD[3]	PCR[51]	AFO AF1 AF2 AF3 —	$\begin{gathered} \text { GPIO[51] } \\ - \\ - \\ \text { ADC0_P[7] } \\ \text { ADC1_P[7] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \overline{-} \\ \overline{-} \\ \text { ADC_0 } \\ \text { ADC_1 } \end{gathered}$	I - - I	1	Tristate	44	66	80
PD[4]	PCR[52]	AFO AF1 AF2 AF3 —	$\begin{gathered} \hline \text { GPIO[52] } \\ - \\ - \\ \text { ADC0_P[8] } \\ \text { ADC1_P[8] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \overline{-} \\ \overline{-} \\ \text { ADC_0 } \\ \text { ADC_1 } \end{gathered}$	$\begin{aligned} & \text { I } \\ & \hline- \\ & \hline \text { I } \end{aligned}$	1	Tristate	45	67	81

Table 2. Functional port pins (continued)

Port pin	PCR register	Alternate function ${ }^{1}$	Function					Pin number		
								$\begin{gathered} 100 \\ \text { LQFP } \end{gathered}$	$\begin{aligned} & 144 \\ & \text { LQFP } \end{aligned}$	$\begin{gathered} 176 \\ \text { LQFP } \end{gathered}$
PD[5]	PCR[53]	$\begin{gathered} \hline \text { AF0 } \\ \text { AF1 } \\ \text { AF2 } \\ \text { AF3 } \\ - \end{gathered}$	GPIO[53] - - ADC0_P[9] ADC1_P[9]	$\begin{gathered} \text { SIUL } \\ - \\ \overline{-} \\ \text { ADC_0 } \\ \text { ADC_1 } \end{gathered}$	$\begin{gathered} \hline \text { I } \\ \hline- \\ \hline \text { I } \\ 1 \end{gathered}$	1	Tristate	46	68	82
PD[6]	PCR[54]	$\begin{gathered} \hline \text { AF0 } \\ \text { AF1 } \\ \text { AF2 } \\ \text { AF3 } \\ - \end{gathered}$	GPIO[54] - - ADCO_P[10] ADC1_P[10]	SIUL - $\overline{-}$ ADC_0 ADC_1	$\begin{gathered} \hline \text { I } \\ \hline- \\ \hline \text { I } \\ \hline \end{gathered}$	1	Tristate	47	69	83
PD[7]	PCR[55]	$\begin{gathered} \hline \text { AFO } \\ \text { AF1 } \\ \text { AF2 } \\ \text { AF3 } \\ - \end{gathered}$	GPIO[55] - - ADC0_P[11] ADC1_P[11]	SIUL - $\overline{-}$ ADC_0 ADC_1	$\begin{gathered} \hline \text { I } \\ \hline- \\ \hline \text { I } \\ \text { I } \end{gathered}$	1	Tristate	48	70	84
PD[8]	PCR[56]	AF0 AF1 AF2 AF3 -	GPIO[56] - - ADCO_P[12] ADC1_P[12]	$\begin{gathered} \hline \text { SIUL } \\ - \\ - \\ \text { ADC_0 } \\ \text { ADC_1 } \end{gathered}$	$\begin{gathered} \hline \text { I } \\ \hline- \\ \hline \mathbf{1} \\ 1 \end{gathered}$	1	Tristate	49	71	87
PD[9]	PCR[57]	$\begin{gathered} \text { AFO } \\ \text { AF1 } \\ \text { AF2 } \\ \text { AF3 } \\ - \end{gathered}$	GPIO[57] - - ADCO_P[13] ADC1_P[13]	SIUL - - ADC_0 ADC_1	$\begin{gathered} \hline \text { I } \\ \hline- \\ \hline- \\ 1 \end{gathered}$	1	Tristate	56	78	94
PD[10]	PCR[58]	AF0 AF1 AF2 AF3 -	GPIO[58] - - ADCO_P[14] ADC1_P[14]	$\begin{gathered} \text { SIUL } \\ \overline{-} \\ \text { ADC_0 } \\ \text { ADC_1 } \end{gathered}$	$\begin{gathered} 1 \\ \hline- \\ \hline 1 \\ 1 \end{gathered}$	1	Tristate	57	79	95
PD[11]	PCR[59]	$\begin{gathered} \text { AFO } \\ \text { AF1 } \\ \text { AF2 } \\ \text { AF3 } \\ - \end{gathered}$	GPIO[59] - - ADCO_P[15] ADC1_P[15]	$\begin{gathered} \text { SIUL } \\ \overline{-} \\ \overline{\text { ADC_0 }} \\ \text { ADC_1 } \end{gathered}$	$\begin{aligned} & \hline \text { I } \\ & \frac{-}{-} \\ & 1 \\ & 1 \end{aligned}$	1	Tristate	58	80	96
PD[12]	PCR[60]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[60] } \\ \text { CS5_0 } \\ \text { EOUC[24] } \\ \text { ADCO_S[4] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { DSPI_0 } \\ \text { eMIOS_0 } \\ \text { ADC_0 } \end{gathered}$	$\begin{gathered} 1 / 0 \\ 0 \\ 1 / 0 \\ \hline-1 \end{gathered}$	J	Tristate	-	-	100

Table 2. Functional port pins (continued)

Port pin	PCR register	Alternate function ${ }^{1}$	Function					Pin number		
								$\begin{gathered} 100 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 144 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 176 \\ \text { LQFP } \end{gathered}$
PD[13]	PCR[61]	AF0 AF1 AF2 AF3 -	$\begin{gathered} \hline \text { GPIO[61] } \\ \text { CSO_1 } \\ \text { EOUC[25] } \\ \text { - } \\ \text { ADC0_S[5] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { DSPI_1 } \\ \text { eMIOS_0 } \\ \overline{-} \\ \text { ADC_0 } \end{gathered}$	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \text { I/O } \\ & \hline- \\ & \hline \end{aligned}$	J	Tristate	62	84	102
PD[14]	PCR[62]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[62] } \\ \text { CS1_1 } \\ \text { E0UC[26] } \\ \text { - } \\ \text { ADC0_S[6] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { DSPI_1 } \\ \text { eMIOS_0 } \\ \overline{-} \\ \text { ADC_0 } \end{gathered}$	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ \hline \mathrm{I} \end{gathered}$	J	Tristate	64	86	104
PD[15]	PCR[63]	AF0 AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[63] } \\ \text { CS2_1 } \\ \text { EOUC[27] } \\ -\quad \\ \text { ADC0_S[7] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { DSPI_1 } \\ \text { eMIOS_0 } \\ \text { ADC_0 } \end{gathered}$	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ \hline \mathrm{I} \end{gathered}$	J	Tristate	66	88	106
Port E										
PE[0]	PCR[64]	AFO AF1 AF2 AF3 —	GPIO[64] EOUC[16] \qquad - WKUP[6] ${ }^{4}$ CAN5RX	SIUL eMIOS_0 - WKUP FlexCAN_5	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \hline- \\ & \hline 1 \\ & \text { I } \end{aligned}$	S	Tristate	6	10	18
PE[1]	PCR[65]	AFO AF1 AF2 AF3	GPIO[65] E0UC[17] CAN5TX \square	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ \text { FlexCAN_5 } \\ - \end{gathered}$	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ \mathrm{O} \end{gathered}$	M	Tristate	8	12	20
PE[2]	PCR[66]	AFO AF1 AF2 AF3 -	$\begin{gathered} \hline \text { GPIO[66] } \\ \text { EOUC[18] } \\ - \\ \text { EIRQ[21] } \\ \text { SIN_1 } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ - \\ \text { - } \\ \text { SIUL } \\ \text { DSPI_1 } \end{gathered}$	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \hline- \\ & \hline \text { I } \\ & \hline \end{aligned}$	M	Tristate	89	128	156
PE[3]	PCR[67]	AFO AF1 AF2 AF3	$\begin{aligned} & \text { GPIO[67] } \\ & \text { EOUC[19] } \\ & \text { SOUT_1 } \end{aligned}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ \text { DSPI_1 } \end{gathered}$	$\begin{gathered} \hline \mathrm{I} / \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ \hline \end{gathered}$	M	Tristate	90	129	157
PE[4]	PCR[68]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[68] } \\ \text { EOUC[20] } \\ \text { SCK_1 } \\ - \\ \text { EIRQ[9] } \end{gathered}$	SIUL eMIOS_0 DSPI_1 SIUL	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \text { I/O } \\ & \hline- \end{aligned}$	M	Tristate	93	132	160
PE[5]	PCR[69]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[69] } \\ \text { EOUC[21] } \\ \text { CSO } 1 \\ \text { MA[2] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ \text { DSPI_1 } \\ \text { ADC_0 } \end{gathered}$	$\begin{gathered} \text { I/O } \\ \text { I/O } \\ \text { I/O } \\ \mathrm{O} \end{gathered}$	M	Tristate	94	133	161

Table 2. Functional port pins (continued)

Port pin	PCR register	Alternate function ${ }^{1}$	Function					Pin number		
								$\begin{gathered} 100 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 144 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 176 \\ \text { LQFP } \end{gathered}$
PE[6]	PCR[70]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[70] } \\ \text { EOUC[22] } \\ \text { CS3_0 } \\ \text { MA[1] } \\ \text { EIRQ[22] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ \text { DSPI_0 } \\ \text { ADC_0 } \\ \text { SIUL } \end{gathered}$	$\begin{gathered} \text { I/O } \\ \text { I/O } \\ 0 \\ 0 \\ \text { I } \end{gathered}$	M	Tristate	95	139	167
PE[7]	PCR[71]	AFO AF1 AF2 AF3 -	$\begin{gathered} \hline \text { GPIO[71] } \\ \text { EOUC[23] } \\ \text { CS2_0 } \\ \text { MA[0] } \\ \text { EIRQ[23] } \end{gathered}$	SIUL eMIOS_0 DSPI_0 ADC_0 SIUL	$\begin{gathered} \text { I/O } \\ \text { I/O } \\ 0 \\ 0 \\ \text { I } \end{gathered}$	M	Tristate	96	140	168
PE[8]	PCR[72]	AFO AF1 AF2 AF3	GPIO[72] CAN2TX EOUC[22] CAN3TX	SIUL FlexCAN_2 eMIOS_0 FlexCAN_3	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ \mathrm{O} \end{gathered}$	M	Tristate	9	13	21
PE[9]	PCR[73]	AFO AF1 AF2 AF3 — -	$\begin{gathered} \text { GPIO[73] } \\ - \\ \text { EOUC[23] } \\ -\quad \\ \text { WKUP[7] } \\ \text { CAN2RX } \\ \text { CAN3RX } \end{gathered}$	SIUL eMIOS_0 WKUP FlexCAN_2 FlexCAN_3	$\begin{gathered} \hline \mathrm{I} / \mathrm{O} \\ \frac{\mathrm{I} / \mathrm{O}}{-\mathrm{I}} \\ \hline \mathrm{I} \end{gathered}$	S	Tristate	10	14	22
PE[10]	PCR[74]	AFO AF1 AF2 AF3 -	$\begin{gathered} \hline \text { GPIO[74] } \\ \text { LIN3TX } \\ \text { CS3_1 } \\ \text { E1UC[30] } \\ \text { EIRQ[10] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { LINFlex_3 } \\ \text { DSPI_1 } \\ \text { eMIOS_1 } \\ \text { SIUL } \end{gathered}$	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ \mathrm{I} \end{gathered}$	S	Tristate	11	15	23
PE[11]	PCR[75]	AF0 AF1 AF2 AF3 -	$\begin{gathered} \hline \text { GPIO[75] } \\ \text { EOUC[24] } \\ \text { CS4_1 } \\ \text { LIN3RX } \\ \text { WKUP[14] } \end{gathered}$		$\begin{gathered} \text { I/O } \\ 1 / \mathrm{O} \\ \mathrm{O} \\ \hline \mathrm{I} \\ \mathrm{I} \end{gathered}$	S	Tristate	13	17	25
PE[12]	PCR[76]	AF0 AF1 AF2 AF3 — -	$\begin{gathered} \hline \text { GPIO[76] } \\ \text { E1UC[19] } \\ \text { - } \\ \text { EIRQ[11] } \\ \text { SIN_2 } \\ \text { ADC1_S[7] } \end{gathered}$	$\begin{gathered} \hline \text { SIUL } \\ - \\ \text { eMIOS_1 } \\ -\quad \\ \text { SIUL } \\ \text { DSPI_2 } \\ \text { ADC_1 } \end{gathered}$	$\begin{gathered} 1 / \mathrm{O} \\ \hline 1 / \mathrm{O} \\ \hline 1 \\ 1 \\ 1 \end{gathered}$	J	Tristate	76	109	133
PE[13]	PCR[77]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[77] } \\ \text { SOUT_2 } \\ \text { E1UC[20] } \\ - \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { DSPI_2 } \\ \text { eMIOS_1 } \end{gathered}$	$\begin{gathered} \text { I/O } \\ \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ - \end{gathered}$	S	Tristate	-	103	127

Table 2. Functional port pins (continued)

Port pin	PCR register	Alternate function ${ }^{1}$	Function					Pin number		
								$\begin{gathered} 100 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 144 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 176 \\ \text { LQFP } \end{gathered}$
PE[14]	PCR[78]	AF0 AF1 AF2 AF3 -	$\begin{gathered} \hline \text { GPIO[78] } \\ \text { SCK_2 } \\ \text { E1UC[21] } \\ - \\ \text { EIRQ[12] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { DSPI_2 } \\ \text { eMIOS_1 } \\ -\quad-1 \\ \text { SIUL } \end{gathered}$	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \text { I/O } \\ & \hline- \\ & \hline \end{aligned}$	S	Tristate	-	112	136
PE[15]	PCR[79]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[79] } \\ \text { CSO_2 } \\ \text { E1UC[22] } \\ - \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { DSPI_2 } \\ \text { eMIOS_1 } \\ - \end{gathered}$	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \text { I/O } \end{aligned}$	M	Tristate	-	113	137
Port F										
PF[0]	PCR[80]	AFO AF1 AF2 AF3 -	$\begin{gathered} \hline \text { GPIO[80] } \\ \text { EOUC[10] } \\ \text { CS3_1 } \\ \text { - } \\ \text { ADC0_S[8] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ \text { DSPI_1 } \\ \text { ADC_0 } \end{gathered}$	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ \hline \mathrm{I} \end{gathered}$	J	Tristate	-	55	63
PF[1]	PCR[81]	AFO AF1 AF2 AF3 -	$\begin{gathered} \hline \text { GPIO[81] } \\ \text { E0UC[11] } \\ \text { CS4_1 } \\ \text { - } \\ \text { ADC0_S[9] } \end{gathered}$	SIUL eMIOS_0 DSPI_1 ADC_0	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ \hline \mathrm{I} \end{gathered}$	J	Tristate	-	56	64
PF[2]	PCR[82]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[82] } \\ \text { EOUC[12] } \\ \text { CSO_2 } \\ \text {-- } \\ \text { ADCO_S[10] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ \text { DSPI_2 } \\ \text { ADC_0 } \end{gathered}$	$\begin{gathered} \text { I/O } \\ 1 / \mathrm{O} \\ \mathrm{O} \\ \hline \mathrm{I} \end{gathered}$	J	Tristate	-	57	65
PF[3]	PCR[83]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[83] } \\ \text { EOUC[13] } \\ \text { CS1_2 } \\ -- \\ \text { ADCO_S[11] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ \text { DSPI_2 } \\ \text { ADC_0 } \end{gathered}$	$\begin{gathered} 1 / 0 \\ 1 / 0 \\ 0 \\ \hline-1 \end{gathered}$	J	Tristate	-	58	66
PF[4]	PCR[84]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[84] } \\ \text { EOUC[14] } \\ \text { CS2_2 } \\ \text {-- } \\ \text { ADC0_S[12] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ \text { DSPI_2 } \\ \text { ADC_0 } \end{gathered}$	$\begin{gathered} \text { I/O } \\ \text { I/O } \\ \mathrm{O} \\ \hline \mathrm{I} \end{gathered}$	J	Tristate	-	59	67
PF[5]	PCR[85]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[85] } \\ \text { EOUC[22] } \\ \text { CS3_2 } \\ - \\ \text { ADCO_S[13] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ \text { DSPI_2 } \\ \overline{-} \\ \text { ADC_0 } \end{gathered}$	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ \hline \mathrm{I} \end{gathered}$	J	Tristate	-	60	68
PF[6]	PCR[86]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[86] } \\ \text { EOUC[23] } \\ \text { CS1_1 } \\ -- \\ \text { ADC0_S[14] } \end{gathered}$	$\begin{gathered} \hline \text { SIUL } \\ \text { eMIOS_0 } \\ \text { DSPI_1 } \\ \text { ADC_0 } \end{gathered}$	$\begin{gathered} \text { I/O } \\ \text { I/O } \\ \mathrm{O} \\ \hline \mathrm{I} \end{gathered}$	J	Tristate	-	61	69

Table 2. Functional port pins (continued)

Port pin	$\begin{array}{\|c\|} \hline \text { PCR } \\ \text { register } \end{array}$	Alternate function ${ }^{1}$	Function					Pin number		
								$\begin{gathered} 100 \\ \text { LQFP } \end{gathered}$	$\begin{aligned} & 144 \\ & \text { LQFP } \end{aligned}$	$\begin{gathered} 176 \\ \text { LQFP } \end{gathered}$
PF[7]	PCR[87]	$\begin{aligned} & \text { AF0 } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	$\begin{gathered} \text { GPIO[87] } \\ \text { CS2_1 } \\ \text { ADC0_S[15] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \overline{\text { DSPI_1 }} \\ \overline{A D C} _0 \end{gathered}$	$\begin{aligned} & \frac{1 / 0}{0} \\ & \frac{-}{1} \end{aligned}$	J	Tristate	-	62	70
PF[8]	PCR[88]	$\begin{aligned} & \text { AF0 } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	GPIO[88] CAN3TX CS4_0 CAN2TX	SIUL FlexCAN_3 DSPI_0 FlexCAN_2	$\begin{gathered} \hline 1 / 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	M	Tristate	-	34	42
PF[9]	PCR[89]	AFO AF1 AF2 AF3 - -	$\begin{gathered} \hline \text { GPIO[89] } \\ \text { E1UC[1] } \\ \text { CS5_0 } \\ \text { WKUP[22] } \\ \text { CAN2RX } \\ \text { CAN3RX } \end{gathered}$	SIUL eMIOS_1 DSPI_0 WKUP FlexCAN_2 FlexCAN_3	$\begin{gathered} 1 / 0 \\ 1 / 0 \\ 0 \\ \hline 1 \\ 1 \\ 1 \end{gathered}$	S	Tristate	-	33	41
PF[10]	PCR[90]	$\begin{aligned} & \text { AF0 } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	$\begin{aligned} & \text { GPIO[90] } \\ & \text { CS1_0 } \\ & \text { LIN4TX } \\ & \text { E1UC[2] } \end{aligned}$	SIUL DSPI_0 LINFIex_4 eMIOS_1	$\begin{gathered} 1 / 0 \\ 0 \\ 0 \\ \text { I/O } \end{gathered}$	M	Tristate	-	38	46
PF[11]	PCR[91]	$\begin{gathered} \hline \text { AFO } \\ \text { AF1 } \\ \text { AF2 } \\ \text { AF3 } \\ - \end{gathered}$	$\begin{gathered} \text { GPIO[91] } \\ \text { CS2_0 } \\ \text { E1UC[3] } \\ \text { WKUP[155 } \\ \text { LIN4RX } \end{gathered}$	SIUL DSPI_0 eMIOS_1 WKUP LINFlex_4	$\begin{gathered} 1 / 0 \\ 0 \\ 1 / 0 \\ \hline 1 \\ 1 \end{gathered}$	S	Tristate	-	39	47
PF[12]	PCR[92]	$\begin{aligned} & \text { AF0 } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	$\begin{gathered} \hline \text { GPIO[92] } \\ \text { E1UC[25] } \\ \text { LIN5TX } \end{gathered}$	SIUL eMIOS_1 LINFlex_5 -	$\begin{gathered} 1 / 0 \\ 1 / 0 \\ 0 \\ \hline \end{gathered}$	M	Tristate	-	35	43
PF[13]	PCR[93]	$\begin{gathered} \hline \text { AF0 } \\ \text { AF1 } \\ \text { AF2 } \\ \text { AF3 } \\ - \end{gathered}$	$\begin{gathered} \text { GPIO[93] } \\ \text { E1UC[26] } \\ - \\ \text { WKUP[16] } \\ \text { LIN5RX } \end{gathered}$	SIUL eMIOS_1 - WKUP LINFlex_5	$\begin{gathered} 1 / 0 \\ 1 / 0 \\ \hline- \\ \hline 1 \\ 1 \end{gathered}$	S	Tristate	-	41	49
PF[14]	PCR[94]	$\begin{aligned} & \text { AF0 } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	GPIO[94] CAN4TX E1UC[27] CAN1TX	SIUL FlexCAN_4 eMIOS_1 FlexCAN_1	$\begin{gathered} \hline 1 / 0 \\ 0 \\ 1 / 0 \\ 0 \end{gathered}$	M	Tristate	-	102	126

Table 2. Functional port pins (continued)

Port pin	PCR register	Alternate function ${ }^{1}$	Function					Pin number		
								$\begin{gathered} 100 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 144 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 176 \\ \text { LQFP } \end{gathered}$
PF[15]	PCR[95]	AFO AF1 AF2 AF3 - -	GPIO[95] E1UC[4] - - EIRQ[13] CAN1RX CAN4RX	SIUL eMIOS_1 - SIUL FlexCAN_1 FlexCAN 4	I/O I/O - - I I	S	Tristate	-	101	125
Port G										
PG[0]	PCR[96]	AFO AF1 AF2 AF3	GPIO[96] CAN5TX E1UC[23] -	SIUL FlexCAN_5 eMIOS_1 -	$\begin{gathered} \hline \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ - \end{gathered}$	M	Tristate	-	98	122
PG[1]	PCR[97]	AFO AF1 AF2 AF3 —	$\begin{gathered} \text { GPIO[97] } \\ - \\ \text { E1UC[24] } \\ - \\ \text { EIRQ[14] } \\ \text { CAN5RX } \end{gathered}$	SIUL $\overline{-}$ eMIOS_1 - SIUL FlexCAN_5	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \overline{\mathrm{I} / \mathrm{O}} \\ \hline \mathrm{I} \\ \mathrm{I} \end{gathered}$	S	Tristate	-	97	121
PG[2]	PCR[98]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[98] } \\ \text { E1UC[11] } \\ \text { SOUT_3 } \\ - \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_1 } \\ \text { DSPI_3 } \\ \text { - } \end{gathered}$	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ \hline \end{gathered}$	M	Tristate	-	8	16
PG[3]	PCR[99]	AF0 AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[99] } \\ \text { E1UC[12] } \\ \text { CSO_3 } \\ \text { WKUP[17] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_1 } \\ \text { DSPI_3 } \\ \overline{-} \\ \text { WKUP } \end{gathered}$	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ \hline \mathrm{I} \end{gathered}$	S	Tristate	-	7	15
PG[4]	PCR[100]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[100] } \\ \text { E1UC[13] } \\ \text { SCK_3 } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_1 } \\ \text { DSPI_3 } \\ \text { _- } \end{gathered}$	$\begin{aligned} & \hline \mathrm{I} / \mathrm{O} \\ & \mathrm{I} / \mathrm{O} \\ & \mathrm{I} / \mathrm{O} \\ & \hline \end{aligned}$	M	Tristate	-	6	14
PG[5]	PCR[101]	AFO AF1 AF2 AF3 —	$\begin{gathered} \text { GPIO[101] } \\ \text { E1UC[14] } \\ - \\ - \\ \text { WKUP[18] } \\ \text { SIN_3 } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_1 } \\ - \\ - \\ \text { WKUP } \\ \text { DSPI_3 } \end{gathered}$	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \hline- \\ & \hline \mathrm{I} \\ & \text { I } \end{aligned}$	S	Tristate	-	5	13
PG[6]	PCR[102]	AFO AF1 AF2 AF3	GPIO[102] E1UC[15] LIN6TX \qquad	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_1 } \\ \text { LINFlex_6 } \\ - \end{gathered}$	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ - \end{gathered}$	M	Tristate	-	30	38

Table 2. Functional port pins (continued)

Port pin	PCR register	Alternate function ${ }^{1}$	Function		$\bigcirc \stackrel{\text { 들 }}{\stackrel{\circ}{0}}$			Pin number		
								$\begin{aligned} & 100 \\ & \text { LQFP } \end{aligned}$	$\begin{aligned} & 144 \\ & \text { LQFP } \end{aligned}$	$\begin{gathered} 176 \\ \text { LQFP } \end{gathered}$
PG[7]	PCR[103]	AFO AF1 AF2 AF3 -	$\begin{gathered} \hline \text { GPIO[103] } \\ \text { E1UC[16] } \\ \text { E1UC[30] } \\ \text { WKUP }_{2001}{ }^{4} \\ \text { LIN6RX } \end{gathered}$		$\begin{gathered} 1 / 0 \\ 1 / 0 \\ 1 / 0 \\ \hline 1 \\ 1 \end{gathered}$	S	Tristate	-	29	37
PG[8]	PCR[104]	$\begin{aligned} & \text { AFO } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	$\begin{aligned} & \text { GPIO[104] } \\ & \text { EIUC[17] } \\ & \text { LIN7TX } \\ & \text { CSO_2 } \\ & \text { ERQ[15] } \end{aligned}$	SIUL eMIOS_1 LINFlex_7 DSPI_2 SIUL	$\begin{gathered} \hline \text { 1/O } \\ 1 / 0 \\ 0 \\ 1 / 0 \\ 1 \end{gathered}$	S	Tristate	-	26	34
PG[9]	PCR[105]	AFO AF1 AF2 AF3 -	$\begin{gathered} \hline \text { GPIO[105] } \\ \text { E1UC[18] } \\ \text { SCK_2 } \\ \text { WKUP[21] } \\ \text { LIN7RX } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_1 } \\ \overline{-1} \\ \text { DSPI_2 } \\ \text { WKUP } \\ \text { LINFlex_7 } \end{gathered}$	$\begin{gathered} 1 / 0 \\ 1 / 0 \\ \hline 1 / 0 \\ 1 \\ 1 \end{gathered}$	S	Tristate	-	25	33
PG[10]	PCR[106]	AFO AF1 AF2 AF3	GPIO[106] EOUC[24] E1UC[31] SIN_4	SIUL eMIOS_0 eMIOS_1 DSPI_4	$\begin{aligned} & 1 / 0 \\ & 1 / 0 \\ & 1 / 0 \\ & \hline- \end{aligned}$	S	Tristate	-	114	138
PG[11]	PCR[107]	$\begin{aligned} & \text { AF0 } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	$\begin{gathered} \text { GPIO[107] } \\ \text { EOUC[25] } \\ \text { CSO_4 } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ \text { DSPI_4 } \\ \hline \end{gathered}$	$\begin{gathered} 1 / 0 \\ 1 / 0 \\ 0 \end{gathered}$	M	Tristate	-	115	139
PG[12]	PCR[108]	$\begin{aligned} & \text { AFO } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	GPIO[108] EOUC[26] SOUT_4 \qquad	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ \text { DSPI_4 } \\ \hline \end{gathered}$	$\begin{gathered} 1 / 0 \\ 1 / 0 \\ 0 \\ \hline \end{gathered}$	M	Tristate	-	92	116
PG[13]	PCR[109]	$\begin{aligned} & \text { AF0 } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	GPIO[109] EOUC[27] SCK_4 \qquad	$\begin{array}{\|c\|} \hline \text { SIUL } \\ \text { eMIOS_0 } \\ \text { DSPI_4 } \\ \hline \end{array}$	$\begin{aligned} & \hline 1 / 0 \\ & 1 / 0 \\ & 1 / 0 \end{aligned}$	M	Tristate	-	91	115
PG[14]	PCR[110]	$\begin{aligned} & \text { AF0 } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	$\begin{gathered} \text { GPIO[110] } \\ \text { E1UC[0] } \\ - \end{gathered}$	$\begin{array}{\|c} \hline \text { SIUL } \\ \text { eMIOS_1 } \\ - \\ - \end{array}$	1/0 I/O -	S	Tristate	-	110	134
PG[15]	PCR[111]	$\begin{aligned} & \text { AF0 } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	$\begin{gathered} \text { GPIO[111] } \\ \begin{array}{c} \text { E1UC[1] } \\ - \\ - \end{array} \end{gathered}$	SIUL eMIOS_1 - -	$\begin{aligned} & 1 / 0 \\ & 1 / 0 \\ & - \\ & - \\ & \hline- \end{aligned}$	M	Tristate	-	111	135
Port H										

Table 2. Functional port pins (continued)

Port pin	PCR register	Alternate function ${ }^{1}$	Function					Pin number		
								$\begin{gathered} 100 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 144 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 176 \\ \text { LQFP } \end{gathered}$
$\mathrm{PH}[0]$	PCR[112]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[112] } \\ \text { E1UC[2] } \\ - \\ \text { SIN_1 } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_1 } \\ - \\ \text { DSPI_1 } \end{gathered}$	$\begin{aligned} & 1 / 0 \\ & 1 / 0 \\ & \hline- \\ & \hline 1 \end{aligned}$	M	Tristate	-	93	117
PH[1]	PCR[113]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[113] } \\ \text { E1UC[3] } \\ \text { SOUT_1 } \\ \text { - } \end{gathered}$	$\begin{gathered} \hline \text { SIUL_ } \\ \text { eMIOS_1 } \\ \text { DSPI_1 } \\ - \end{gathered}$	$\begin{gathered} \hline \text { I/O } \\ \text { I/O } \\ 0 \\ \hline \end{gathered}$	M	Tristate	-	94	118
$\mathrm{PH}[2]$	PCR[114]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[114] } \\ \text { E1UC[4] } \\ \text { SCK_1 } \end{gathered}$	$\begin{gathered} \text { SIUL_ } \\ \text { eMIOS_1 } \\ \text { DSPI_1 } \\ - \end{gathered}$	$\begin{aligned} & \hline \mathrm{I} / \mathrm{O} \\ & \mathrm{I} / \mathrm{O} \\ & \mathrm{I} / \mathrm{O} \\ & - \end{aligned}$	M	Tristate	-	95	119
$\mathrm{PH}[3]$	PCR[115]	AF0 AF1 AF2 AF3	$\begin{gathered} \text { GPIO[115] } \\ \text { E1UC[5] } \\ \text { CS0_1 } \\ - \end{gathered}$	$\begin{gathered} \text { SIUL_ } \\ \text { eMIOS_1 } \\ \text { DSPI_1 } \\ \text { - } \end{gathered}$	$\begin{aligned} & \hline \mathrm{I} / \mathrm{O} \\ & \mathrm{I} / \mathrm{O} \\ & \mathrm{I} / \mathrm{O} \\ & - \end{aligned}$	M	Tristate	-	96	120
PH[4]	PCR[116]	AFO AF1 AF2 AF3	$\begin{aligned} & \text { GPIO[116] } \\ & \text { E1UC[6] } \\ & \text { - } \end{aligned}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_1 } \\ - \\ - \end{gathered}$	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \hline- \end{aligned}$	M	Tristate	-	134	162
PH[5]	PCR[117]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[117] } \\ \text { E1UC[7] } \\ - \\ \text { - } \end{gathered}$	SIUL eMIOS_1 - -	$\begin{aligned} & \mathrm{I} / \mathrm{O} \\ & \mathrm{I} / \mathrm{O} \\ & \hline- \end{aligned}$	S	Tristate	-	135	163
PH[6]	PCR[118]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[118] } \\ \text { E1UC[8] } \\ \text { MA[2] } \end{gathered}$	$\begin{gathered} \text { SIUL_} \\ \text { eMIOS_1 } \\ \overline{\text { ADC_0 }} \end{gathered}$	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \frac{-}{\mathrm{O}} \end{aligned}$	M	Tristate	-	136	164
PH[7]	PCR[119]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[119] } \\ \text { E1UC[9] } \\ \text { CS3_2 } \\ \text { MA[1] } \end{gathered}$	$\begin{gathered} \text { SIUL_ } \\ \text { eMIOS_1 } \\ \text { DSPI_2 } \\ \text { ADC_0 } \end{gathered}$	$\begin{gathered} \text { I/O } \\ \text { I/O } \\ \text { O } \\ 0 \end{gathered}$	M	Tristate	-	137	165
PH[8]	PCR[120]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[120] } \\ \text { E1UC[10] } \\ \text { CS2_2 } \\ \text { MA[0] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_1 } \\ \text { DSPI_2 } \\ \text { ADC_0 } \end{gathered}$	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ \mathrm{O} \end{gathered}$	M	Tristate	-	138	166
PH[9] ${ }^{8}$	PCR[121]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[121] } \\ - \\ \text { TCK } \\ - \end{gathered}$	SIUL JTAGC \qquad	1/0 1 -	S	Input, weak pull-up	88	127	155
$\mathrm{PH}[10]^{8}$	PCR[122]	AF0 AF1 AF2 AF3	$\begin{gathered} \text { GPIO[122] } \\ -\overline{T M S} \end{gathered}$	SIUL JTAGC -	$\frac{\mathrm{I} / \mathrm{O}}{-1}$	M	Input, weak pull-up	81	120	148

Table 2. Functional port pins (continued)

Port pin	PCR register	Alternate function ${ }^{1}$	Function		$9 \stackrel{\text { 들 }}{\underline{0}}$			Pin number		
								$\begin{gathered} 100 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 144 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 176 \\ \text { LQFP } \end{gathered}$
PH[11]	PCR[123]	AFO AF1 AF2 AF3	$\begin{aligned} & \hline \text { GPIO[123] } \\ & \text { SOUT_3 } \\ & \text { CSO_4 } \\ & \text { E1UC[5] } \end{aligned}$	$\begin{gathered} \hline \text { SIUL } \\ \text { DSPI_3 } \\ \text { DSPI_4 } \\ \text { eMIOS_1 } \end{gathered}$	$\begin{gathered} \text { I/O } \\ 0 \\ 1 / O \\ 1 / O \end{gathered}$	M	Tristate	-	-	140
PH[12]	PCR[124]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[124] } \\ \text { SCK_3 } \\ \text { CS1_4 } \\ \text { E1UC[25] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { DSPI_3 } \\ \text { DSPI_4 } \\ \text { eMIOS_1 } \end{gathered}$	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \text { I/O } \\ & \hline \end{aligned}$	M	Tristate	-	-	141
PH[13]	PCR[125]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[125] } \\ \text { SOUT_4 } \\ \text { CSO_3 } \\ \text { E1UC[26] } \end{gathered}$	SIUL DSPI_4 DSPI_3 eMIOS_1	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \mathrm{O} \\ \mathrm{I} / \mathrm{O} \end{gathered}$	M	Tristate	-	-	9
PH[14]	PCR[126]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[126] } \\ \text { SCK_4 } \\ \text { CS1_3 } \\ \text { E1UC[27] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { DSPI_4 } \\ \text { DSPI_3 } \\ \text { eMIOS_1 } \end{gathered}$	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \text { I/O } \\ & \hline \end{aligned}$	M	Tristate	-	-	10
PH[15]	PCR[127]	AF0 AF1 AF2 AF3	$\begin{gathered} \text { GPIO[127] } \\ \text { SOUT_5 } \\ -\quad \\ \text { E1UC[17] } \end{gathered}$	$\begin{gathered} \hline \text { SIUL } \\ \text { DSPI_5 } \\ --\quad \text { eMIOS_1 } \end{gathered}$	$\begin{gathered} 1 / 0 \\ 0 \\ \hline- \end{gathered}$	M	Tristate	-	-	8
Port I										
$\mathrm{PI}[0]$	PCR[128]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[128] } \\ \text { EOUC[28] } \\ - \\ - \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ - \\ - \end{gathered}$	$\begin{aligned} & \mathrm{I} / \mathrm{O} \\ & \mathrm{I} / \mathrm{O} \\ & - \\ & \hline- \end{aligned}$	S	Tristate	-	-	172
$\mathrm{Pl}[1]$	PCR[129]	AFO AF1 AF2 AF3 -	GPIO[129] EOUC[29] \qquad WKUP[24] ${ }^{4}$ -	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ - \\ \text { WKUP } \\ - \end{gathered}$	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \hline- \\ & \hline \text { I } \end{aligned}$	S	Tristate	-	-	171
$\mathrm{PI}[2]$	PCR[130]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[130] } \\ \text { EOUC[30] } \\ - \\ - \end{gathered}$	$\begin{aligned} & \text { SIUL } \\ & \text { eMIOS_0 } \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \hline- \end{aligned}$	S	Tristate	-	-	170
$\mathrm{PI}[3]$	PCR[131]	AFO AF1 AF2 AF3 —	$\begin{gathered} \text { GPIO[131] } \\ \text { EOUC[31] } \\ - \\ \text { WKUP[23] } \\ \text { [} \\ \text { W } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_0 } \\ - \\ \text { WKUP } \\ - \end{gathered}$	$\begin{aligned} & \hline \text { I/O } \\ & \text { I/O } \\ & \hline- \\ & \hline \text { I } \end{aligned}$	S	Tristate	-	-	169
$\mathrm{Pl}[4]$	PCR[132]	AFO AF1 AF2 AF3	$\begin{aligned} & \text { GPIO[132] } \\ & \text { E1UC[28] } \\ & \text { SOUT_4 } \end{aligned}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_1 } \\ \text { DSPI_4 } \end{gathered}$	$\begin{gathered} \hline \mathrm{I} / \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ \mathrm{O} \end{gathered}$	S	Tristate	-	-	143

MPC5606BK Microcontroller Data Sheet, Rev. 2

Table 2. Functional port pins (continued)

Port pin	PCR register	Alternate function ${ }^{1}$	Function		$\bigcirc \stackrel{\text { 气 }}{\frac{0}{0}}$			Pin number		
								$\begin{gathered} 100 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 144 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 176 \\ \text { LQFP } \end{gathered}$
$\mathrm{PI}[5]$	PCR[133]	AFO AF1 AF2 AF3	$\begin{aligned} & \text { GPIO[133] } \\ & \text { E1UC[29] } \\ & \text { SCK_4 } \end{aligned}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_1 } \\ \text { DSPI_4 } \\ \text { _- } \end{gathered}$	$\begin{aligned} & \hline \text { I/O } \\ & \mathrm{I} / \mathrm{O} \\ & \mathrm{I} / \mathrm{O} \\ & - \end{aligned}$	S	Tristate	-	-	142
$\mathrm{PI}[6]$	PCR[134]	$\begin{aligned} & \text { AF0 } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	$\begin{aligned} & \text { GPIO[134] } \\ & \text { E1UC[30] } \\ & \text { CS0_4 } \end{aligned}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_1 } \\ \text { DSPI_4 } \end{gathered}$	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \text { I/O } \\ & \hline \end{aligned}$	S	Tristate	-	-	11
PI[7]	PCR[135]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[135] } \\ \text { E1UC[31] } \\ \text { CS1_4 } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { eMIOS_1 } \\ \text { DSPI_4 } \end{gathered}$	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \text { I/O } \end{aligned}$	S	Tristate	-	-	12
$\mathrm{PI}[8]$	PCR[136]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[136] } \\ - \\ \text { - } \\ \text { ADCO_S[16] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \overline{-} \\ \overline{-} \\ \text { ADC_0 } \end{gathered}$	$\frac{1 / 0}{-}$	J	Tristate	-	-	108
$\mathrm{PI}[9]$	PCR[137]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[137] } \\ - \\ - \\ \text { ADCO_S[17] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \overline{-} \\ \overline{-} \\ \text { ADC_0 } \end{gathered}$	$\frac{1 / 0}{-}$	J	Tristate	-	-	109
$\mathrm{PI}[10]$	PCR[138]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[138] } \\ - \\ - \\ \text { ADCO_S[18] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \overline{-} \\ \overline{-} \\ \text { ADC_0 } \end{gathered}$	$\begin{aligned} & \mathrm{I} / \mathrm{O} \\ & \frac{-}{-} \\ & \hline \end{aligned}$	J	Tristate	-	-	110
PI[11]	PCR[139]	AFO AF1 AF2 AF3 —	$\begin{gathered} \text { GPIO[139] } \\ - \\ - \\ \text { ADCO_S[19] } \\ \text { SIN_3 } \end{gathered}$	SIUL - - ADC 0 DSPI_3	$\begin{gathered} 1 / 0 \\ \hline- \\ \hline \mathbf{i} \\ \text { i } \end{gathered}$	J	Tristate	-	-	111
PI[12]	PCR[140]	AF0 AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[140] } \\ \text { CS0_3 } \\ \text { - } \\ \text { ADCO_S[20] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { DSPI_3 } \\ - \\ \text { ADC_0 } \end{gathered}$	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \\ & \hline- \\ & \hline \mathrm{I} \end{aligned}$	J	Tristate	-	-	112
$\mathrm{PI}[13]$	PCR[141]	AFO AF1 AF2 AF3 -	$\begin{gathered} \hline \text { GPIO[141] } \\ \text { CS1_3 } \\ - \\ \text { ADC0_S[21] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { DSPI_3 } \\ \overline{-} \\ \text { ADC_0 } \end{gathered}$	$\begin{aligned} & 1 / \mathrm{O} \\ & \mathrm{I} / \mathrm{O} \\ & \hline- \\ & \hline \mathrm{I} \end{aligned}$	J	Tristate	-	-	113

Table 2. Functional port pins (continued)

Port pin	PCR register	Alternate function ${ }^{1}$	Function					Pin number		
								$\begin{aligned} & 100 \\ & \text { LQFP } \end{aligned}$	$\begin{gathered} 144 \\ \text { LQFP } \end{gathered}$	$\begin{gathered} 176 \\ \text { LQFP } \end{gathered}$
PI[14]	PCR[142]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[142] } \\ - \\ - \\ \text { ADCO_S[22] } \\ \text { SIN_4 } \end{gathered}$	$\begin{gathered} \hline \text { SIUL } \\ \overline{-} \\ \bar{A}-1 \\ \text { ADP_0 } \end{gathered}$	$\begin{aligned} & \hline 1 / 0 \\ & \frac{-}{-} \\ & \hline 1 \\ & 1 \end{aligned}$	J	Tristate	-	-	76
PI[15]	PCR[143]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[143] } \\ \text { CSO_4 } \\ - \\ \text { ADCO_S[23] } \end{gathered}$	$\begin{gathered} \hline \text { SIUL } \\ \text { DSPI_4 } \\ \overline{-} \\ \text { ADC_0 } \end{gathered}$	$\begin{aligned} & 1 / 0 \\ & 1 / 0 \\ & \hline- \\ & \hline \text { - } \end{aligned}$	J	Tristate	-	-	75
Port J										
PJ[0]	PCR[144]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[144] } \\ \text { CS1_4 } \\ - \\ \text { ADC0_S[24] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { DSPI_4 } \\ \overline{-} \\ \text { ADC_0 } \end{gathered}$	$\begin{aligned} & 1 / 0 \\ & 1 / 0 \\ & \hline- \\ & \hline- \end{aligned}$	J	Tristate	-	-	74
$\mathrm{PJ}[1]$	PCR[145]	AFO AF1 AF2 AF3 -	$\begin{gathered} \text { GPIO[145] } \\ - \\ - \\ \text { ADCO_S[25] } \\ \text { SIN_5 } \end{gathered}$	$\begin{gathered} \hline \text { SIUL } \\ - \\ \overline{-} \\ \hline \text { ADC_0 } \\ \text { DSPI_5 } \end{gathered}$	$\begin{aligned} & 1 / 0 \\ & \frac{-}{-} \\ & \hline 1 \\ & 1 \end{aligned}$	J	Tristate	-	-	73
PJ[2]	PCR[146]	AFO AF1 AF2 AF3	GPIO[146] CSO_5 - ADCO_S[26]	$\begin{gathered} \text { SIUL } \\ \text { DSPI_5 } \\ \overline{-} \\ \text { ADC_0 } \end{gathered}$	$\begin{aligned} & 1 / 0 \\ & 1 / 0 \\ & \hline- \\ & \hline- \end{aligned}$	J	Tristate	-	-	72
PJ[3]	PCR[147]	AFO AF1 AF2 AF3	$\begin{gathered} \text { GPIO[147] } \\ \text { CS1_5 } \\ - \\ \text { ADCO_S[27] } \end{gathered}$	$\begin{gathered} \text { SIUL } \\ \text { DSPI_5 } \\ \overline{-} \\ \text { ADC_0 } \end{gathered}$	$1 / 0$ 1/0 - 1	J	Tristate	-	-	71
PJ[4]	PCR[148]	$\begin{aligned} & \text { AF0 } \\ & \text { AF1 } \\ & \text { AF2 } \\ & \text { AF3 } \end{aligned}$	GPIO[148] SCK 5 E1UC[18]	$\begin{gathered} \text { SIUL } \\ \text { DSPI_5 } \\ \text { eMIOS_1 } \end{gathered}$	$\begin{aligned} & 1 / 0 \\ & 1 / 0 \\ & - \end{aligned}$	M	Tristate	-	-	5

1 Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module.
PCR.PA $=00 \rightarrow$ AF0; PCR.PA $=01 \rightarrow$ AF1; PCR.PA $=10 \rightarrow$ AF2; PCR.PA $=11 \rightarrow$ AF3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ' 1 ', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "-".
${ }^{2}$ See Table 3.
3 The RESET configuration applies during and after reset.

4 All WKUP pins also support external interrupt capability. See the WKPU chapter of the MPC5606BK Microcontroller Reference Manual for further details.
${ }^{5} \mathrm{NMI}$ has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.
6 "Not applicable" because these functions are available only while the device is booting. See the BAM chapter of the MPC5606BK Microcontroller Reference Manual for details.
7 Value of PCR.IBE bit must be 0.
8 Out of reset all the functional pins except $\mathrm{PC}[0: 1]$ and $\mathrm{PH}[9: 10]$ are available to the user as GPIO. PC[0:1] are available as JTAG pins (TDI and TDO respectively).
PH[9:10] are available as JTAG pins (TCK and TMS respectively).
It is up to the user to configure these pins as GPIO when needed.
$9 \mathrm{PC}[1]$ is a fast/medium pad but is in medium configuration by default. This pad is in Alternate Function 2 mode after reset which has TDO functionality. The reset value of PCR.OBE is 1 , but this setting has no impact as long as this pad stays in AF2 mode. After configuring this pad as GPIO (PCR.PA = 0), output buffer is enabled as reset value of PCR.OBE $=1$.
${ }^{10}$ Not available in 100LQFP package.
Table 3. Pad types

Type	Description
F	Fast
I	Input only with analog feature
J	Input/output with analog feature
M	Medium
S	Slow

3 Electrical characteristics

This section contains electrical characteristics of the device as well as temperature and power considerations.
This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V_{DD} or V_{SS}). This could be done by the internal pull-up and pull-down, which is provided by the product for most general purpose pins.

The parameters listed in the following tables represent the characteristics of the device and its demands on the system.
In the tables where thedevice logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

In the tables where the externalsystem must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

3.1 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 4 are used and the parameters are tagged accordingly in the tables where appropriate.

Table 4. Parameter classifications

Classification tag	Tag description
P	Those parameters are guaranteed during production testing on each individual device.
C	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
T	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.2 NVUSRO register

Portions of the device configuration, such as high voltage supply, oscillator margin, and watchdog enable/disable after reset are controlled via bit values in the Non-Volatile User Options Register (NVUSRO) register.

For a detailed description of the NVUSRO register, please refer to the MPC5606BK Microcontroller Reference Manual.

3.2.1 NVUSRO[PAD3V5V] field description

Table 5 shows how NVUSRO[PAD3V5V] controls the device configuration.
Table 5. PAD3V5V field description ${ }^{1}$

Value 2	
0	High voltage supply is 5.0 V
1	High voltage supply is 3.3 V

${ }^{1}$ See the MPC5606BK Microcontroller Reference Manual for more information on the NVUSRO register.
2 The default manufacturing value is ' 1 '. This value can be programmed by the customer in Shadow Flash.
The DC electrical characteristics are dependent on the PAD3V5V bit value.

3.2.2 NVUSRO[OSCILLATOR_MARGIN] field description

Table 6 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.
Table 6. OSCILLATOR_MARGIN field description ${ }^{1}$

Value 2	Description
0	Low consumption configuration $(4 \mathrm{MHz} / 8 \mathrm{MHz})$
1	High margin configuration $(4 \mathrm{MHz} / 16 \mathrm{MHz})$

See the MPC5606BK Microcontroller Reference Manual for more information on the NVUSRO register.
2 The default manufacturing value is ' 1 '. This value can be programmed by the customer in Shadow Flash.
The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value.

MPC5606BK Microcontroller Data Sheet, Rev. 2

3.2.3 NVUSRO[WATCHDOG_EN] field description

The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value. Table 7 shows how NVUSRO[WATCHDOG_EN] controls the device configuration.

Table 7. WATCHDOG_EN field description ${ }^{1}$

Value 2	
0	Disable after reset
1	Enable after reset

${ }^{1}$ See the MPC5606BK Microcontroller Reference Manual for more information on the NVUSRO register.
2^{2} The default manufacturing value is ' 1 '. This value can be programmed by the customer in Shadow Flash.

3.3 Absolute maximum ratings

Table 8. Absolute maximum ratings

Symbol		Parameter	Conditions	Value		Unit	
		Min		Max			
$\mathrm{V}_{\text {SS }}$	SR		Digital ground on VSS_HV pins	-	0	0	V
V_{DD}	SR	Voltage on VDD_HV pins with respect to ground (V_{SS})	-	-0.3	6.0	V	
$\mathrm{V}_{\text {SS_LV }}$	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V_{SS})	-	$\mathrm{V}_{S S}-0.1$	$\mathrm{V}_{S S}+0.1$	V	
$\mathrm{V}_{\mathrm{DD} \text { _BV }}$	SR	Voltage on VDD_BV pin (regulator supply) with respect to ground (V_{SS})	-	-0.3	6.0	V	
			Relative to V_{DD}	-0.3	$\mathrm{V}_{\mathrm{DD}}+0.3$		
$\mathrm{V}_{\text {SS_ADC }}$	SR	Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC reference) pin with respect to ground (V_{SS})	-	$\mathrm{V}_{S S}-0.1$	$V_{S S}+0.1$	V	
V DD _ADC	SR	Voltage on VDD_HV_ADC0, VDD_HV_ADC1 (ADC reference) with respect to ground (V_{SS})	-	-0.3	6.0	V	
			Relative to V_{DD}	$\mathrm{V}_{\mathrm{DD}}-0.3$	$V_{D D}+0.3$		
V_{IN}	SR	Voltage on any GPIO pin with respect to ground (V_{SS})	-	-0.3	6.0	V	
			Relative to V_{DD}	-	$\mathrm{V}_{\mathrm{DD}}+0.3$		
$\mathrm{I}_{\text {INJPAD }}$	SR	Injected input current on any pin during overload condition	-	-10	10	mA	
$\mathrm{I}_{\text {INJSUM }}$	SR	Absolute sum of all injected input currents during overload condition	-	-50	50		
$\mathrm{I}_{\text {AVGSEG }}$	SR	Sum of all the static I/O current within a supply segment	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \\ & \text { PAD3V5V }=0 \end{aligned}$	-	70	mA	
			$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \\ & \text { PAD3V5V }=1 \end{aligned}$	-	64		
T Storage	SR	Storage temperature	-	-55	150	${ }^{\circ} \mathrm{C}$	

NOTE

Stresses exceeding the recommended absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions ($\mathrm{V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{DD}}$ or $\left.\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{SS}}\right)$, the voltage on pins with respect to ground $\left(\mathrm{V}_{\mathrm{SS}}\right)$ must not exceed the recommended values.

3.4 Recommended operating conditions

Table 9. Recommended operating conditions (3.3 V)

Symbol		Parameter	Conditions	Value		Unit	
		Min		Max			
$\mathrm{V}_{\text {SS }}$	SR		Digital ground on VSS_HV pins	-	0	0	V
$\mathrm{V}_{\mathrm{DD}}{ }^{1}$	SR	Voltage on VDD_HV pins with respect to ground (V_{SS})	-	3.0	3.6	V	
$\mathrm{V}_{\text {SS_LV }}{ }^{2}$	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V_{SS})	-	$\mathrm{V}_{S S}-0.1$	$V_{S S}+0.1$	V	
$\mathrm{V}_{\mathrm{DD} \text { _ }} \mathrm{BV}^{3}$	SR	Voltage on VDD_BV pin (regulator supply) with respect to ground (V_{SS})	-	3.0	3.6	V	
			Relative to V_{DD}	$\mathrm{V}_{\mathrm{DD}}-0.1$	$V_{D D}+0.1$		
$\mathrm{V}_{\text {SS_ADC }}$	SR	Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC reference) pin with respect to ground $\left(\mathrm{V}_{\mathrm{SS}}\right)$	-	$\mathrm{V}_{S S}-0.1$	$\mathrm{V}_{S S}+0.1$	V	
$\mathrm{V}_{\mathrm{DD} \text { _ADC }}{ }^{4}$	SR	Voltage on VDD_HV_ADCO, VDD_HV_ADC1 (ADC reference) with respect to ground (V_{SS})	-	3.0^{5}	3.6	V	
			Relative to V_{DD}	$\mathrm{V}_{\mathrm{DD}}-0.1$	$V_{D D}+0.1$		
$\mathrm{V}_{\text {IN }}$	SR	Voltage on any GPIO pin with respect to ground (V_{SS})	-	$\mathrm{V}_{S S}-0.1$	-	V	
			Relative to V_{DD}	-	$V_{D D}+0.1$		
$I_{\text {INJPAD }}$	SR	Injected input current on any pin during overload condition	-	-5	5	mA	
$\mathrm{I}_{\text {InJSUM }}$	SR	Absolute sum of all injected input currents during overload condition	-	-50	50		
TV ${ }_{\text {DD }}$	SR	V_{DD} slope to ensure correct power up ${ }^{6}$	-	-	0.25	$\mathrm{V} / \mathrm{\mu s}$	

Table 9. Recommended operating conditions (3.3 V) (continued)

Symbol		Parameter	Conditions	Value		Unit	
		Min		Max			
$\begin{gathered} \mathrm{T}_{\text {A C-Grade }} \\ \text { Part } \end{gathered}$	SR		Ambient temperature under bias	$\mathrm{f}_{\mathrm{CPU}}<64 \mathrm{MHz}^{7}$	-40	85	${ }^{\circ} \mathrm{C}$
$\begin{gathered} \mathrm{T}_{\mathrm{J}} \text { C-Grade } \\ \text { Part } \end{gathered}$	SR	Junction temperature under bias	-	-40	110		
$\begin{gathered} \mathrm{T}_{\mathrm{A}} \text { V-Grade } \\ \quad \text { Part } \end{gathered}$	SR	Ambient temperature under bias	$\mathrm{f}_{\mathrm{CPU}}<64 \mathrm{MHz}^{7}$	-40	105		
$\begin{gathered} \mathrm{T}_{J} \text { V-Grade } \\ \quad \text { Part } \end{gathered}$	SR	Junction temperature under bias	-	-40	130		
$\begin{gathered} \mathrm{T}_{\text {A M-Grade }} \\ \quad \text { Part } \end{gathered}$	SR	Ambient temperature under bias	$\mathrm{f}_{\mathrm{CPU}}<64 \mathrm{MHz}^{7}$	-40	125		
$\begin{gathered} T_{J} \text { M-Grade } \\ \text { Part } \end{gathered}$	SR	Junction temperature under bias	-	-40	150		

100 nF capacitance needs to be provided between each $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$ pair.
${ }^{2} 330 \mathrm{nF}$ capacitance needs to be provided between each V_{DD} LV $/ \mathrm{V}_{\text {SS_LV }}$ supply pair.
3470 nF capacitance needs to be provided between $\mathrm{V}_{\mathrm{DD} _\mathrm{BV}}$ and the nearest $\mathrm{V}_{\text {SS_LV }}$ (higher value may be needed depending on external regulator characteristics). Supply ramp slope on VDD_BV should always be faster or equal to slope of VDD_HV. Otherwise, device may enter regulator bypass mode if slope on VDD_BV is slower.
4100 nF capacitance needs to be provided between $\mathrm{V}_{\mathrm{DD} \text { _ADC }} / \mathrm{V}_{\text {SS_ADC }}$ pair.
5 Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/O DC electrical specification may not be guaranteed. When voltage drops below $\mathrm{V}_{\mathrm{LVDHVL}}$, the device is reset.
6 Guaranteed by device validation
7 This frequency includes the 4% frequency modulation guard band.
Table 10. Recommended operating conditions (5.0 V)

Symbol		Parameter	Conditions	Value		Unit	
		Min		Max			
$\mathrm{V}_{\text {SS }}$	SR		Digital ground on VSS_HV pins	-	0	0	V
$\mathrm{V}_{\mathrm{DD}}{ }^{1}$	SR	Voltage on VDD_HV pins with respect to ground (V_{SS})	-	4.5	5.5	V	
			Voltage drop ${ }^{2}$	3.0	5.5		
$\mathrm{V}_{\text {SS_LV }}{ }^{3}$	SR	Voltage on VSS_LV (low voltage digital supply) pins with respect to ground $\left(\mathrm{V}_{\mathrm{SS}}\right)$	-	$V_{S S}-0.1$	$\mathrm{V}_{S S}+0.1$	V	
$\mathrm{V}_{\mathrm{DD} \text { _BV }}{ }^{4}$	SR	Voltage on VDD_BV pin (regulator supply) with respect to ground (V_{SS})	-	4.5	5.5	V	
			Voltage drop ${ }^{2}$	3.0	5.5		
			Relative to V_{DD}	3.0	$\mathrm{V}_{\mathrm{DD}}+0.1$		
$\mathrm{V}_{\text {SS_ADC }}$	SR	Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC reference) pin with respect to ground (V_{SS})	-	$\mathrm{V}_{S S}-0.1$	$\mathrm{V}_{S S}+0.1$	V	

Table 10. Recommended operating conditions (5.0 V) (continued)

Symbol		Parameter	Conditions	Value		Unit	
		Min		Max			
$\mathrm{V}_{\text {DD_ADC }}{ }^{5}$	SR		Voltage on VDD_HV_ADC0, VDD_HV_ADC1 (ADC reference) with respect to ground (V_{SS})	-	4.5	5.5	V
		Voltage drop ${ }^{2}$		3.0	5.5		
		Relative to V_{DD}		$\mathrm{V}_{\mathrm{DD}}-0.1$	$\mathrm{V}_{\mathrm{DD}}+0.1$		
$\mathrm{V}_{\text {IN }}$	SR	Voltage on any GPIO pin with respect to ground (V_{SS})	-	$\mathrm{V}_{S S}-0.1$	-	V	
			Relative to V_{DD}	-	$\mathrm{V}_{\mathrm{DD}}+0.1$		
$I_{\text {INJPAD }}$	SR	Injected input current on any pin during overload condition	-	-5	5	mA	
I InJSUM	SR	Absolute sum of all injected input currents during overload condition	-	-50	50		
TV ${ }_{\text {DD }}$	SR	V_{DD} slope to ensure correct power up ${ }^{6}$	-	-	0.25	$\mathrm{V} / \mu \mathrm{s}$	
$\begin{gathered} \mathrm{T}_{\text {A C-Grade }} \\ \hline \end{gathered}$	SR	Ambient temperature under bias	$\mathrm{f}_{\mathrm{CPU}}<64 \mathrm{MHz}^{7}$	-40	85	${ }^{\circ} \mathrm{C}$	
$\begin{gathered} \text { Part } \\ \mathrm{T}_{\text {J C-Grade }} \\ \hline \end{gathered}$	SR	Junction temperature under bias	-	-40	110		
TAV-Grade Part	SR	Ambient temperature under bias	$\mathrm{f}_{\mathrm{CPU}}<64 \mathrm{MHz}^{7}$	-40	105		
$\begin{gathered} \mathrm{T}_{\mathrm{J} V \text {-Grade }} \\ \text { Part } \end{gathered}$	SR	Junction temperature under bias	-	-40	130		
$\mathrm{T}_{\mathrm{A}} \text { M-Grade }$ Part	SR	Ambient temperature under bias	$\mathrm{f}_{\mathrm{CPU}}<64 \mathrm{MHz}^{7}$	-40	125		
TJ M-Grade Part	SR	Junction temperature under bias	-	-40	150		

100 nF capacitance needs to be provided between each $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$ pair.
2 Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.0 V . However, certain analog electrical characteristics will not be guaranteed to stay within the stated limits.
3330 nF capacitance needs to be provided between each V_{DD} _LV $/ \mathrm{V}_{\text {SS_LV }}$ supply pair.
4470 nF capacitance needs to be provided between V_{DD} BV and the nearest $\mathrm{V}_{\text {SS_LV }}$ (higher value may be needed depending on external regulator characteristics). While the supply voltage ramps up, the slope on $V_{D D _B V}$ should be less than $0.9 \mathrm{~V}_{\mathrm{DD} _\mathrm{HV}}$ in order to ensure the device does not enter regulator bypass mode.
5100 nF capacitance needs to be provided between $\mathrm{V}_{\text {DD_ADC }} / \mathrm{V}_{\text {SS_ADC }}$ pair.
6 Guaranteed by device validation. Please refer to Section 3.5.1, External ballast resistor recommendations for minimum V_{DD} slope to be guaranteed to ensure correct power up in case of external resistor usage.
7 This frequency includes the 4% frequency modulation guard band.
NOTE
RAM data retention is guaranteed with $\mathrm{V}_{\text {DD LV }}$ not below 1.08 V .

3.5 Thermal characteristics

3.5.1 External ballast resistor recommendations

External ballast resistor on V_{DD} BV pin helps in reducing the overall power dissipation inside the device. This resistor is required only when maximum power consumption exceeds the limit imposed by package thermal characteristics.

As stated in Table 11 LQFP thermal characteristics, considering a thermal resistance of 144 LQFP as $48.3^{\circ} \mathrm{C} / \mathrm{W}$, at ambient temperature $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$, the junction temperature T_{j} will cross $150^{\circ} \mathrm{C}$ if the total power dissipation is greater than $(150-125) / 48.3=517 \mathrm{~mW}$. Therefore, the total device current $\mathrm{I}_{\mathrm{DDMAX}}$ at $125^{\circ} \mathrm{C} / 5.5 \mathrm{~V}$ must not exceed 94.1 mA (i.e., $\mathrm{PD} / \mathrm{VDD})$. Assuming an average $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{V}_{\mathrm{DD}} \mathrm{HV}\right)$ of $15-20 \mathrm{~mA}$ consumption typically during device RUN mode, the LV domain consumption $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{V}_{\mathrm{DD}} \mathrm{BV}\right)$ is thus limited to $\mathrm{I}_{\mathrm{DDMAX}}-\mathrm{I}_{\mathrm{DD}}\left(\mathrm{V}_{\mathrm{DD}}\right.$ HV $)$, i.e., 80 mA .

Therefore, respecting the maximum power allowed as explained in Section 3.5.2, Package thermal characteristics, it is recommended to use this resistor only in the $125^{\circ} \mathrm{C} / 5.5 \mathrm{~V}$ operating corner as per the following guidelines:

- If ${ }_{\text {DD }}\left(V_{\mathrm{DD}_{\mathrm{BV}}}\right)<80 \mathrm{~mA}$, then no resistor is required.
- If $01 \mathrm{AA} \mathrm{I}_{\mathrm{DD}}\left(\mathrm{V}_{\mathrm{DD}} \mathrm{BV}\right)<90 \mathrm{~mA}$, then 4Ω resistor can be used.
- If ${ }_{\mathrm{DD}}\left(\mathrm{V}_{\mathrm{DD} _\mathrm{BV}}\right)>90 \mathrm{~mA}$, then 8Ω resistor can be used.

Using resistance in the range of $4-8 \Omega$ the gain will be around $10-20 \%$ of total consumption on $V_{\text {DD }}$ BV. For example, if 8Ω resistor is used, then power consumption when $I_{D D}\left(V_{D D}{ }_{D V}\right)$ is 110 mA is equivalent to power consumption when $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{V}_{\mathrm{DD} _\mathrm{BV}}\right)$ is 90 mA (approximately) when resistor not used.
In order to ensure correct power up, the minimum $V_{D_{D}} B V$ to be guaranteed is $30 \mathrm{~ms} / \mathrm{V}$. If the supply ramp is slower than this value, then LVDHV3B monitoring ballast supply $\mathrm{V}_{\mathrm{DD}_{\mathrm{B}}} \mathrm{BV}$ pin gets triggered leading to device reset. Until the supply reaches certain threshold, this low voltage monitor generates destructive reset event in the system. This threshold depends on the maximum $\mathrm{I}_{\mathrm{DD}}\left(\mathrm{V}_{\mathrm{DD} _\mathrm{BV}}\right)$ possible across the external resistor.

3.5.2 Package thermal characteristics

Table 11. LQFP thermal characteristics ${ }^{1}$

Symbol		C	Parameter	Conditions ${ }^{2}$	Pin count	Value			Unit	
		Min				Typ	Max			
$\mathrm{R}_{\theta \mathrm{JA}}$	CC		D		Single-layer board - 1s	100	-	-	64	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		convection ${ }^{3}$		144		-	-	64		
				176		-	-	64		
				Four-layer board - 2s2p	100	-	-	49.7		
					144	-	-	48.3		
					176	-	-	47.3		
$\mathrm{R}_{\text {өJB }}$	CC	Thermal resistance, junction-to-board ${ }^{4}$		Single-layer board - 1s	100	-	-	36	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
				144	-	-	38			
				176	-	-	38			
				Four-layer board - 2s2p	100	-	-	33.6		
				144	-	-	33.4			
				176	-	-	33.4			

Table 11. LQFP thermal characteristics ${ }^{1}$ (continued)

Symbol		C	Parameter	Conditions ${ }^{2}$	Pin count	Value			Unit	
		Min				Typ	Max			
$\mathrm{R}_{\text {日JC }}$	CC		Thermal resistance, junction-to-case ${ }^{5}$		Single-layer board - 1s	100	-	-	23	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		144			-	-	23			
		176			-	-	23			
		Four-layer board - 2 s 2 p			100	-	-	19.8		
					144	-	-	19.2		
					176	-	-	18.8		

1 Thermal characteristics are targets based on simulation.
${ }^{2} \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$.
3 Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. When Greek letters are not available, the symbols are typed as $R_{\text {thJA }}$ and $R_{\text {thJMA. }}$.
4 Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. When Greek letters are not available, the symbols are typed as $R_{\text {thJB. }}$.

5
Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. When Greek letters are not available, the symbols are typed as $\mathrm{R}_{\text {thJc. }}$.

3.5.3 Power considerations

The average chip-junction temperature, T_{J}, in degrees Celsius, may be calculated using Equation 1:

$$
\begin{equation*}
T_{J}=T_{A}+\left(P_{D} \times R_{\theta J A}\right) \tag{Eqn. 1}
\end{equation*}
$$

Where:
T_{A} is the ambient temperature in ${ }^{\circ} \mathrm{C}$.
$\mathrm{R}_{\theta \mathrm{JA}}$ is the package junction-to-ambient thermal resistance, in ${ }^{\circ} \mathrm{C} / \mathrm{W}$.
P_{D} is the sum of $\mathrm{P}_{\text {INT }}$ and $\mathrm{P}_{\mathrm{I} / \mathrm{O}}\left(\mathrm{P}_{\mathrm{D}}=\mathrm{P}_{\mathrm{INT}}+\mathrm{P}_{\mathrm{I} / \mathrm{O}}\right)$.
$P_{\text {INT }}$ is the product of I_{DD} and V_{DD}, expressed in watts. This is the chip internal power.
$\mathrm{P}_{\mathrm{I} / \mathrm{O}}$ represents the power dissipation on input and output pins; user determined.
Most of the time for the applications, $\mathrm{P}_{\mathrm{I} / \mathrm{O}}<\mathrm{P}_{\mathrm{INT}}$ and may be neglected. On the other hand, $\mathrm{P}_{\mathrm{I} / \mathrm{O}}$ may be significant, if the device is configured to continuously drive external modules and/or memories.
An approximate relationship between P_{D} and T_{J} (if $\mathrm{P}_{\mathrm{I} / \mathrm{O}}$ is neglected) is given by:

$$
P_{D}=K /\left(T_{J}+273^{\circ} C\right)
$$

Eqn. 2
Therefore, solving equations 1 and 2 :

$$
\begin{equation*}
K=P_{D} \times\left(T_{A}+273^{\circ} C\right)+R_{\theta J A} \times P_{D}^{2} \tag{Eqn. 3}
\end{equation*}
$$

Where:

K is a constant for the particular part, which may be determined from Equation 3 by measuring P_{D} (at equilibrium) for a known T_{A}. Using this value of K , the values of P_{D} and T_{J} may be obtained by solving equations 1 and 2 iteratively for any value of T_{A}.

$3.6 \quad$ I/O pad electrical characteristics

3.6.1 I/O pad types

The device provides four main I/O pad types depending on the associated alternate functions:

- Slow pads - are the most common pads, providing a good compromise between transition time and low electromagnetic emission.
- Medium pads - provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission.
- Fast pads - provide maximum speed. These are used for improved debugging capability.
- Input only pads - are associated with ADC channels and 32 kHz low power external crystal oscillator providing low input leakage.
Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the costof reducing AC performance.

3.6.2 I/O input DC characteristics

Table 12 provides input DC electrical characteristics as described in Figure 5.

Figure 5. I/O input DC electrical characteristics definition

Table 12. I/O input DC electrical characteristics

Symbol		C	Parameter	Conditions ${ }^{1}$		Value			Unit	
		Min				Typ	Max			
V_{IH}	SR		P	Input high level CMOS (Schmitt Trigger)	-		$0.65 \mathrm{~V}_{\mathrm{DD}}$	-	$\mathrm{V}_{\mathrm{DD}}+0.4$	V
V_{IL}	SR	P	Input low level CMOS (Schmitt Trigger)	-		-0.4	-	$0.35 \mathrm{~V}_{\mathrm{DD}}$		
$\mathrm{V}_{\mathrm{HYS}}$	CC	C	Input hysteresis CMOS (Schmitt Trigger)	-		$0.1 \mathrm{~V}_{\mathrm{DD}}$	-	-		
ILKG	CC		Digital input leakage	No injection on adjacent pin	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	-	2	-	nA	
		P			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	2	-		
		D			$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-	5	300		
		D			$\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$	-	12	500		
		P			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-	70	1000		
WFI^{2}	SR	P	Wakeup input filtered pulse			-	-	40	ns	
$\mathrm{W}_{\mathrm{NFI}}{ }^{2}$	SR	P	Wakeup input not filtered pulse			1000	-	-	ns	

${ }^{1} \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified
2 In the range from 40 to 1000 ns , pulses can be filtered or not filtered, according to operating temperature and voltage.

3.6.3 I/O output DC characteristics

The following tables provide DC characteristics for bidirectional pads:

- Table 13 provides weak pull figures. Both pull-up and pull-down resistances are supported.
- Table 14 provides output driver characteristics for I/O pads when in SLOW configuration.
- Table 15 provides output driver characteristics for I/O pads when in MEDIUM configuration.
- Table 16 provides output driver characteristics for I/O pads when in FAST configuration.

Table 13. I/O pull-up/pull-down DC electrical characteristics

Symbol		C	Parameter	Conditions ${ }^{1}$		Value			Unit	
		Min				Typ	Max			
\|liwPul	CC		P	Weak pull-up current absolute value	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	PAD3V5V = 0	10	-	150	$\mu \mathrm{A}$
		C	PAD3V5V = 1^{2}			10	-	250		
		P	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%$		PAD3V5V = 1	10	-	150		
\|IWPDI	CC	P	Weak pull-down current absolute value	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	PAD3V5V = 0	10	-	150	$\mu \mathrm{A}$	
		C			PAD3V5V = 1	10	-	250		
		P		$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%$	PAD3V5V = 1	10	-	150		

$1 \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.
2 The configuration PAD3V5 = 1 when $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

Table 14. SLOW configuration output buffer electrical characteristics

Symbol		C	Parameter	Conditions ${ }^{1}$		Value			Unit	
		Min				Typ	Max			
V_{OH}	CC		P	Output high level SLOW configuration	Push Pull	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=0 \\ & \text { (recommended) } \end{aligned}$	$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	-	V
		C	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=1^{2} \end{aligned}$			$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	-		
		C	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \\ & \mathrm{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=1 \\ & \text { (recommended) } \end{aligned}$			$V_{D D}-0.8$	-	-		
V_{OL}	CC	P	Output low level SLOW configuration	Push Pull	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=0 \\ & \text { (recommended) } \end{aligned}$	-	-	$0.1 \mathrm{~V}_{\mathrm{DD}}$	V	
		C			$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \\ & \text { PAD3V5V }=1^{2} \end{aligned}$	-	-	$0.1 \mathrm{~V}_{\mathrm{DD}}$		
		C			$\begin{aligned} & \hline \mathrm{lOL}=1 \mathrm{~mA}, \\ & \mathrm{~V} D=3.3 \mathrm{~V} \pm 10 \%, \\ & \mathrm{PAD} 2 \mathrm{~V} 5 \mathrm{~V}=1 \\ & \text { (recommended) } \end{aligned}$	-	-	0.5		

${ }^{1} \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified
2 The configuration PAD3V5 $=1$ when $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

Table 15. MEDIUM configuration output buffer electrical characteristics

Symbol		C	Parameter	Conditions ${ }^{1}$		Value			Unit	
		Min				Typ	Max			
V_{OH}	CC		C	Output high level MEDIUM configuration	Push Pull	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-3.8 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \text { PAD3V5V }=0 \end{aligned}$	$0.8 \mathrm{~V}_{\text {DD }}$	-	-	V
		P	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \text { PAD3V5V }=0 \\ & \text { (recommended) } \end{aligned}$			$0.8 \mathrm{~V}_{\text {DD }}$	-	-		
		C	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=1^{2} \end{aligned}$			$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	-		
		C	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \text { PAD3V5V }=1 \\ & \text { (recommended) } \end{aligned}$			$\mathrm{V}_{\mathrm{DD}}-0.8$	-	-		
		C	$\begin{aligned} & \mathrm{l} \mathrm{OH}=-100 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=0 \end{aligned}$			0.8 V DD	-	-		

Table 15. MEDIUM configuration output buffer electrical characteristics (continued)

Symbol		C	Parameter	Conditions ${ }^{1}$		Value			Unit	
		Min				Typ	Max			
V_{OL}	CC		C	Output low level MEDIUM configuration	Push Pull	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=3.8 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \text { PAD3V5V }=0 \end{aligned}$	-	-	$0.2 \mathrm{~V}_{\text {DD }}$	V
		P	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \text { PAD3V5V }=0 \\ & \text { (recommended) } \end{aligned}$			-	-	$0.1 \mathrm{~V}_{\mathrm{DD}}$		
		C	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=1^{2} \end{aligned}$			-	-	$0.1 \mathrm{~V}_{\mathrm{DD}}$		
		C	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \text { PAD3V5V }=1 \\ & \text { (recommended) } \end{aligned}$			-	-	0.5		
		C	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \text { PAD3V5V }=0 \end{aligned}$			-	-	$0.1 \mathrm{~V}_{\mathrm{DD}}$		

$1 \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified
2 The configuration PAD3V5 $=1$ when $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

Table 16. FAST configuration output buffer electrical characteristics

Symbol		C	Parameter	Conditions ${ }^{1}$		Value			Unit	
		Min				Typ	Max			
V_{OH}	CC		P	Output high level FAST configuration	Push Pull	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-14 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=0 \\ & \text { (recommended) } \end{aligned}$	$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	-	V
		C	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-7 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=1^{2} \end{aligned}$			$0.8 \mathrm{~V}_{\text {DD }}$	-	-		
		C	$\begin{aligned} & \hline \mathrm{l}_{\mathrm{OH}}=-11 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \\ & \text { PAD3V5V }=1 \\ & \text { (recommended) } \end{aligned}$			$\mathrm{V}_{\mathrm{DD}}-0.8$	-	-		
V_{OL}	CC	P	Output low level FAST configuration	Push Pull	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=14 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=0 \\ & \text { (recommended) } \end{aligned}$	-	-	$0.1 \mathrm{~V}_{\mathrm{DD}}$	V	
		C			$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=7 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=1^{2} \end{aligned}$	-	-	$0.1 \mathrm{~V}_{\mathrm{DD}}$		
		C			$\begin{array}{\|l} \hline \mathrm{l}_{\mathrm{OL}}=11 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \\ \mathrm{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=1 \\ \text { (recommended) } \end{array}$	-	-	0.5		

[^0]MPC5606BK Microcontroller Data Sheet, Rev. 2
${ }^{2}$ The configuration PAD3V5 $=1$ when $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

3.6.4 Output pin transition times

Table 17. Output pin transition times

Symbol		C	Parameter	Conditions ${ }^{1}$		Value			Unit	
		Min				Typ	Max			
$\mathrm{T}_{\text {tr }}$	CC		D	Output transition time output pin ${ }^{2}$	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V} \pm 10 \%, \\ & \text { PAD3V5V }=0 \end{aligned}$	-	-	50	ns
		SLOW configuration		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-		-	100		
				$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	-		-	125		
				$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \\ & \mathrm{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=1 \end{aligned}$	-	-	50		
				$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		-	-	100		
				$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		-	-	125		
$\mathrm{T}_{\text {tr }}$	CC	D	Output transition time output pin ${ }^{2}$ MEDIUM configuration	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \\ & \text { PAD3V5V }=0 \\ & \text { SIUL.PCRx. } \mathrm{SRC}=1 \end{aligned}$	-	-	10	ns	
				$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		-	-	20		
				$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		-	-	40		
		D		$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \\ & \text { PAD3V5V }=1 \\ & \text { SIUL.PCRx.SRC }=1 \end{aligned}$	-	-	12		
		T		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		-	-	25		
		D		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		-	-	40		
$\mathrm{T}_{\text {tr }}$	CC	D	Output transition time output pin ${ }^{2}$ FAST configuration	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=0 \end{aligned}$	-	-	4	ns	
				$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		-	-	6		
				$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		-	-	12		
				$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \\ & \text { PAD3V5V }=1 \end{aligned}$	-	-	4		
				$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		-	-	7		
				$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		-	-	12		

${ }^{1} V_{D D}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, T_{A}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified
${ }^{2} \mathrm{C}_{\mathrm{L}}$ includes device and package capacitances ($\mathrm{C}_{\mathrm{PKG}}<5 \mathrm{pF}$).

3.6.5 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$ supply pair as described in Table 18.

Table 19 provides I/O consumption figures.
In order to ensure device reliability, the average current of the I / O on a single segment should remain below the $\mathrm{I}_{\text {AVGSEG }}$ maximum value.

Table 18. I/O supply segments

Package	Supply segment							
	1	2	3	4	5	6	7	8
176 LQFP	pin7 pin27	pin28pin57	$\begin{gathered} \text { pin59 - } \\ \text { pin85 } \end{gathered}$	pin86 pin123	$\begin{gathered} \text { pin124- } \\ \operatorname{pin} 150 \end{gathered}$	$\begin{gathered} \text { pin151 - } \\ \text { pin6 } \end{gathered}$	-	-
144 LQFP	$\begin{gathered} \text { pin20 - } \\ \text { pin49 } \end{gathered}$	$\begin{gathered} \text { pin51 - } \\ \text { pin99 } \end{gathered}$	$\begin{gathered} \hline \operatorname{pin} 100- \\ \text { pin122 } \end{gathered}$	$\begin{gathered} \hline \operatorname{pin} 123- \\ \operatorname{pin} 19 \end{gathered}$	-	-	-	-
100 LQFP	pin16 pin35	$\begin{gathered} \hline \text { pin37- } \\ \text { pin69 } \end{gathered}$	$\begin{gathered} \hline \operatorname{pin} 70- \\ \operatorname{pin} 83 \end{gathered}$	pin84 pin15	-	-	-	-

Table 19. I/O consumption

Symbol		C	Parameter	Conditions ${ }^{1}$		Value			Unit	
		Min				Typ	Max			
$\mathrm{I}_{\text {SWTSLW }}{ }^{2}$	CC		D	Dynamic I/O current for SLOW configuration	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \\ & \text { PAD3V5V }=0 \end{aligned}$	-	-	20	mA
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \\ & \text { PAD3V5V }=1 \end{aligned}$				-	-	16		
$\mathrm{ISWTMED}^{2}$	CC	D	Dynamic I/O current for MEDIUM configuration	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \\ & \text { PAD3V5V }=0 \end{aligned}$	-	-	29	mA	
					$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \\ & \text { PAD3V5V }=1 \end{aligned}$	-	-	17		
$\mathrm{I}_{\text {SWTFST }}{ }^{2}$	CC	D	Dynamic I/O current for FAST configuration	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \\ & \text { PAD3V5V }=0 \end{aligned}$	-	-	110	mA	
					$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \\ & \text { PAD3V5V }=1 \end{aligned}$	-	-	50		
$\mathrm{I}_{\text {RMSSLW }}$	CC	D	Root medium square I/O current for SLOW configuration	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, 2 \mathrm{MHz}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=0 \end{aligned}$	-	-	2.3	mA	
				$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, 4 \mathrm{MHz}$		-	-	3.2		
				$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, 2 \mathrm{MHz}$		-	-	6.6		
				$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, 2 \mathrm{MHz}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \\ & \mathrm{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=1 \end{aligned}$	-	-	1.6		
				$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, 4 \mathrm{MHz}$		-	-	2.3		
				$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, 2 \mathrm{MHz}$		-	-	4.7		
IRMSMED	CC	D	Root medium square I/O current for MEDIUM configuration	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, 13 \mathrm{MHz}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \\ & \text { PAD3V5V }=0 \end{aligned}$	-	-	6.6	mA	
				$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, 40 \mathrm{MHz}$		-	-	13.4		
				$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, 13 \mathrm{MHz}$		-	-	18.3		
				$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, 13 \mathrm{MHz}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \\ & \text { PAD3V5V }=1 \end{aligned}$	-	-	5		
				$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, 40 \mathrm{MHz}$		-	-	8.5		
				$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, 13 \mathrm{MHz}$		-	-	11		

Table 19. I/O consumption (continued)

Symbol		C	Parameter	Conditions ${ }^{1}$		Value			Unit	
		Min				Typ	Max			
$\mathrm{I}_{\text {RMSFST }}$	CC		D	Root medium square I/O current for FAST configuration	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, 40 \mathrm{MHz}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=0 \end{aligned}$	-	-	22	mA
		$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, 64 \mathrm{MHz}$			-		-	33		
		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, 40 \mathrm{MHz}$			-		-	56		
		$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, 40 \mathrm{MHz}$			$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \\ & \text { PAD3V5V }=1 \end{aligned}$	-	-	14		
		$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, 64 \mathrm{MHz}$				-	-	20		
		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, 40 \mathrm{MHz}$				-	-	35		
$\mathrm{I}_{\text {AVGSEG }}$	SR	D	Sum of all the static I/O current within a supply segment	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$, PAD3V5V $=0$		-	-	70	mA	
				$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%$, PAD3V5V $=1$		-	-	65		

${ }^{1} \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified
${ }^{2}$ Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.
Table 20 provides the weight of concurrent switching I/Os.
In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on a single segment should remain below the 100%.

Table 20. I/O weight ${ }^{1}$

Supply segment			Pad	176 LQFP				144/100 LQFP				
			Weight 5 V	Weight 3.3 V		Weight 5 V		Weight 3.3 V				
176 LQFP	144 LQFP	100 LQFP		$\mathrm{SRC}^{2}=0$	SRC $=1$	SRC $=0$	SRC = 1	SRC = 0	SRC = 1	SRC $=0$	SRC $=1$	
6	4	4		PB[3]	5\%	-	6\%	-	13\%	-	15\%	-
			PC[9]	4\%	-	5\%	-	13\%	-	15\%	-	
			PC[14]	4\%	-	4\%	-	13\%	-	15\%	-	
			PC[15]	3\%	4\%	4\%	4\%	12\%	18\%	15\%	16\%	
	-	-	PJ[4]	3\%	4\%	3\%	3\%	-	-	-	-	

Table 20. I/O weight ${ }^{1}$ (continued)

Supply segment			Pad	176 LQFP				144/100 LQFP				
			Weight 5 V	Weight 3.3 V		Weight 5 V		Weight 3.3 V				
176 LQFP	144 LQFP	100 LQFP		$S R C C^{2}=0$	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC $=0$	SRC = 1	
1	-	-		PH[15]	2\%	3\%	3\%	3\%	-	-	-	-
	-	-	PH[13]	3\%	4\%	3\%	4\%	-	-	-	-	
	-	-	PH[14]	3\%	4\%	4\%	4\%	-	-	-	-	
	-	-	PI[6]	4\%	-	4\%	-	-	-	-	-	
	-	-	PI[7]	4\%	-	4\%	-	-	-	-	-	
	4	-	PG[5]	4\%	-	5\%	-	10\%	-	12\%	-	
		-	PG[4]	4\%	6\%	5\%	5\%	9\%	13\%	11\%	12\%	
		-	PG[3]	4\%	-	5\%	-	9\%	-	11\%	-	
		-	PG[2]	4\%	6\%	5\%	5\%	9\%	12\%	10\%	11\%	
		4	PA[2]	4\%	-	5\%	-	8\%	-	10\%	-	
			PE[0]	4\%	-	5\%	-	8\%	-	9\%	-	
			PA[1]	4\%	-	5\%	-	8\%	-	9\%	-	
			PE[1]	4\%	6\%	5\%	6\%	7\%	10\%	9\%	9\%	
			PE[8]	4\%	6\%	5\%	6\%	7\%	10\%	8\%	9\%	
			PE[9]	4\%	-	5\%	-	6\%	-	8\%	-	
			PE[10]	4\%	-	5\%	-	6\%	-	7\%	-	
			PA[0]	4\%	6\%	5\%	5\%	6\%	8\%	7\%	7\%	
			PE[11]	4\%	-	5\%	-	5\%	-	6\%	-	

Table 20. I/O weight ${ }^{1}$ (continued)

Supply segment			Pad	176 LQFP				144/100 LQFP				
			Weight 5 V	Weight 3.3 V		Weight 5 V		Weight 3.3 V				
176 LQFP	144 LQFP	100 LQFP		$S R C C^{2}=0$	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	
2	1	-		PG[9]	9\%	-	10\%	-	9\%	-	10\%	-
		-	PG[8]	9\%	-	11\%	-	9\%	-	11\%	-	
		1	PC[11]	9\%	-	11\%	-	9\%	-	11\%	-	
			PC[10]	9\%	13\%	11\%	12\%	9\%	13\%	11\%	12\%	
		-	PG[7]	9\%	-	11\%	-	9\%	-	11\%	-	
		-	PG[6]	10\%	14\%	11\%	12\%	10\%	14\%	11\%	12\%	
		1	PB[0]	10\%	14\%	12\%	12\%	10\%	14\%	12\%	12\%	
			$\mathrm{PB}[1]$	10\%	-	12\%	-	10\%	-	12\%	-	
		-	PF[9]	10\%	-	12\%	-	10\%	-	12\%	-	
		-	PF[8]	10\%	14\%	12\%	13\%	10\%	14\%	12\%	13\%	
		-	PF[12]	10\%	15\%	12\%	13\%	10\%	15\%	12\%	13\%	
		1	PC[6]	10\%	-	12\%	-	10\%	-	12\%	-	
			PC[7]	10\%	-	12\%	-	10\%	-	12\%	-	
		-	PF[10]	10\%	14\%	11\%	12\%	10\%	14\%	11\%	12\%	
		-	PF[11]	9\%	-	11\%	-	9\%	-	11\%	-	
		1	PA[15]	8\%	12\%	10\%	10\%	8\%	12\%	10\%	10\%	
		-	PF[13]	8\%	-	10\%	-	8\%	-	10\%	-	
		1	PA[14]	8\%	11\%	9\%	10\%	8\%	11\%	9\%	10\%	
			PA[4]	7\%	-	9\%	-	7\%	-	9\%	-	
			PA[13]	7\%	10\%	8\%	9\%	7\%	10\%	8\%	9\%	
			PA[12]	7\%	-	8\%	-	7\%	-	8\%	-	

Table 20. I/O weight ${ }^{1}$ (continued)

Supply segment			Pad	176 LQFP				144/100 LQFP				
			Weight 5 V	Weight 3.3 V		Weight 5 V		Weight 3.3 V				
176 LQFP	144 LQFP	100 LQFP		$S R C^{2}=0$	SRC = 1	SRC $=0$	SRC = 1	SRC $=0$	SRC = 1	SRC $=0$	SRC = 1	
3	2	2		PB[9]	1\%	-	1\%	-	1\%	-	1\%	-
			PB[8]	1\%	-	1\%	-	1\%	-	1\%	-	
			PB[10]	5\%	-	6\%	-	6\%	-	7\%	-	
		-	PF[0]	5\%	-	6\%	-	6\%	-	8\%	-	
		-	PF[1]	5\%	-	6\%	-	7\%	-	8\%	-	
		-	PF[2]	6\%	-	7\%	-	7\%	-	9\%	-	
		-	PF[3]	6\%	-	7\%	-	8\%	-	9\%	-	
		-	PF[4]	6\%	-	7\%	-	8\%	-	10\%	-	
		-	PF[5]	6\%	-	7\%	-	9\%	-	10\%	-	
		-	PF[6]	6\%	-	7\%	-	9\%	-	11\%	-	
		-	PF[7]	6\%	-	7\%	-	9\%	-	11\%	-	
	-	-	PJ[3]	6\%	-	7\%	-	-	-	-	-	
	-	-	PJ[2]	6\%	-	7\%	-	-	-	-	-	
	-	-	PJ[1]	6\%	-	7\%	-	-	-	-	-	
	-	-	PJ[0]	6\%	-	7\%	-	-	-	-	-	
	-	-	PI[15]	6\%	-	7\%	-	-	-	-	-	
	-	-	PI[14]	6\%	-	7\%	-	-	-	-	-	
	2	2	PD[0]	1\%	-	1\%	-	1\%	-	1\%	-	
			PD[1]	1\%	-	1\%	-	1\%	-	1\%	-	
			PD[2]	1\%	-	1\%	-	1\%	-	1\%	-	
			PD[3]	1\%	-	1\%	-	1\%	-	1\%	-	
			PD[4]	1\%	-	1\%	-	1\%	-	1\%	-	
			PD[5]	1\%	-	1\%	-	1\%	-	1\%	-	
			PD[6]	1\%	-	1\%	-	1\%	-	2\%	-	
			PD[7]	1\%	-	1\%	-	1\%	-	2\%	-	

Table 20. I/O weight ${ }^{1}$ (continued)

Supply segment			Pad	176 LQFP				144/100 LQFP				
			Weight 5 V	Weight 3.3 V		Weight 5 V		Weight 3.3 V				
176 LQFP	144 LQFP	100 LQFP		$S R C C^{2}=0$	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	
4	2	2		PD[8]	1\%	-	1\%	-	1\%	-	2\%	-
			PB[4]	1\%	-	1\%	-	1\%	-	2\%	-	
			PB[5]	1\%	-	1\%	-	1\%	-	2\%	-	
			PB[6]	1\%	-	1\%	-	1\%	-	2\%	-	
			PB[7]	1\%	-	1\%	-	1\%	-	2\%	-	
			PD[9]	1\%	-	1\%	-	1\%	-	2\%	-	
			PD[10]	1\%	-	1\%	-	1\%	-	2\%	-	
			PD[11]	1\%	-	1\%	-	1\%	-	2\%	-	
4	-	-	PB[11]	1\%	-	1\%	-	-	-	-	-	
	-	-	PD[12]	11\%	-	13\%	-	-	-	-	-	
	2	2	PB[12]	11\%	-	13\%	-	15\%	-	17\%	-	
			PD[13]	11\%	-	13\%	-	14\%	-	17\%	-	
			PB[13]	11\%	-	13\%	-	14\%	-	17\%	-	
			PD[14]	11\%	-	13\%	-	14\%	-	17\%	-	
			PB[14]	11\%	-	13\%	-	14\%	-	16\%	-	
			PD[15]	11\%	-	13\%	-	13\%	-	16\%	-	
			PB[15]	11\%	-	13\%	-	13\%	-	15\%	-	
	-	-	$\mathrm{PI}[8]$	10\%	-	12\%	-	-	-	-	-	
	-	-	PI[9]	10\%	-	12\%	-	-	-	-	-	
	-	-	PI[10]	10\%	-	12\%	-	-	-	-	-	
	-	-	PI[11]	10\%	-	12\%	-	-	-	-	-	
	-	-	PI[12]	10\%	-	12\%	-	-	-	-	-	
	-	-	PI[13]	10\%	-	11\%	-	-	-	-	-	
	2	2	PA[3]	9\%	-	11\%	-	11\%	-	13\%	-	
		-	PG[13]	9\%	13\%	11\%	11\%	10\%	14\%	12\%	13\%	
		-	PG[12]	9\%	13\%	10\%	11\%	10\%	14\%	12\%	12\%	
		-	$\mathrm{PH}[0]$	6\%	8\%	7\%	7\%	6\%	9\%	7\%	8\%	
		-	PH[1]	6\%	8\%	7\%	7\%	6\%	8\%	7\%	7\%	
		-	$\mathrm{PH}[2]$	5\%	7\%	6\%	6\%	5\%	7\%	6\%	7\%	
		-	PH[3]	5\%	7\%	5\%	6\%	5\%	7\%	6\%	6\%	
		-	PG[1]	4\%	-	5\%	-	4\%	-	5\%	-	
		-	PG[0]	4\%	5\%	4\%	5\%	4\%	5\%	4\%	5\%	

MPC5606BK Microcontroller Data Sheet, Rev. 2

Table 20. I/O weight ${ }^{1}$ (continued)

Supply segment			Pad	176 LQFP				144/100 LQFP				
			Weight 5 V	Weight 3.3 V		Weight 5 V		Weight 3.3 V				
176 LQFP	144 LQFP	100 LQFP		$S R C C^{2}=0$	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	
5	3	-		PF[15]	4\%	-	4\%	-	4\%	-	4\%	-
		-	PF[14]	4\%	6\%	5\%	5\%	4\%	6\%	5\%	5\%	
		-	PE[13]	4\%	-	5\%	-	4\%	-	5\%	-	
		3	PA[7]	5\%	-	6\%	-	5\%	-	6\%	-	
			PA[8]	5\%	-	6\%	-	5\%	-	6\%	-	
			PA[9]	6\%	-	7\%	-	6\%	-	7\%	-	
			PA[10]	6\%	-	8\%	-	6\%	-	8\%	-	
			PA[11]	8\%	-	9\%	-	8\%	-	9\%	-	
			PE[12]	8\%	-	9\%	-	8\%	-	9\%	-	
		-	PG[14]	8\%	-	9\%	-	8\%	-	9\%	-	
		-	PG[15]	8\%	11\%	9\%	10\%	8\%	11\%	9\%	10\%	
		-	PE[14]	8\%	-	9\%	-	8\%	-	9\%	-	
		-	PE[15]	8\%	11\%	9\%	10\%	8\%	11\%	9\%	10\%	
		-	PG[10]	8\%	-	9\%	-	8\%	-	9\%	-	
		-	PG[11]	7\%	11\%	9\%	9\%	7\%	11\%	9\%	9\%	
	-	-	$\mathrm{PH}[11]$	7\%	10\%	9\%	9\%	-	-	-	-	
	-	-	$\mathrm{PH}[12]$	7\%	10\%	8\%	9\%	-	-	-	-	
	-	-	PI[5]	7\%	-	8\%	-	-	-	-	-	
	-	-	PI[4]	7\%	-	8\%	-	-	-	-	-	
	3	3	PC[3]	6\%	-	8\%	-	6\%	-	8\%	-	
			PC[2]	6\%	8\%	7\%	7\%	6\%	8\%	7\%	7\%	
			PA[5]	6\%	8\%	7\%	7\%	6\%	8\%	7\%	7\%	
			PA[6]	5\%	-	6\%	-	5\%	-	6\%	-	
			$\mathrm{PH}[10]$	5\%	7\%	6\%	6\%	5\%	7\%	6\%	6\%	
			PC[1]	5\%	19\%	5\%	13\%	5\%	19\%	5\%	13\%	

Table 20. I/O weight ${ }^{1}$ (continued)

Supply segment			Pad	176 LQFP				144/100 LQFP				
			Weight 5 V	Weight 3.3 V		Weight 5 V		Weight 3.3 V				
176 LQFP	144 LQFP	100 LQFP		$S R C C^{2}=0$	SRC = 1	SRC $=0$	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	
6	4	4		PC[0]	6\%	9\%	7\%	8\%	7\%	10\%	8\%	8\%
			PH[9]	7\%	-	8\%	-	7\%	-	9\%	-	
			$\mathrm{PE}[2]$	7\%	10\%	8\%	9\%	8\%	11\%	9\%	10\%	
			PE[3]	7\%	10\%	9\%	9\%	8\%	12\%	10\%	10\%	
			PC[5]	7\%	11\%	9\%	9\%	8\%	12\%	10\%	11\%	
			PC[4]	8\%	11\%	9\%	10\%	9\%	13\%	10\%	11\%	
			PE[4]	8\%	11\%	9\%	10\%	9\%	13\%	11\%	12\%	
			PE[5]	8\%	11\%	10\%	10\%	9\%	14\%	11\%	12\%	
		-	PH[4]	8\%	12\%	10\%	10\%	10\%	14\%	12\%	12\%	
		-	PH[5]	8\%	-	10\%	-	10\%	-	12\%	-	
		-	PH[6]	8\%	12\%	10\%	11\%	10\%	15\%	12\%	13\%	
		-	PH[7]	9\%	12\%	10\%	11\%	11\%	15\%	13\%	13\%	
		-	PH[8]	9\%	12\%	10\%	11\%	11\%	16\%	13\%	14\%	
		4	PE[6]	9\%	12\%	10\%	11\%	11\%	16\%	13\%	14\%	
			PE[7]	9\%	12\%	10\%	11\%	11\%	16\%	14\%	14\%	
	-	-	$\mathrm{PI}[3]$	9\%	-	10\%	-	-	-	-	-	
	-	-	$\mathrm{PI}[2]$	9\%	-	10\%	-	-	-	-	-	
	-	-	$\mathrm{PI}[1]$	9\%	-	10\%	-	-	-	-	-	
	-	-	PI[0]	9\%	-	10\%	-	-	-	-	-	
	4	4	$\mathrm{PC}[12]$	8\%	12\%	10\%	11\%	12\%	18\%	15\%	16\%	
			PC[13]	8\%	-	10\%	-	13\%	-	15\%	-	
			PC[8]	8\%	-	10\%	-	13\%	-	15\%	-	
			PB[2]	8\%	11\%	9\%	10\%	13\%	18\%	15\%	16\%	

${ }^{1} \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified
${ }^{2}$ SRC is the Slew Rate Control bit in SIU_PCRx

3.7 RESET electrical characteristics

The device implements a dedicated bidirectional $\overline{\text { RESET }}$ pin.

Figure 6. Start-up reset requirements

Figure 7. Noise filtering on reset signal
Table 21. Reset electrical characteristics

Symbol		C	Parameter	Conditions ${ }^{1}$	Value			Unit	
		Min			Typ	Max			
V_{IH}	SR		P	Input High Level CMOS (Schmitt Trigger)	-	$0.65 \mathrm{~V}_{\text {DD }}$	-	$V_{D D}+0.4$	V

Table 21. Reset electrical characteristics (continued)

Symbol		C	Parameter	Conditions ${ }^{1}$	Value			Unit	
		Min			Typ	Max			
$\mathrm{V}_{\text {IL }}$	SR		P	Input low Level CMOS (Schmitt Trigger)	-	-0.4	-	$0.35 \mathrm{~V}_{\text {DD }}$	V
$\mathrm{V}_{\mathrm{HYS}}$	CC	C	Input hysteresis CMOS (Schmitt Trigger)	-	$0.1 \mathrm{~V}_{\mathrm{DD}}$	-	-	V	
V_{OL}	CC	P	Output low level	Push Pull, $\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$, $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$, PAD3V5V $=0$ (recommended)	-	-	$0.1 \mathrm{~V}_{\mathrm{DD}}$	V	
				$\begin{aligned} & \text { Push Pull, } \mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \text { PAD3V5V }=1^{2} \end{aligned}$	-	-	$0.1 \mathrm{~V}_{\mathrm{DD}}$		
				Push Pull, $\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%$, PAD3V5V $=1$ (recommended)	-	-	0.5		
$\mathrm{T}_{\text {tr }}$	CC	D	Output transition time output pin ${ }^{3}$ MEDIUM configuration	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \operatorname{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=0 \end{aligned}$	-	-	10	ns	
				$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \operatorname{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=0 \end{aligned}$	-	-	20		
				$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \operatorname{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=0 \end{aligned}$	-	-	40		
				$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \text { PAD } 3 \mathrm{~V} 5 \mathrm{~V}=1 \end{aligned}$	-	-	12		
				$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \text { PAD } 3 \mathrm{~V} 5 \mathrm{~V}=1 \end{aligned}$	-	-	25		
				$\begin{aligned} & C_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \text { PAD } 3 \mathrm{~V} 5 \mathrm{~V}=1 \end{aligned}$	-	-	40		
$\mathrm{W}_{\text {FRST }}$	SR	P	$\overline{\text { RESET }}$ input filtered pulse	-	-	-	40	ns	
$\mathrm{W}_{\text {NFRST }}$	SR	P	$\overline{\text { RESET input not filtered pulse }}$	-	1000	-	-	ns	
\|lwpul	CC	P	Weak pull-up current absolute value	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%$, PAD3V5V $=1$	10	-	150	$\mu \mathrm{A}$	
				$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$, PAD3V5V $=0$	10	-	150		
				$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$, PAD3V5V $=1^{4}$	10	-	250		

$1 \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified
2 This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to the MC_RGM chapter of the MPC5606BK Microcontroller Reference Manual).
${ }^{3} \mathrm{C}_{\mathrm{L}}$ includes device and package capacitance $\left(\mathrm{C}_{\mathrm{PKG}}<5 \mathrm{pF}\right)$.
4 The configuration PAD3V5 = 1 when $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ is only transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

3.8 Power management electrical characteristics

3.8.1 Voltage regulator electrical characteristics

The device implements an internal voltage regulator to generate the low voltage core supply V_{DD} LV from the high voltage ballast supply $\mathrm{V}_{\mathrm{DD}} \mathrm{BV}$. The regulator itself is supplied by the common I / O supply V_{DD}. The following supplies are involved:

- HV: High voltage external power supply for voltage regulator module. This must be provided externally through V_{DD} power pin.
- BV: High voltage external power supply for internal ballast module. This must be provided externally through $\mathrm{V}_{\mathrm{DD}} \mathrm{BV}$ power pin. Voltage values should be aligned with V_{DD}.
- LV: Low voltage internal power supply for core, FMPLL and Flash digital logic. This is generated by the internal voltage regulator but provided outside to connect stability capacitor. It is further split into four main domains to ensure noise isolation between critical LV modules within the device:
- LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding.
- LV_CFLA: Low voltage supply for code Flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding.
- LV_DFLA: Low voltage supply for data Flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding.
- LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.

Figure 8. Voltage regulator capacitance connection
The internal voltage regulator requires external capacitance ($\mathrm{C}_{\text {REGn }}$) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 5 nH .

Each decoupling capacitor must be placed between each of the three $\mathrm{V}_{\mathrm{DD}_{-} \mathrm{LV}} / \mathrm{V}_{\mathrm{SS}}$ LV supply pairs to ensure stable voltage (see Section 3.4, Recommended operating conditions).

The internal voltage regulator requires controlled slew rate of $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DD}} \mathrm{BV}$ as described in Figure 9 .

Figure 9. V_{DD} and $\mathrm{V}_{\mathrm{DD} _}$BV maximum slope
When STANDBY mode is used, further constraints apply to the $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DD}} \mathrm{BV}$ in order to guarantee correct regulator functionality during STANDBY exit. This is described in Figure 10.
STANDBY regulator constraints should normally be guaranteed by implementing equivalent of $\mathrm{C}_{\text {STDBY }}$ capacitance on application board (capacitance and ESR typical values), but would actually depend on the exact characteristics of the application's external regulator.

Figure 10. V_{DD} and $\mathrm{V}_{\text {DD_BV }}$ supply constraints during STANDBY mode exit
Table 22. Voltage regulator electrical characteristics

Symbol		C	Parameter	Conditions ${ }^{1}$	Value			Unit	
		Min			Typ	Max			
$\mathrm{C}_{\text {REGn }}$	SR		-	Internal voltage regulator external capacitance	-	200	-	500	nF
$\mathrm{R}_{\text {REG }}$	SR	-	Stability capacitor equivalent serial resistance	-	-	-	0.2	Ω	
$\mathrm{C}_{\text {DEC } 1}$	SR	-	Decoupling capacitance ${ }^{2}$ ballast	$\mathrm{V}_{\mathrm{DD} \text { _BV }} / \mathrm{V}_{\text {SS_LV }}$ pair: $\mathrm{V}_{\mathrm{DD}}-\mathrm{BV}=4.5 \mathrm{~V}$ to 5.5 V	100^{3}	470^{4}	-	nF	
				$\mathrm{V}_{\mathrm{DD} _\mathrm{BV}} / \mathrm{V}_{\text {SS_LV }}$ pair: V_{DD} _BV $=3 \mathrm{~V}$ to 3.6 V	400		-		
$\mathrm{C}_{\text {DEC2 }}$	SR	-	Decoupling capacitance regulator supply	$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$ pair	10	100	-	nF	
$\mathrm{V}_{\text {MREG }}$	CC	P	Main regulator output voltage	Before exiting from reset	-	1.32	-	V	
				After trimming	1.15	1.28	1.32		
$\mathrm{I}_{\text {MREG }}$	SR		Main regulator current provided to $V_{\text {DD_LV }}$ domain	-	-	-	150	mA	

MPC5606BK Microcontroller Data Sheet, Rev. 2

Table 22. Voltage regulator electrical characteristics (continued)

Symbol		C	Parameter	Conditions ${ }^{1}$	Value			Unit	
		Min			Typ	Max			
$\mathrm{I}_{\text {MREGINT }}$	CC		D	Main regulator module current consumption	$\mathrm{I}_{\text {MREG }}=200 \mathrm{~mA}$	-	-	2	mA
		$\mathrm{I}_{\text {MREG }}=0 \mathrm{~mA}$			-	-	1		
V ${ }_{\text {LPREG }}$	CC	P	Low power regulator output voltage	After trimming	1.15	1.23	1.32	V	
ILPREG	SR	-	Low power regulator current provided to $V_{D D}$ LV domain	-	-	-	15	mA	
ILPREGINT	CC	D	Low power regulator module current consumption	$\begin{aligned} & \mathrm{I}_{\text {LPREG }}=15 \mathrm{~mA} ; \\ & \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \end{aligned}$	-	-	600	$\mu \mathrm{A}$	
				$\begin{aligned} & \mathrm{I}_{\mathrm{LPREG}}=0 \mathrm{~mA} ; \\ & \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \end{aligned}$	-	5	-		
$V_{\text {ULPREG }}$	CC	P	Ultra low power regulator output voltage	After trimming	1.15	1.23	1.32	V	
IULPREG	SR	-	Ultra low power regulator current provided to V_{DD} LV domain	-	-	-	5	mA	
IULPREGINT	CC	D	Ultra low power regulator module current consumption	$\begin{aligned} & \mathrm{I}_{\text {ULPREG }}=5 \mathrm{~mA} ; \\ & \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \end{aligned}$	-	-	100	$\mu \mathrm{A}$	
				$\begin{aligned} & \text { lULPREG }=0 \mathrm{~mA} ; \\ & \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \end{aligned}$	-	2	-		
$\mathrm{I}_{\mathrm{DD} \text { _ } \mathrm{BV}}$	CC	D	Inrush average current on $\mathrm{V}_{\mathrm{DD}} \mathrm{BV}$ during power-up ${ }^{5}$	-	-	-	300^{6}	mA	
$\left\|\frac{\mathrm{d}}{\mathrm{d} t} V D D\right\|$	SR	-	Maximum slope on VDD	-	-	-	250	$\mathrm{mV} / \mathrm{\mu s}$	
$\mid \Delta_{V D D(S T D B Y) ~}{ }^{\text {a }}$	SR	-	Maximum instant variation on VDD during STANDBY exit	-	-	-	30	mV	
$\left\|\frac{\mathrm{d}}{\mathrm{~d} t} V D D(S T D B Y)\right\|$	SR	-	Maximum slope on VDD during STANDBY exit	-	-	-	15	$\mathrm{mV} / \mathrm{\mu s}$	

$1 \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified
2 This capacitance value is driven by the constraints of the external voltage regulator supplying the V_{DD} _BV voltage. A typical value is in the range of 470 nF .
3 This value is acceptable to guarantee operation from 4.5 V to 5.5 V
4 External regulator and capacitance circuitry must be capable of providing $I_{D D _B V}$ while maintaining supply $V_{D D _B V}$ in operating range.
5 Inrush current is seen only for short time during power-up and on standby exit (max $20 \mu \mathrm{~s}$, depending on external capacitances to be load).
6 The duration of the inrush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized accordingly. Refer to $I_{\text {MREG }}$ value for minimum amount of current to be provided in cc.

3.8.2 Voltage monitor electrical characteristics

The device implements a Power-on Reset module to ensure correct power-up initialization, as well as four lowvoltage detectors to monitor the V_{DD} and the $\mathrm{V}_{\mathrm{DD}} \mathrm{LV}$ voltage while device is supplied:

MPC5606BK Microcontroller Data Sheet, Rev. 2

- POR monitors V_{DD} during the power-up phase to ensure device is maintained in a safe reset state
- LVDHV3 monitors V_{DD} to ensure device reset below minimum functional supply
- LVDHV3B monitors VDD_BV to ensure device reset below minimum functional supply
- LVDHV5 monitors V_{DD} when application uses device in the $5.0 \mathrm{~V} \pm 10 \%$ range
- LVDLVCOR monitors power domain No. 1
- LVDLVBKP monitors power domain No. 0

NOTE

When enabled, power domain No. 2 is monitored through LVDLVBKP.

Figure 11. Low voltage monitor vs. reset
Table 23. Low voltage monitor electrical characteristics

Symbol		C	Parameter	Conditions ${ }^{1}$	Value			Unit	
		Min			Typ	Max			
$V_{\text {PORUP }}$	SR		D	Supply for functional POR module	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},$ after trimming	1.0	-	5.5	V
$\mathrm{V}_{\text {PORH }}$	CC	P	Power-on reset threshold	1.5		-	2.6		
$\mathrm{V}_{\text {LVDHV3H }}$	CC	T	LVDHV3 low voltage detector high threshold	-		-	2.95		
V ${ }_{\text {LVDHV3L }}$	CC	P	LVDHV3 low voltage detector low threshold	2.6		-	2.9		
V ${ }_{\text {LVDHV3BH }}$	CC	T	LVDHV3B low voltage detector high threshold	-		-	2.95		
V ${ }_{\text {LVDHV3BL }}$	CC	P	LVDHV3BL low voltage detector low threshold	2.6		-	2.9		
V ${ }_{\text {LVDHV5 }}$	CC	T	LVDHV5 low voltage detector high threshold	-		-	4.5		
$\mathrm{V}_{\text {LVDHV5L }}$	CC	P	LVDHV5 low voltage detector low threshold	3.8		-	4.4		
V LVDLVCorL	CC	P	LVDLVCOR low voltage detector low threshold	1.08		-	-		
V ${ }_{\text {LVDLVBKPL }}$	CC	P	LVDLVBKP low voltage detector low threshold	1.08		-	1.14		

${ }^{1} \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified

3.9 Power consumption in different application modes

Table 24 provides DC electrical characteristics for significant application modes. These values are indicative values; actual consumption depends on the application.

Table 24. Electrical characteristics in different application modes ${ }^{1}$

Symbol		C	Parameter	Conditions ${ }^{2}$		Value			Unit	
		Min				Typ	Max			
$\mathrm{I}_{\text {DDMAX }}{ }^{3}$	CC		C	RUN mode maximum average current	-		-	81	130^{4}	mA
$\mathrm{I}_{\text {DDRUN }}{ }^{5}$	CC	T	RUN mode typical average current ${ }^{6}$	$\mathrm{f}_{\mathrm{CPU}}=8 \mathrm{MHz}$		-	12	-	mA	
		T		$\mathrm{f}_{\mathrm{CPU}}=16 \mathrm{MHz}$		-	27	-		
		C		$\mathrm{f}_{\mathrm{CPU}}=32 \mathrm{MHz}$		-	40	-		
		P		$\mathrm{f}_{\mathrm{CPU}}=48 \mathrm{MHz}$		-	54	95		
		P		$\mathrm{f}_{\mathrm{CPU}}=64 \mathrm{MHz}$		-	67	120		
I DDHALT	CC	C	HALT mode current ${ }^{7}$	Slow internal RCoscillator (128 kHz)running	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	10	15	mA	
		P			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-	15	28		
$\mathrm{I}_{\text {DDSTOP }}$	CC	P	STOP mode current ${ }^{8}$	Slow internal RC oscillator (128 kHz) running	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	130	500	$\mu \mathrm{A}$	
		D			$\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$	-	180	-		
		D			$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-	1	5	mA	
		D			$\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$	-	3	9		
		P			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-	5	14		
IDDStdBY2	CC	P	STANDBY2 mode current ${ }^{9}$	```Slow internal RC oscillator (128 kHz) running```	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	17	80	$\mu \mathrm{A}$	
		C			$\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$	-	30	-		
		C			$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-	110	-		
		C			$\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$	-	280	950		
		C			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-	460	1700		
IDDSTDBY1	CC	C	STANDBY1 mode current ${ }^{10}$	```Slow internal RC oscillator (128 kHz) running```	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	12	50	$\mu \mathrm{A}$	
		C			$\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$	-	24	-		
		C			$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-	48	-		
		C			$\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$	-	150	500		
		C			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-	260	-		

1 Except for $\mathrm{I}_{\text {DDMAX }}$, all consumptions in this table apply to $\mathrm{V}_{\text {DD_BV }}$ only and do not include $\mathrm{V}_{\mathrm{DD}} \mathrm{HV}$.
${ }^{2} V_{D D}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, T_{A}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified
3 Running consumption is given on voltage regulator supply ($\mathrm{V}_{\text {DDREG }}$). I $\mathrm{I}_{\mathrm{DDMAX}}$ is composed of three components: $I_{D D M A X}=I_{D D}\left(V_{D D _B V}\right)+I_{D D}\left(V_{D D _H V}\right)+I_{D D}\left(V_{D D _H V _A D C}\right)$. It does not include a fourth component linked to I/Os toggling which is highly dependent on the application. The given value is thought to be a worst case value (64 MHz at $125^{\circ} \mathrm{C}$) with all peripherals running, and code fetched from code flash while modify operation on-going on data flash. Note that this value can be significantly reduced by the application: switch off unused peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.

4 Higher current may be sunk by device during power-up and standby exit. Please refer to inrush current in Table 22.
5 RUN current measured with typical application with accesses on both Flash and RAM.
6 Only for the "P" classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master, PLL as system clock ($4 \times$ Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic SW/WDG timer reset enabled.
7 Data Flash Power Down. Code Flash in Low Power. SIRC 128 kHz and FIRC 16 MHz on. 10 MHz XTAL clock. FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clocks gated. LINFlex: instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 to 9 clocks gated. eMIOS: instance: 0 ON (16 channels on PA[0]-PA[11] and PC[12]-PC[15]) with PWM 20 kHz , instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication), instance: 1 to 5 clocks gated. RTC/API ON. PIT ON. STM ON. ADC1 OFF. ADC0 ON but no conversion except two analog watchdogs.
8 Only for the "P" classification: No clock, FIRC 16 MHz off, SIRC 128 kHz on, PLL off, HPvreg off, ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.
9 Only for the "P" classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum consumption, all possible modules switched off.
${ }^{10}$ ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules switched off.

3.10 Flash memory electrical characteristics

3.10.1 Program/erase characteristics

Table 25 shows the program and erase characteristics.
Table 25. Program and erase specifications

1 Typical program and erase times assume nominal supply values and operation at $25^{\circ} \mathrm{C}$. All times are subject to change pending device characterization.
2 Initial factory condition: < 100 program/erase cycles, $25^{\circ} \mathrm{C}$, typical supply voltage.
3 The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.
4 Actual hardware programming times. This does not include software overhead.
Table 26. Flash module life

Symbol		C	Parameter	Conditions	Value			Unit	
		Min			Typ	Max			
P/E	CC		C	Number of program/erase cycles per block for 16 KB blocks over the operating temperature range (T_{J})	-	100000	-	-	cycles
P/E	CC	C	Number of program/erase cycles per block for 32 KB blocks over the operating temperature range (T_{J})	-	10000	100000	-	cycles	
P/E	CC	C	Number of program/erase cycles per block for 128 KB blocks over the operating temperature range (T_{J})	-	1000	100000	-	cycles	
Retention	CC	C	Minimum data retention at 85 ${ }^{\circ} \mathrm{C}$ average ambient temperature ${ }^{1}$	Blocks with 0-1,000 P/E cycles	20	-	-	years	
				Blocks with 1,001-10,000 P/E cycles	10	-	-	years	
				Blocks with 10,001-100,000 P/E cycles	5	-	-	years	

1 Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range.

ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units will experience single bit corrections throughout the life of the product with no impact to product reliability.

Table 27. Flash read access timing

Symbol		C	Parameter	Conditions ${ }^{1}$	Max	Unit
$\mathrm{f}_{\text {READ }}$	CC	P	Maximum frequency for Flash reading	2 wait states	64	MHz
		C		1 wait state	40	
		C		0 wait states	20	

${ }^{1} \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified

3.10.2 Flash power supply DC characteristics

Table 28 shows the power supply DC characteristics on external supply.

Table 28. Flash power supply DC electrical characteristics

Symbol		Parameter	Conditions ${ }^{1}$		Value			Unit	
		Min				Max			
$\mathrm{I}_{\text {CFREAD }}$	CC		Sum of the current consumption on $\mathrm{V}_{\text {DDHV }}$ and $\mathrm{V}_{\text {DDBV }}$ on read access	Flash module read $\mathrm{f}_{\mathrm{CPU}}=64 \mathrm{MHz}^{2}$	Code Flash	-	-	33	mA
I DFREAD		Data Flash			-	-	33		
$\mathrm{I}_{\text {CFMOD }}$	CC	Sum of the current consumption on $\mathrm{V}_{\text {DDHV }}$ and $\mathrm{V}_{\text {DDBV }}$ on matrix modification (program/erase)	Program /Erase on-going while reading Flash registers $\mathrm{f}_{\mathrm{CPU}}=64 \mathrm{MHz}^{2}$	Code Flash	-	-	52	mA	
$\mathrm{I}_{\text {DFMOD }}$				Data Flash	-	-	33		
$\mathrm{I}_{\text {CFLPW }}$	CC	Sum of the current consumption on $\mathrm{V}_{\text {DDHV }}$ and $\mathrm{V}_{\text {DDBV }}$ during Flash low power mode	-	Code Flash	-	-	1.1	mA	
IDFLPW				Data Flash	-	-	900	$\mu \mathrm{A}$	
ICFPWD	CC	Sum of the current consumption on $\mathrm{V}_{\text {DDHV }}$ and $\mathrm{V}_{\text {DDBV }}$ during Flash power down mode	-	Code Flash	-	-	150	$\mu \mathrm{A}$	
IDFPWD				Data Flash	-	-	150		

${ }^{1} \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified
$2 \mathrm{f}_{\mathrm{CPU}} 64 \mathrm{MHz}$ can be achieved only at up to $125^{\circ} \mathrm{C}$

3.10.3 Start-up/Switch-off timings

Table 29. Start-up time/Switch-off time

Symbol		c	Parameter	Conditions ${ }^{1}$	Value			Unit	
		Min			Typ	Max			
T T LARSTEXIT	CC		T	Delay for Flash module to exit reset mode	-	-	-	125	нs
T FLALPEXIT	CC	T	Delay for Flash module to exit low-power mode	-	-	-	0.5		
T FLAPDEXIT	CC	T	Delay for Flash module to exit power-down mode	-	-	-	30		
T FLALPENTRY	CC	T	Delay for Flash module to enter low-power mode	-	-	-	0.5		
T FLAPDENTRY	CC	T	Delay for Flash module to enter power-down mode	-	-	-	1.5		

${ }^{1} \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified

3.11 Electromagnetic compatibility (EMC) characteristics

Susceptibility tests are performed on a sample basis during product characterization.

3.11.1 Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that theuser apply EMC software optimization and prequalification tests in relation with the EMC level requested for the application.

- Software recommendations - The software flowchart must include the management of runaway conditions such as:
- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)
- Prequalification trials - Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring.

3.11.2 Electromagnetic interference (EMI)

The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC61967-1 standard, which specifies the general conditions for EMI measurements.

Table 30. EMI radiated emission measurement ${ }^{1,2}$

Symbol		C	Parameter	Conditions		Value			Unit	
		Min				Typ	Max			
-	SR		-	Scan range	-	-	0.150		1000	MHz
$\mathrm{f}_{\mathrm{CPU}}$	SR	-	Operating frequency	-	-	-	64	-	MHz	
V ${ }_{\text {DD_LV }}$	SR	-	LV operating voltages	-	-	-	1.28	-	V	
$\mathrm{S}_{\text {EMI }}$	CC	T	Peak level	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \text { LQFP144 package } \\ & \text { Test conforming to IEC } \\ & 61967-2, \\ & \mathrm{f}_{\mathrm{OSC}}=8 \mathrm{MHz} / \mathrm{f} \mathrm{CPU}= \\ & 64 \mathrm{MHz} \end{aligned}$	No PLL frequency modulation	-	-	18	$\mathrm{dB} \mu \mathrm{V}$	
					$\pm 2 \%$ PLL frequency modulation	-	-	14	$\mathrm{dB} \mu \mathrm{V}$	

1 EMI testing and I/O port waveforms per IEC 61967-1, -2, -4
2 For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative.

3.11.3 Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity.

3.11.3.1 Electrostatic discharge (ESD)

Electrostatic discharges (a positive thena negative pulse separated by 1 second) are applied to the pinsofeach sample according to each pin combination. The sample siz depends on the number of supply pins in the device (3 parts $\times(n+1)$ supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

Table 31. ESD absolute maximum ratings ${ }^{1,2}$

Symbol	Ratings	Conditions	Class	Max value ${ }^{\mathbf{3}}$	Unit
$\mathrm{V}_{\text {ESD(HBM) }}$	Electrostatic discharge voltage (Human Body Model)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ conforming to AEC-Q100-002	H 1 C	2000	V
$\mathrm{~V}_{\mathrm{ESD}(\mathrm{MM})}$	Electrostatic discharge voltage (Machine Model)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ conforming to AEC-Q100-003	M 2	200	
$\mathrm{~V}_{\mathrm{ESD}(\mathrm{CDM})}$	Electrostatic discharge voltage (Charged Device Model)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ conforming to AEC-Q100-011	C 3 A	500	
		750 (corners)			

1 All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
2 A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.
3 Data based on characterization results, not tested in production

3.11.3.2 Static latch-up (LU)

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with the EIA/JESD 78 IC latch-up standard.
Table 32. Latch-up results

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ conforming to JESD 78	II level A

3.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics

The device provides an oscillator/resonator driver. Figure 12 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator.
Table 33 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.

Figure 12. Crystal oscillator and resonator connection scheme

NOTE

XTAL/EXTAL must not be directly used to drive external circuits.
Table 33. Crystal description

Nominal frequency (MHz)	NDK crystal reference	Crystal equivalent series resistance ESR Ω	Crystal motional capacitance $\left(C_{m}\right) f F$	Crystal motional inductance (L_{m}) mH	Load on xtalin/xtalout $\begin{gathered} \mathrm{C} 1=\mathrm{C} 2 \\ (\mathrm{pF})^{1} \end{gathered}$	Shunt capacitance between xtalout and xtalin CO^{2} (pF)
4	NX8045GB	300	2.68	591.0	21	2.93
8	NX5032GA	300	2.46	160.7	17	3.01
10		150	2.93	86.6	15	2.91
12		120	3.11	56.5	15	2.93
16		120	3.90	25.3	10	3.00

${ }^{1}$ The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.
2 The value of CO specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.).

Figure 13. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics
Table 34. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics

Symbol		C	Parameter	Conditions ${ }^{1}$	Value			Unit	
		Min			Typ	Max			
$\mathrm{f}_{\text {FXOSC }}$	SR		-	Fast external crystal oscillator frequency	-	4.0	-	16.0	MHz
$\mathrm{gmFXOSC}^{\text {m }}$	CC	C	Fast external crystal oscillator transconductance	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \\ & \mathrm{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=1 \\ & \text { OSCILLATOR_MARGIN }=0 \end{aligned}$	2.2	-	8.2	mA / V	
	CC	P		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{PAD} 2 \mathrm{~V} 5 \mathrm{~V}=0 \\ & \text { OSCILLATOR_MARGIN }=0 \end{aligned}$	2.0	-	7.4		
	CC	C		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%, \\ & \mathrm{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=1 \\ & \text { OSCILLATOR_MARGIN = } \end{aligned}$	2.7	-	9.7		
	CC	C		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%, \\ & \mathrm{PAD} 3 \mathrm{~V} 5 \mathrm{~V}=0 \\ & \text { OSCILLATOR_MARGIN = } \end{aligned}$	2.5	-	9.2		
$\mathrm{V}_{\text {FXOSC }}$	CC	T	Oscillation amplitude at EXTAL	$\begin{aligned} & \mathrm{f} \mathrm{OSC}=4 \mathrm{MHz}, \\ & \mathrm{OSCILLATOR} \text { MARGIN }=0 \end{aligned}$	1.3	-	-	V	
				$\begin{aligned} & \mathrm{f}_{\mathrm{OSC}}=16 \mathrm{MHz}, \\ & \mathrm{OSCILLATOR} \mathrm{_MARGIN}=1 \end{aligned}$	1.3	-	-		
$\mathrm{V}_{\text {FXOSCOP }}$	CC	P	Oscillation operating point	-	-	0.95		V	
$\mathrm{I}_{\text {FXOSC }}{ }^{2}$	CC	T	Fast external crystal oscillator consumption	-	-	2	3	mA	

Table 34. Fast external crystal oscillator ($\mathbf{4}$ to 16 MHz) electrical characteristics (continued)

Symbol		C	Parameter	Conditions ${ }^{1}$	Value			Unit	
		Min			Typ	Max			
T FXOSCSU	CC		T	Fast external crystal oscillator start-up time	$\begin{aligned} & \mathrm{f}_{\mathrm{OSC}}=4 \mathrm{MHz}, \\ & \mathrm{OSCILLATOR} \text { MARGIN }=0 \end{aligned}$	-	-	6	ms
		$\begin{aligned} & \mathrm{f} \mathrm{OSC}=16 \mathrm{MHz}, \\ & \text { OSCILLATOR_MARGIN = } \end{aligned}$			-	-	1.8		
V_{IH}	SR	P	Input high level CMOS (Schmitt Trigger)	Oscillator bypass mode	$0.65 \mathrm{~V}_{\mathrm{DD}}$	-	$\mathrm{V}_{\mathrm{DD}}+0.4$	V	
V_{IL}	SR	P	Input low level CMOS (Schmitt Trigger)	Oscillator bypass mode	-0.4	-	$0.35 \mathrm{~V}_{\mathrm{DD}}$	V	

${ }^{1} V_{D D}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, T_{A}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified
${ }^{2}$ Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals).

3.13 Slow external crystal oscillator (32 kHz) electrical characteristics

The device provides a low power oscillator/resonator driver.

Figure 14. Crystal oscillator and resonator connection scheme

NOTE

OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits.

Figure 15. Equivalent circuit of a quartz crystal
Table 35. Crystal motional characteristics ${ }^{1}$

Symbol	Parameter	Conditions	Value			Unit
			Min	Typ	Max	
L_{m}	Motional inductance	-	-	11.796	-	KH
C_{m}	Motional capacitance	-	-	2	-	fF
C1/C2	Load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground ${ }^{2}$	-	18	-	28	pF
Rm^{3}	Motional resistance	AC coupled at $\mathrm{C} 0=2.85 \mathrm{pF}^{4}$	-	-	65	$\mathrm{k} \Omega$
		AC coupled at $\mathrm{CO}=4.9 \mathrm{pF}^{4}$	-	-	50	
		AC coupled at $\mathrm{CO}=7.0 \mathrm{pF}^{4}$	-	-	35	
		AC coupled at $\mathrm{CO}=9.0 \mathrm{pF}^{4}$	-	-	30	

1 The crystal used is Epson Toyocom MC306.
${ }^{2}$ This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground. It includes all the parasitics due to board traces, crystal and package.
${ }^{3}$ Maximum ESR $\left(\mathrm{R}_{\mathrm{m}}\right)$ of the crystal is $50 \mathrm{k} \Omega$
${ }^{4}$ CO Includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins.

Figure 16. Slow external crystal oscillator (32 kHz) electrical characteristics
Table 36. Slow external crystal oscillator ($\mathbf{3 2} \mathbf{~ k H z}$) electrical characteristics

Symbol		C	Parameter	Conditions ${ }^{1}$	Value			Unit	
		Min			Typ	Max			
$\mathrm{f}_{\text {Sxosc }}$	SR		-	Slow external crystal oscillator frequency	-	32	32.768	40	kHz
$\mathrm{V}_{\text {SXOSC }}$	CC	T	Oscillation amplitude	-	-	2.1	-	V	
$\mathrm{I}_{\text {SXOSCBIAS }}$	CC	T	Oscillation bias current	-	2.5			$\mu \mathrm{A}$	
Isxosc	CC	T	Slow external crystal oscillator consumption	-	-	-	8	$\mu \mathrm{A}$	
Tsxoscsu	CC	T	Slow external crystal oscillator start-up time	-	-	-	2^{2}	S	

${ }^{1} \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified
${ }^{2}$ Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.

3.14 FMPLL electrical characteristics

The device provides a frequency modulated phase locked loop (FMPLL) module to generate a fast system clock from the FXOSC or FIRC sources.

Table 37. FMPLL electrical characteristics

Symbol		C	Parameter	Conditions ${ }^{1}$	Value			Unit	
		Min			Typ	Max			
$\mathrm{f}_{\text {PLLIN }}$	SR		-	FMPLL reference clock ${ }^{2}$	-	4	-	64	MHz
$\Delta_{\text {PLLIN }}$	SR	-	FMPLL reference clock duty cycle 2	-	40	-	60	\%	

Table 37. FMPLL electrical characteristics (continued)

Symbol		C	Parameter	Conditions ${ }^{1}$	Value			Unit	
		Min			Typ	Max			
$\mathrm{f}_{\text {PLLOUT }}$	CC		P	FMPLL output clock frequency	-	16	-	64	MHz
$\mathrm{f}_{\mathrm{Vco}}{ }^{3}$	CC	P	VCO frequency without frequency modulation	-	256	-	512	MHz	
		P	VCO frequency with frequency modulation	-	245.76	-	532.48		
$\mathrm{f}_{\mathrm{CPU}}$	SR	-	System clock frequency	-	-	-	$64{ }^{4}$	MHz	
$\mathrm{f}_{\text {FREE }}$	CC	P	Free-running frequency	-	20	-	150	MHz	
t LOCK	CC	P	FMPLL lock time	Stable oscillator (f $\mathrm{f}_{\text {PLLIN }}=16 \mathrm{MHz}$)		40	100	$\mu \mathrm{s}$	
Δ tstult	CC	-	FMPLL short term jitter ${ }^{5}$	$\mathrm{f}_{\text {sys }}$ maximum	-4	-	4	\%	
$\Delta \mathrm{t}_{\text {LTJIT }}$	CC	-	FMPLL long term jitter	$\mathrm{f}_{\text {PLLCLK }}$ at $64 \mathrm{MHz}, 4000$ cycles	-	-	10	ns	
$\mathrm{I}_{\text {PLL }}$	CC	C	FMPLL consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	-	4	mA	

${ }^{1} \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified
2 PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and $\Delta_{\text {PLLIN }}$.
3 Frequency modulation is considered $\pm 4 \%$.
$4 \mathrm{f}_{\mathrm{CPU}} 64 \mathrm{MHz}$ can be achieved only at up to $105^{\circ} \mathrm{C}$.
5 Short term jitter is measured on the clock rising edge at cycle n and $n+4$.

3.15 Fast internal RC oscillator (16 MHz) electrical characteristics

The device provides a 16 MHz main internal RC oscillator. This is used as the default clock at the power-up of the device.
Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics

Symbol		C	Parameter	Conditions ${ }^{1}$		Value			Unit	
		Min				Typ	Max			
$\mathrm{f}_{\text {FIRC }}$	CC		P	Fast internal RC oscillator high frequency	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, trimmed		-	16	-	MHz
	SR	-			-	12		20		
$\mathrm{I}_{\text {FIRCRUN }}{ }^{2,}$	CC	T	Fast internal RC oscillator high frequency current in running mode	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, trimmed		-	-	200	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {FIRCPWD }}$	CC	D	Fast internal RC oscillator high frequency current in power down mode	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-	-	10	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {FIRCSTOP }}$	CC	T	Fast internal RC oscillator high frequency and system clock current in stop mode	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	sysclk = off	-	500	-	$\mu \mathrm{A}$	
					sysclk $=2 \mathrm{MHz}$	-	600	-		
					sysclk $=4 \mathrm{MHz}$	-	700	-		
					sysclk $=8 \mathrm{MHz}$	-	900	-		
					sysclk $=16 \mathrm{MHz}$	-	1250	-		

MPC5606BK Microcontroller Data Sheet, Rev. 2

Table 38. Fast internal RC oscillator ($\mathbf{1 6} \mathbf{~ M H z) ~ e l e c t r i c a l ~ c h a r a c t e r i s t i c s ~ (c o n t i n u e d) ~}$

Symbol		C	Parameter	Conditions ${ }^{1}$	Value			Unit	
		Min			Typ	Max			
$\mathrm{T}_{\text {FIRCSU }}$	CC		C	Fast internal RC oscillator start-up time	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$	-	1.1	2.0	$\mu \mathrm{s}$
$\Delta_{\text {FIRCPRE }}$	CC	C	Fast internal RC oscillator precision after software trimming of $\mathrm{f}_{\text {FIRC }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-1	-	1	\%	
$\Delta_{\text {FIRCTRIM }}$	CC	C	Fast internal RC oscillator trimming step	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	1.6		\%	
$\Delta_{\text {FIRCVAR }}$	CC	C	Fast internal RC oscillator variation over temperature and supply with respect to $\mathrm{f}_{\text {FIRC }}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ in high-frequency configuration	-	-5	-	5	\%	

${ }^{1} \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified
${ }^{2}$ This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

3.16 Slow internal RC oscillator (128 kHz) electrical characteristics

The device provides a 128 kHz low power internal RC oscillator. This can be used as the reference clock for the RTC module.
Table 39. Slow internal RC oscillator ($\mathbf{1 2 8} \mathbf{~ k H z) ~ e l e c t r i c a l ~ c h a r a c t e r i s t i c s ~}$

Symbol		C	Parameter	Conditions ${ }^{1}$	Value			Unit	
		Min			Typ	Max			
$\mathrm{f}_{\text {SIRC }}$	CC		P	Slow internal RC oscillator low frequency	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, trimmed	-	128	-	kHz
	SR		-		100	-	150		
$\mathrm{I}_{\text {SIRC }}{ }^{2,}$	CC	C	Slow internal RC oscillator low frequency current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, trimmed	-	-	5	$\mu \mathrm{A}$	
T SIRCSU	CC	P	Slow internal RC oscillator start-up time	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$	-	8	12	$\mu \mathrm{s}$	
$\Delta_{\text {SIRCPRE }}$	CC	C	Slow internal RC oscillator precision after software trimming of $\mathrm{f}_{\text {SIRC }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-2	-	2	\%	
$\Delta_{\text {SIRCTRIM }}$	CC	C	Slow internal RC oscillator trimming step	-	-	2.7	-		
$\Delta_{\text {SIRCVAR }}$	CC	C	Slow internal RC oscillator variation in temperature and supply with respect to $\mathrm{f}_{\text {SIRC }}$ at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ in high frequency configuration	High frequency configuration	-10	-	10	\%	

[^1]
3.17 ADC electrical characteristics

3.17.1 Introduction

The device provides two Successive Approximation Register (SAR) analog-to-digital converters (10-bit and 12-bit).

Figure 17. ADC_0 characteristic and error definitions

3.17.2 Input impedance and ADC accuracy

In the following analysis, the input circuit corresponding to the precise channels is considered.
To preserve theaccuracy of the A/D converter, it is neessary that analog input pins have lowAC impedance. Placing a capadtor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as
possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.
In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: C_{S} being substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC , it can beseen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz , with C_{S} equal to 3 pF , a resistance of $330 \mathrm{k} \Omega$ is obtained (R_{EQ} $=1 /\left(\mathrm{fc} \times \mathrm{C}_{\mathrm{S}}\right)$, where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C_{S}) and the sum of $R_{S}+R_{F}+R_{L}+R_{S W}+R_{A D}$, the external circuit must be designed to respect the Equation 4:

$$
V_{A} \bullet \frac{\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\mathrm{F}}+\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{SW}}+\mathrm{R}_{\mathrm{AD}}}{\mathrm{R}_{\mathrm{EQ}}}<\frac{1}{2} \mathrm{LSB}
$$

Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances $\left(\mathrm{R}_{\mathrm{SW}}\right.$ and R_{AD}) can be neglected with respect to external resistances.

Figure 18. Input equivalent circuit (precise channels)

Figure 19. Input equivalent circuit (extended channels)
A second aspect involving the capacitance network shall be considered. Assuming the three capacitances $\mathrm{C}_{\mathrm{F}}, \mathrm{C}_{\mathrm{P} 1}$ and $\mathrm{C}_{\mathrm{P} 2}$ are initially charged at the source voltage V_{A} (refer to the equivalent circuit reported in Figure 18): A charge sharing phenomenon is installed when the sampling phase is started (A / D switch close).

Figure 20. Transient behavior during sampling phase
In particular two different transient periods can be distinguished:

1. A first and quick charge transfer from the internal capacitance $C_{P 1}$ and $C_{P 2}$ to the sampling capacitance C_{S} occurs $\left(C_{S}\right.$ is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which $C_{P 2}$ is reported in parallel to $C_{P 1}\left(\right.$ call $\left.C_{P}=C_{P 1}+C_{P 2}\right)$, the two capacitances C_{P} and C_{S} are in series, and the time constant is

$$
\tau_{1}=\left(\mathrm{R}_{\mathrm{SW}}+\mathrm{R}_{\mathrm{AD}}\right) \cdot \frac{\mathrm{C}_{\mathrm{P}} \bullet \mathrm{C}_{\mathrm{S}}}{\mathrm{C}_{\mathrm{P}}+\mathrm{C}_{\mathrm{S}}}
$$

Equation 5 can again be simplified considering only C_{S} as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time T_{S} is always much longer than the internal time constant:

Eqn. 6

$$
\tau_{1}<\left(\mathrm{R}_{\mathrm{SW}}+\mathrm{R}_{\mathrm{AD}}\right) \cdot \mathrm{C}_{\mathrm{S}}<T_{S}
$$

The charge of $C_{P 1}$ and $C_{P 2}$ is redistributed also on C_{S}, determining a new value of the voltage $V_{A 1}$ on the capacitance according to Equation 7:

Eqn. 7

$$
\mathrm{V}_{\mathrm{A} 1} \cdot\left(\mathrm{C}_{\mathrm{S}}+\mathrm{C}_{\mathrm{P} 1}+\mathrm{C}_{\mathrm{P} 2}\right)=\mathrm{V}_{\mathrm{A}} \cdot\left(\mathrm{C}_{\mathrm{P} 1}+\mathrm{C}_{\mathrm{P} 2}\right)
$$

2. A second charge transfer involves also C_{F} (that is typically bigger than the on-chip capacitance) through the resistance R_{L} : again considering the worst case in which $\mathrm{C}_{\mathrm{P} 2}$ and C_{S} were in parallel to $\mathrm{C}_{\mathrm{P} 1}$ (since the time constant in reality would be faster), the time constant is:

Eqn. 8

$$
\tau_{2}<\mathrm{R}_{\mathrm{L}} \cdot\left(\mathrm{C}_{\mathrm{S}}+\mathrm{C}_{\mathrm{P} 1}+\mathrm{C}_{\mathrm{P} 2}\right)
$$

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time T_{S}, a constraints on R_{L} sizing is obtained:

Eqn. 9

$$
10 \bullet \tau_{2}=10 \bullet R_{L} \bullet\left(\mathrm{C}_{\mathrm{S}}+\mathrm{C}_{\mathrm{P} 1}+\mathrm{C}_{\mathrm{P} 2}\right)<\mathrm{T}_{\mathrm{S}}
$$

Of course, R_{L} shall be sized also according to the current limitation constraints, in combination with R_{S} (source impedance) and R_{F} (filter resistance). Being C_{F} definitively bigger than $\mathrm{C}_{\mathrm{P} 1}, \mathrm{C}_{\mathrm{P} 2}$ and C_{S}, then the final voltage $\mathrm{V}_{\mathrm{A} 2}$ (at the end of the charge transfer transient) will be much higher than $\mathrm{V}_{\mathrm{A} 1}$. Equation 10 must be respected (charge balance assuming now C_{S} already charged at $\mathrm{V}_{\mathrm{A} 1}$):

Eqn. 10

$$
\mathrm{V}_{\mathrm{A} 2} \bullet\left(\mathrm{C}_{\mathrm{S}}+\mathrm{C}_{\mathrm{P} 1}+\mathrm{C}_{\mathrm{P} 2}+\mathrm{C}_{\mathrm{F}}\right)=\mathrm{V}_{\mathrm{A}} \cdot \mathrm{C}_{\mathrm{F}}+\mathrm{V}_{\mathrm{A} 1} \bullet\left(\mathrm{C}_{\mathrm{P} 1}+\mathrm{C}_{\mathrm{P} 2}+\mathrm{C}_{\mathrm{S}}\right)
$$

The two transients above are not influenced by the voltage source that, due to the presence of the $R_{F} C_{F}$ filter, is not able to provide the extra charge to compensate the voltage drop on C_{S} with respect to the ideal source V_{A}; the time constant $R_{F} C_{F}$ of the filter is very high with respect to the sampling time $\left(\mathrm{T}_{\mathrm{S}}\right)$. The filter is typically designed to act as antialiasing.

Figure 21. Spectral representation of input signal
Calling f_{0} the bandwidth of the source signal (and as a consequence the cut-of frequency of the antialiasing filter, f_{F}), according to the Nyquist theorem the conversion rate f_{C} must be at least $2 f_{0}$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period $\left(\mathrm{T}_{\mathrm{C}}\right)$. Again the conversion period T_{C} is longer than the sampling time T_{S}, which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter $R_{F} C_{F}$ is definitively much higher than the sampling time T_{S}, so the charge level on C_{S} cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_{S}; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on C_{S} :

Eqn. 11

$$
\frac{\mathrm{v}_{\mathrm{A} 2}}{\mathrm{~V}_{\mathrm{A}}}=\frac{\mathrm{C}_{\mathrm{P} 1}+\mathrm{C}_{\mathrm{P} 2}+\mathrm{C}_{\mathrm{F}}}{\mathrm{C}_{\mathrm{P} 1}+\mathrm{C}_{\mathrm{P} 2}+\mathrm{C}_{\mathrm{F}}+\mathrm{C}_{\mathrm{S}}}
$$

From this formula, in the worst case (when V_{A} is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_{F} value:

$$
\begin{aligned}
\text { ADC_0 } & (10-\mathrm{bit}) \\
\mathrm{C}_{\mathrm{F}} & >2048 \cdot \mathrm{C}_{\mathrm{S}}
\end{aligned}
$$

$$
\text { Eqn. } 12
$$

ADC_1 (12-bit)

$$
\mathrm{C}_{\mathrm{F}}>8192 \cdot \mathrm{C}_{\mathrm{S}}
$$

3.17.3 ADC electrical characteristics

Table 40. ADC input leakage current

Symbol		C	Parameter	Conditions		Value			Unit	
		Min				Typ	Max			
ILKG	CC		C	Input leakage current	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	No current injection on adjacent pin	-	1	-	nA
		C	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-		1	-		
		D	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$				3	100		
		C	$\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$		-		8	200		
		P	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		-		45	400		

Table 41. ADC_0 conversion characteristics (10-bit ADC_0)

Symbol		C	Parameter	Conditions ${ }^{1}$	Value			Unit	
		Min			Typ	Max			
V SS_ADCO	SR			Voltage on VSS_HV_ADC0 (ADC_0 reference) pin with respect to ground $\left(\mathrm{V}_{\mathrm{SS}}\right)^{2}$	-	-0.1	-	0.1	V
V DD _ADC0	SR		Voltage on VDD_HV_ADC pin (ADC reference) with respect to ground (V_{SS})	\square	$\mathrm{V}_{\mathrm{DD}}-0.1$	-	$\mathrm{V}_{\mathrm{DD}}+0.1$	V	
$\mathrm{V}_{\text {AIN }}$	SR		Analog input voltage ${ }^{3}$	-	$\begin{gathered} \mathrm{V}_{\text {SS_ADC0 }} \\ -0.1 \end{gathered}$	-	$\begin{gathered} \mathrm{V}_{\mathrm{DD} \text { _ADC0 }} \\ +0.1 \end{gathered}$	V	
$\mathrm{I}_{\text {ADCOpwd }}$	SR		ADC_0 consumption in power down mode	-	-	-	50	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {ADCOrun }}$	SR		ADC_0 consumption in running mode	-	-	-	40	mA	
$\mathrm{f}_{\text {ADCO }}$	SR		ADC_0 analog frequency	-	6	-	$32+4 \%$	MHz	
$\Delta_{\text {ADCO_SYS }}$	SR		ADC_0 digital clock duty cycle (ipg_clk)	ADCLKSEL $=1^{4}$	45	-	55	\%	
$\mathrm{t}_{\text {ADCO_PU }}$	SR		ADC_0 power up delay	-	-	-	1.5	$\mu \mathrm{s}$	
$\mathrm{t}_{\text {ADCO_S }}$	CC	T	Sample time ${ }^{5}$	$\begin{aligned} & \mathrm{f} \mathrm{ADC}=32 \mathrm{MHz}, \\ & \mathrm{ADCO} \text { _conf_sample_input }=17 \end{aligned}$	0.5	-		$\mu \mathrm{s}$	
				$\begin{aligned} & \mathrm{f}_{\mathrm{ADC}}=6 \mathrm{MHz}, \\ & \text { INPSAMP }=255 \end{aligned}$	-	-	42		
$\mathrm{t}_{\text {ADCO_C }}$	CC	P	Conversion time ${ }^{6}$	$\begin{aligned} & \mathrm{f} \mathrm{ADC}=32 \mathrm{MHz}, \\ & \mathrm{ADC} \text { conf_comp }=2 \end{aligned}$	0.625	-	-	$\mu \mathrm{S}$	
C_{S}	CC	D	ADC_0 input sampling capacitance	-	-	-	3	pF	
$\mathrm{C}_{\text {P1 }}$	CC	D	ADC_0 input pin capacitance 1	-	-	-	3	pF	
$\mathrm{C}_{\mathrm{P} 2}$	CC	D	ADC_0 input pin capacitance 2	-	-	-	1	pF	
$\mathrm{CP}_{\text {P }}$	CC	D	ADC_0 input pin capacitance 3	-	-	-	1	pF	

Table 41. ADC_0 conversion characteristics (10-bit ADC_0) (continued)

Symbol		C	Parameter	Conditions ${ }^{1}$		Value			Unit	
		Min				Typ	Max			
$\mathrm{R}_{\text {SW } 1}$	CC		D	Internal resistance of analog source	-		-	-	3	k Ω
$\mathrm{R}_{\text {SW2 }}$	CC	D	Internal resistance of analog source	-		-	-	2	$\mathrm{k} \Omega$	
$\mathrm{R}_{\text {AD }}$	CC	D	Internal resistance of analog source	-		-	-	2	$\mathrm{k} \Omega$	
$\mathrm{I}_{\mathrm{INJ}}$	SR	-	Input current Injection	Current injection on one ADC_0 input, different from the converted one	$\begin{aligned} & V_{D D}= \\ & 3.3 V \pm 10 \% \\ & \hline V_{D D}= \\ & 5.0 V \pm 10 \% \end{aligned}$	-5 -5	-	5 5	mA	
\| INL		CC	T	Absolute value for integral nonlinearity	No overload		-	0.5	1.5	LSB
\| DNL		CC	T	Absolute differential nonlinearity	No overload		-	0.5	1.0	LSB
\| OFS		CC	T	Absolute offset error	-		-	0.5	-	LSB
\| GNE		CC	T	Absolute gain error	-		-	0.6	-	LSB
TUEP	CC	P	Total unadjusted error ${ }^{7}$ for precise channels, input only pins	Without current in	jection	-2	0.6	2	LSB	
				With current injec	ction	-3	-	3		
TUEX	CC	T	Total unadjusted error ${ }^{7}$ for extended channel	Without current in	jection	-3	1	3	LSB	
				With current injec	ction	-4		4		

${ }^{1} \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.
${ }^{2}$ Analog and digital V_{SS} must be common (to be tied together externally).
${ }^{3} \mathrm{~V}_{\text {AINx }}$ may exceed $\mathrm{V}_{S S _A D C O}$ and $V_{D D _A D C O}$ limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0×000 or 0×3 FF.
${ }^{4}$ Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL $=0$, the duty cycle is ensured by internal divider by 2 .
${ }^{5}$ During the sample time the input capacitance C_{S} can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within $\mathrm{t}_{\text {ADCO_s. }}$. After the end of the sample time $\mathrm{t}_{\mathrm{ADCO}}$ s, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock $\mathrm{t}_{\mathrm{ADCO}} \mathrm{s}$ depend on programming.
6 This parameter does not include the sample time $\mathrm{t}_{\text {ADCO_s }}$, but only the time for determining the digital result and the time to load the result's register with the conversion result.
7 Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

Figure 22. ADC_1 characteristic and error definitions
Table 42. ADC_1 conversion characteristics (12-bit ADC_1)

Symbol		C	Parameter	Conditions ${ }^{1}$	Value			Unit	
		Min			Typ	Max			
$\mathrm{V}_{\text {SS_ADC1 }}$	SR			Voltage on VSS_HV_ADC1 (ADC_1 reference) pin with respect to ground $\left(\mathrm{V}_{\mathrm{SS}}\right)^{2}$	-	-0.1	-	0.1	V
$\mathrm{V}_{\text {DD_ADC1 }}$	SR		Voltage on VDD_HV_ADC1 pin (ADC_1 reference) with respect to ground (V_{SS})	-	$V_{D D}-0.1$	-	$\mathrm{V}_{\mathrm{DD}}+0.1$	V	

Table 42. ADC_1 conversion characteristics (12-bit ADC_1) (continued)

Symbol		C	Parameter	Conditions ${ }^{1}$	Value			Unit	
		Min			Typ	Max			
$\mathrm{V}_{\text {AIN }}$	SR		-	Analog input voltage ${ }^{3}$	-		-	$\begin{aligned} & \mathrm{V}_{\mathrm{DDDADC},}+0.1 \\ & +0.1 \end{aligned}$	V
$I_{\text {ADCipwd }}$	SR	-1	ADC_1 consumption in power down mode	-	-	-	50	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {ADC1run }}$	SR		ADC_1 consumption in running mode	-	-	-	6	mA	
$f_{\text {ADC1 }}$	SR	-	ADC_1 analog frequency	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	3.33	-	$20+4 \%$	MHz	
				$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	3.33	-	$32+4 \%$		
$\mathrm{t}_{\text {ADC1_PU }}$	SR	-	ADC_1 power up delay	-	-	-	1.5	$\mu \mathrm{s}$	
$\mathrm{t}_{\text {ADC1_S }}$	CC		$\begin{aligned} & \text { Sample time } \\ & \text { VDD }=3.3 \text { V } \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{ADC1}}=20 \mathrm{MHz}, \\ & \mathrm{ADC1}^{2} \text { _conf_sample_input }=12 \end{aligned}$	600	-	-	ns	
			$\text { Sample time }{ }^{4}$ $\mathrm{VDD}=5.0 \mathrm{~V}$	$\mathrm{f}_{\mathrm{ADC1}}=32 \mathrm{MHz},$ ADC1_conf_sample_input = 17	500	-	-		
			Sample time ${ }^{4}$ $\mathrm{VDD}=3.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{f}_{\mathrm{ADCI}}=3.33 \mathrm{MHz}, \\ & \text { ADC1_conf_sample_input }=255 \end{aligned}$	-	-	76.2	$\mu \mathrm{s}$	
			Sample time ${ }^{4}$ $\mathrm{VDD}=5.0 \mathrm{~V}$	$\begin{aligned} & \mathrm{f} A D C 1=3.33 \mathrm{MHz}, \\ & \text { ADC1_conf_sample_input }=255^{\text {and }} \end{aligned}$	-	-	76.2		
$\mathrm{t}_{\text {ADC }}$ _C	CC	P	$\begin{aligned} & \text { Conversion time }{ }^{5} \\ & \text { VDD }=3.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{ADC}}=20 \mathrm{MHz}, \\ & \text { ADC1_conf_comp = } 0 \end{aligned}$	2.4	-	-	$\mu \mathrm{s}$	
			$\begin{aligned} & \text { Conversion time }{ }^{5} \\ & \text { VDD }=5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{ADC}} 1=32 \mathrm{MHz}, \\ & \text { ADC1_conf_comp }=0 \end{aligned}$	1.5	-	-	$\mu \mathrm{s}$	
			$\begin{aligned} & \text { Conversion time }{ }^{5} \\ & \text { VDD }=3.3 \mathrm{~V} \end{aligned}$	$\mathrm{f}_{\mathrm{ADC}} 1=13.33 \mathrm{MHz}$, ADC1_conf_comp $=0$	-	-	3.6	$\mu \mathrm{s}$	
			$\begin{aligned} & \text { Conversion time }{ }^{5} \\ & \text { VDD }=5.0 \mathrm{~V} \end{aligned}$	$\mathrm{f}_{\mathrm{ADC} 1}=13.33 \mathrm{MHz}$, ADC1_conf_comp $=0$	-	-	3.6	$\mu \mathrm{s}$	
$\triangle_{\text {ADC1_SYS }}$	SR		ADC_1 digital clock duty cycle	ADCLKSEL $=1{ }^{6}$	45	-	55	\%	
$\mathrm{C}_{\text {S }}$	CC	D	ADC_1 input sampling capacitance	-	-	-	5	pF	
$\mathrm{C}_{\text {P1 }}$	CC	D	ADC_1 input pin capacitance 1	-	-	-	3	pF	
$\mathrm{C}_{\mathrm{P} 2}$	CC	D	ADC_1 input pin capacitance 2	-	-	-	1	pF	
$\mathrm{C}_{\mathrm{P} 3}$	CC	D	ADC_1 input pin capacitance 3	-	-	-	1.5	pF	
$\mathrm{R}_{\text {SW } 1}$	CC	D	Internal resistance of analog source	-	-	-	1	$\mathrm{k} \Omega$	
$\mathrm{R}_{\text {SW2 }}$	CC	D	Internal resistance of analog source	-	-	-	2	k Ω	
$\mathrm{R}_{\text {AD }}$	CC	D	Internal resistance of analog source	-	-	-	0.3	k Ω	

Table 42. ADC_1 conversion characteristics (12-bit ADC_1) (continued)

${ }^{1} \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified
2 Analog and digital $\mathrm{V}_{\text {SS }}$ must be common (to be tied together externally).
${ }^{3} \mathrm{~V}_{\text {AINx }}$ may exceed $\mathrm{V}_{\text {SS_ADC1 }}$ and $\mathrm{V}_{\mathrm{DD} \text { _ADC1 }}$ limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0×000 or $0 x F F F$.
4 During the sample time the input capacitance C_{S} can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within $t_{\text {ADC1 }} s$. After the end of the sample time $t_{A D C 1 _S}$, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock $t_{\text {ADC1_s }}$ depend on programming.
5 This parameter does not include the sample time $t_{\text {ADC1_s }}$, but only the time for determining the digital result and the time to load the result's register with the conversion result.
6 Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL $=0$, the duty cycle is ensured by internal divider by 2.
7 Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

3.18 On-chip peripherals

3.18.1 Current consumption

Table 43. On-chip peripherals current consumption ${ }^{1}$

Symbol		C	Parameter	Conditions		Value	Unit
						Typ	
$\mathrm{I}_{\mathrm{DD} _ \text {BV(CAN }}$	CC	T	CAN (FlexCAN) supply current on $\mathrm{V}_{\mathrm{DD}} \mathrm{BV}$	$\begin{gathered} \text { Bit rate = } \\ 500 \mathrm{~KB} / \mathrm{s} \end{gathered}$	Total (static + dynamic) consumption: - FlexCAN in loop-back mode - XTAL at 8 MHz used as CAN engine clock source - Message sending period is $580 \mu \mathrm{~s}$	$8 * f_{\text {periph }}+85$	$\mu \mathrm{A}$
				$\begin{aligned} & \text { Bit rate = } \\ & 125 \mathrm{~KB} / \mathrm{s} \end{aligned}$		$8 * f_{\text {periph }}+27$	
$\mathrm{I}_{\text {DD_BV(eMIOS }}$	CC	T	eMIOS supply current on $\mathrm{V}_{\mathrm{DD} \text { _BV }}$	Static consumption: - eMIOS channel OFF - Global prescaler enabled		$29 * \mathrm{f}_{\text {periph }}$	
				Dynamic consumption: - It does not change varying the frequency (0.003 mA)		3	
$\left.\mathrm{I}_{\mathrm{DD} _ \text {BV(}} \mathrm{SCl}\right)$	CC	T	SCI (LINFlex) supply current on $V_{D D}$ BV	Total (static + dynamic) consumption: - LIN mode - Baud rate: $20 \mathrm{~KB} / \mathrm{s}$		$5 * f_{\text {periph }}+31$	
$\mathrm{I}_{\mathrm{DD} _ \text {BV(SPI) }}$	CC	T	SPI (DSPI) supply current on $V_{D D _B V}$	Ballast static consumption (only clocked)		1	
				Ballast dynamic consumption (continuous communication): - Baud rate: $2 \mathrm{Mb} / \mathrm{s}$ - Transmission every $8 \mu \mathrm{~s}$ - Frame: 16 bits		$16{ }^{*} f_{\text {periph }}$	
$\begin{gathered} \mathrm{I}_{\mathrm{DD} _} \mathrm{BV} \\ (\text { ADC_O/ADC_1) } \end{gathered}$	CC	T	ADC_0/ADC_1 supply current on $V_{D D _B V}$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	Ballast static consumption (no conversion)	$41{ }^{*} f_{\text {periph }}$	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	Ballast dynamic consumption (continuous conversion)	$46{ }^{*} \mathrm{f}_{\text {periph }}$	
IDD_HV_ADC0	CC	T	ADC_0 supply current on VDD_HV_ADCO	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	Analog static consumption (no conversion)	200	
				$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	Analog dynamic consumption (continuous conversion)	3	mA

Table 43. On-chip peripherals current consumption ${ }^{1}$ (continued)

Symbol		C	Parameter	Conditions		Value	Unit
						Typ	
$\mathrm{I}_{\text {DD_HV_ADC1 }}$	CC	T	ADC_1 supply current on	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	Analog static consumption (no conversion)	300 * $\mathrm{p}_{\text {periph }}$	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	Analog dynamic consumption (continuous conversion)	4	mA
$\mathrm{I}_{\mathrm{DD} _} \mathrm{HV}$ (FLASH)	CC	T	CFlash + DFlash supply current on $\mathrm{V}_{\mathrm{DD}} \mathrm{HV}$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	-	12	mA
$\mathrm{I}_{\mathrm{DD} _ \text {BV(PLL) }}$	CC	T	PLL supply current on $\mathrm{V}_{\mathrm{DD} \text { _BV }}$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	-	2.5	mA

[^2]
3.18.2 DSPI characteristics

${ }^{1}$ Operating conditions: Cout $=10$ to $50 \mathrm{pF}, \mathrm{Slew}_{\mathrm{IN}}=3.5$ to 15 ns .
2 For DSPI4, if SOUT is mapped to a SLOW pad while SCK is mapped to a MEDIUM pad (or vice versa), the minimum cycle time for SCK should be calculated based on the rise and fall times of the SLOW pad. For MTFE=1, SOUT must not be mapped to a SLOW pad while SCK is mapped to a MEDIUM pad.
3 The $\mathrm{t}_{\text {CSC }}$ delay value is configurable through a register. When configuring $\mathrm{t}_{\mathrm{CSC}}$ (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than $\Delta \mathrm{t}_{\mathrm{CSC}}$ to ensure positive $\mathrm{t}_{\text {CSCext }}$.
4 The $t_{\text {ASC }}$ delay value is configurable through a register. When configuring $t_{\text {ASC }}$ (using PASC and ASC fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than $\Delta t_{\text {ASC }}$ to ensure positive $t_{\text {ASCext }}$.
5 For DSPI x_{-}CTAR $n[$ PCSSCK $]=11$.
6 This delay value corresponds to SMPL_PT $=00 \mathrm{~b}$ which is bit field 9 and 8 of DSPI_MCR register.
7 SCK and SOUT are configured as MEDIUM pad.

Note: Numbers shown reference Table 44.

Figure 23. DSPI classic SPI timing - master, CPHA = 0

Note: Numbers shown reference Table 44.

Figure 24. DSPI classic SPI timing - master, CPHA = 1

Note: Numbers shown reference Table 44.

Figure 25. DSPI classic SPI timing - slave, CPHA = 0

Note: Numbers shown reference Table 44.
Figure 26. DSPI classic SPI timing - slave, CPHA = 1

Note: Numbers shown reference Table 44.

Figure 27. DSPI modified transfer format timing - master, CPHA $=0$

Note: Numbers shown reference Table 44.

Figure 28. DSPI modified transfer format timing - master, CPHA = 1

Note: Numbers shown reference Table 44.

Figure 29. DSPI modified transfer format timing - slave, CPHA = 0

Note: Numbers shown reference Table 44.
Figure 30. DSPI modified transfer format timing - slave, CPHA = 1

Note: Numbers shown reference Table 44.

Figure 31. DSPI PCS strobe ($\overline{\text { PCSS }})$ timing

3.18.3 JTAG characteristics

Table 45. JTAG characteristics

No.	Symbol		C	Parameter	Value			Unit	
			Min		Typ	Max			
1	$\mathrm{t}_{\mathrm{JCYC}}$	CC		D	TCK cycle time	64	-	-	ns
2	$\mathrm{t}_{\text {TDIS }}$	CC	D	TDI setup time	15	-	-	ns	
3	$t_{\text {TDIH }}$	CC	D	TDI hold time	5	-	-	ns	

Table 45. JTAG characteristics (continued)

No.	Symbol		C	Parameter	Value			Unit	
			Min		Typ	Max			
4	$\mathrm{t}_{\text {TMSS }}$	CC		D	TMS setup time	15	-	-	ns
5	$\mathrm{t}_{\text {TMSH }}$	CC	D	TMS hold time	5	-	-	ns	
6	$\mathrm{t}_{\text {TDOV }}$	CC	D	TCK low to TDO valid	-	-	33	ns	
7	${ }^{\text {tidoI }}$	CC	D	TCK low to TDO invalid	6	-	-	ns	

Figure 32. Timing diagram - JTAG boundary scan

4 Package characteristics

4.1 Package mechanical data

4.1.1 176 LQFP

Figure 33. 176 LQFP package mechanical drawing (Part 1 of 3)

DETAIL F

$\oplus 0.07 \otimes \mathrm{M} \mid \mathrm{T}-\mathrm{U} \mathrm{Z}$
SECTION G-G

Figure 34. 176 LQFP package mechanical drawing (Part 2 of 3)

NOTES:

1. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS O.25MM PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE DATUM H.
2. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM b DIMENSION BY MORE THEN 0.08MM.
DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM BETWEEN PROTRUSION AND AN ADJACENT LEAD IS 0.07MM FOR 0.4MM AND 0.5MM PITCH PACKAGES.

DIM	MIN	NOM	MAX	DIM	MIN	NOM	MAX	DIM	MIN	NOM	MAX			
A	---		1.6	L1		1 REF								
A1	0.05		0.15	R1	0.08		--							
A2	1.35	1.4	1.45	R2	0.08		0.2							
b	0.17	0.22	0.27	S		0.2 REF								
b1	0.17	0.2	0.23	θ	0°	$3.5{ }^{\circ}$	$7{ }^{\circ}$							
c	0.09		0.2	01	0°		--							
c1	0.09		0.16	02	11°	12°	13°							
D	26 BSC			03	11°	12°	13°							
D1	24 BSC													
e	0.5 BSC													
E	26 BSC													
E1	24 BSC			UNIT		DIMENSION ANDTOLERANCES								
L	0.45	0.6	0.75			REFE	ANCE	OCUMENT						
					MM					ASME			06-280	-1392

Figure 35. 176 LQFP package mechanical drawing (Part 3 of 3)

4.1.2 144 LQFP

SIDE VIEW

 	MECHANICAL OUTLINE		PRINT VERSCN NDT TO SCALE	
TוE:		DOCUMENT NO- 98AS\$23177w		REV: F 20 MAY ZOOS
144 LEAD LQFP 0. 0.5 PITCH, 1.4 THICK		CASE NUME	918-03	
		STANDARD:	-JEDEC	

Figure 36. 144 LQFP package mechanical drawing (Part 1 of 2)

VIEW B

NDTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TDLERANCES PER ASNE Y14.5M-1894.
3. DATUMS B. C AND D TO EE DETERMINED AT DATUM PLANE H.
4. THE TDP PACKAGE BGDY SZE MAY 日E SMAUER THAN THE BOTTOM PACKAGE SIZE EY A $M A X I M U M C F O .1 \mathrm{~mm}$.
5. THIS DIMENSIONS DO NOT INCLUDE WOD PROTRUSIONS. THE MAXIMUM

ALLIWAELE PROTRUSION IS D. 25 mm PER SIDE THIS DIWENSIONS ARE MAXIMUM BODY SIZE DIMENSIONS INCLUCING MOD MISMATCH.
6. THIS DIMENSION DOES NOT INCLUDE DAM BAR PROTRUSION. PROTRUSIONS SHALL NO CAUSE THE LEAD WIDTH TD EXCEED 0.35. wINIMUM SPACE BETHEEN PRDTRUSIGN AND AN ADJACENT LEAD SHALL BE 0.07 mm .
7. THIS DIMENSIONS ARE DETERMINED AT THE SEATNG PLANE, DATUM A.

Figure 37. 144 LQFP package mechanical drawing (Part 2 of 2)

4.1.3 100 LQFP

Figure 38. 100 LQFP package mechanical drawing (Part 1 of 3)

Figure 39. 100 LQFP package mechanical drawing (Part 2 of 3)

Figure 40. 100 LQFP package mechanical drawing (Part 3 of 3)

5 Ordering information

Qualification status
$M=$ General market qualified
$\mathrm{S}=$ Automotive qualified
$P=$ Engineering samples

Automotive Platform

56 = Power Architecture in 90nm

Core version
 $0=$ e200z0

Flash memory size (for z0 core)$5=768 \mathrm{~KB}$	Temperature spec.
	$\mathrm{C}=-40$ to $85{ }^{\circ} \mathrm{C}$
$6=1024 \mathrm{~KB}$	$\mathrm{V}=-40$ to $105^{\circ} \mathrm{C}$
	$\mathrm{M}=-40$ to $125^{\circ} \mathrm{C}$
Product	
$B=$ Body	Package code
	LL = 100 LQFP
Fab and mask Indicator	LQ $=144$ LQFP
K = TSMC Fab	LU $=176$ LQFP
0 = Version of the maskset	
A = Mask set indicator (Blank $=1 \mathrm{st}$	Frequency
production maskset, $\mathrm{A}=2 \mathrm{nd}$,	4 = Up to 48 MHz
$\mathrm{B}=3 \mathrm{rd}$, etc)	$6=$ Up to 64 MHz

$5=768 \mathrm{~KB}$

Product
B

Fab and mask Indicator
K = TSMC Fab
$0=$ Visk
production maskset, $\mathrm{A}=2 \mathrm{nd}$,
$B=3 \mathrm{rd}$, etc)
$6=U p$ to 64 MHz

Note: Not all options are available on all devices.
Figure 41. Commercial product code structure

6 Revision history

Table 46. Revision history

Revision	Date	Description of changes
1	22 Apr 2011	Initial release.
2	15 May 2013	Changed device number to MPC5606BK. In Table 2 (Functional port pins), updated PA[11] AF2, PD[13] AF2, and PH[11] AF3 I/O direction to "I/O". In Table 3 (Pad types), corrected "Fast" in the "S" row to "Slow." In Table 5 (PAD3V5V field description), updated footnote 2. In Table 6 (OSCILLATOR_MARGIN field description), updated footnote 2. Inserted Section 3.2.3, NVUSRO[WATCHDOG_EN] field description. In Table 8 (Absolute maximum ratings), Table 9 (Recommended operating conditions (3.3 V)), and Table 10 (Recommended operating conditions (5.0 V)), corrected the parameter description for V_{DD} _ADC to "Voltage on VDD_HV_ADC0, VDD_HV_ADC1 (ADC reference) with respect to ground (V_{SS})" In Section 3.6.1, I/O pad types bullet item, removed Nexus reference. In Table 12 (I/O input DC electrical characteristics), added specifications for $85^{\circ} \mathrm{C}$. In Table 13 (I/O pull-up/pull-down DC electrical characteristics), Table 14 (SLOW configuration output buffer electrical characteristics), Table 15 (MEDIUM configuration output buffer electrical characteristics), and Table 16 (FAST configuration output buffer electrical characteristics), changed sentence in footnote 2 to "All pads but RESET are configured in input or in high impedance state." In Table 15 (MEDIUM configuration output buffer electrical characteristics), for V_{OL}, changed l_{OH} to I_{OL}. Updated Table 20 (I/O weight). In Table 21 (Reset electrical characteristics) changed sentence in footnote 4 to "All pads but RESET are configured in input or in high impedance state." in Table 22 (Voltage regulator electrical characteristics), corrected the maximum value for $\mathrm{I}_{\mathrm{DD}} \mathrm{BV}$ in Table 22 (Voltage regulator electrical characteristics) to 300 mA . In Table 23 (Low voltage monitor electrical characteristics), changed $V_{\text {PORUP }}$ classification tag from "P" (Production testing guaranteed) to "D" (Design simulation). Changed V ${ }_{\text {LVDHV3BH }}$ classification tag from "P" (Production testing guaranteed) to "T" (Design characterization). In Table 23 (Low voltage monitor electrical characteristics), changed V $_{\text {LVDHV3L }}, \mathrm{V}_{\text {LVDHV3BL }}$ minimums from 2.7 V to 2.6 V .

Table 46. Revision history (continued)

Revision	Date	Description of changes
$\begin{gathered} 2 \\ \text { (cont.) } \end{gathered}$	15 May 2013	In Table 24 (Electrical characteristics in different application modes), - Changed $I_{\text {DDMAX }}$ Typ to 81 mA and $\mathrm{I}_{\text {DDMAX }}$ Typ to 130 mA . - Changed $\mathrm{I}_{\text {DDRUN }}$ Typ for fCPU $=32 \mathrm{MHz}$ to 40 mA . - Changed $\mathrm{I}_{\text {DDRUN }}$ Typ for fCPU $=48 \mathrm{MHz}$ to 54 mA . Added $\mathrm{I}_{\text {DDRUN }} \mathrm{Max}$ of 96 mA . - Changed $\mathrm{I}_{\text {DDRUN }}$ Typ for fCPU $=64 \mathrm{MHz}$ to 67 mA . Added $\mathrm{I}_{\text {DDRUN }}$ Max of 120 mA . - Changed $I_{\text {DDHALT }}$ at $T_{A}=25^{\circ} \mathrm{C}$ Typ to 10 mA and $\mathrm{I}_{\text {DDHALT }}$ Max to 15 mA . - Changed $I_{\text {DDHALT }}$ at $T_{A}=125^{\circ} \mathrm{C}$ Typ to 15 mA and $\mathrm{I}_{\text {DDHALT }}$ Max to 28 mA . - Changed $I_{\text {DDSTOP }} T_{A}$ temperature from $-40^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$. - Changed $\mathrm{I}_{\text {DDSTOP }}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Typ to $130 \mu \mathrm{~A}$ and $\mathrm{I}_{\text {DDSTOP }}$ Max to $500 \mu \mathrm{~A}$. - Changed $\mathrm{I}_{\text {DDSTOP }}$ at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ Typ to $180 \mu \mathrm{~A}$. - Changed $I_{\text {DDSTOP }}$ at $T_{A}=85^{\circ} \mathrm{C}$ Typ to 1 mA and $\mathrm{I}_{\text {DDSTOP }}$ Max to 5 mA . - Changed $I_{\text {DDSTOP }}$ at $T_{A}=105^{\circ} \mathrm{C}$ Typ to 3 mA and $\mathrm{I}_{\text {DDSTOP }}$ Max to 9 mA . - Changed $I_{\text {DDSTOP }}$ at $T_{A}=125^{\circ} \mathrm{C}$ Typ to 5 mA and $\mathrm{I}_{\text {DDSTOP }}$ Max to 14 mA . - Changed I IDSSTDBY2 at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Typ to $17 \mu \mathrm{~A}$ and Max to $80 \mu \mathrm{~A}$. - Changed $\mathrm{I}_{\text {DDSTDBY2 }}$ at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ Typ to $30 \mu \mathrm{~A}$. - Changed $\mathrm{I}_{\text {DDSTDBY2 }}$ at $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ Typ to $100 \mu \mathrm{~A}$. - Changed $\mathrm{I}_{\text {DDSTDBY2 }}$ at $\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$ Typ to $280 \mu \mathrm{~A}$ and Max to $950 \mu \mathrm{~A}$. - Changed IDDSTDBY2 at $T_{A}=125^{\circ} \mathrm{C}$ Typ to $460 \mu \mathrm{~A}$ and Max to $1700 \mu \mathrm{~A}$. - Changed the parameter classification for I IDSTANDBY2 $\left(T_{A}=125^{\circ} \mathrm{C}\right)$ - Changed $\mathrm{I}_{\mathrm{DDSTDBY} 1}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Typ to $12 \mu \mathrm{~A}$ and Max to $50 \mu \mathrm{~A}$. - Changed $\mathrm{I}_{\text {DSSTDBY } 1}$ at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ Typ to $24 \mu \mathrm{~A}$. - Changed $\mathrm{I}_{\text {DDSTDBY } 1}$ at $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ Typ to $48 \mu \mathrm{~A}$. - Changed $\mathrm{I}_{\text {DDSTDBY } 1}$ at $\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$ Typ to $150 \mu \mathrm{~A}$ and Max to $500 \mu \mathrm{~A}$. - Changed $\mathrm{I}_{\text {DDSTDBY } 1}$ at $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ Typ to $260 \mu \mathrm{~A}$. - Changed the third sentence of Footnote 3 to begin with "The given value is thought to be a worst case value (64 MHz at $125^{\circ} \mathrm{C}$) with all peripherals running." - Removed footnotes 8 and 9 regarding $I_{\text {DDHALT }}$ and $I_{\text {DDSTOP }}$ - Corrected " C " characteristics to reflect testing status. In Section 3.10, Flash memory electrical characteristics, removed the "FLASH_BIU settings vs. frequency of operation" table. In Table 28 (Flash power supply DC electrical characteristics), corrected Footnote 2 to specify $125^{\circ} \mathrm{C}$. In Section 3.14, FMPLL electrical characteristics, changed the text "the main oscillator driver" to "the FXOSC or FIRC sources." In Table 40 (ADC input leakage current), added specifications for $85^{\circ} \mathrm{C}$. In Table 44 (DSPI characteristics), added $\mathrm{t}_{\text {SCK }}$ specifications for MTFE=1. In Table 44 (DSPI characteristics), updated specifications 7 and 8 to 13 ns , all DSPIs. in ADC section, corrected Equation 11. In Figure 41 (Commercial product code structure), added "Note: Not all options are available on all devices." Removed Section 6, Abbreviations.

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296380456 (English)
+46 852200080 (English)
+49 8992103559 (German)
+33 169354848 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120191014 or +81 354379125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 1058798000
support.asia@freescale.com
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or $+1-303-675-2140$
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

RoHS-compliant and/or Pb- free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale.s Environmental Products program, go to http://www.freescale.com/epp.

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale ${ }^{\text {TM }}$ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2011-2013. All rights reserved.

MPC5606B

Rev. 2
5/2013

[^0]: $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified

[^1]: ${ }^{1} \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \% / 5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise specified
 2 This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

[^2]: ${ }^{1}$ Operating conditions: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\text {periph }}=8 \mathrm{MHz}$ to 64 MHz

