
Designer's™ Data Sheet

Insulated Gate Bipolar Transistor N-Channel Enhancement-Mode Silicon Gate

This Insulated Gate Bipolar Transistor (IGBT) uses an advanced termination scheme to provide an enhanced and reliable high voltage–blocking capability. It also provides low on–voltage which results in efficient operation at high current.

- Industry Standard TO-220 Package
- High Speed E_{off}: 63 μJ/A typical at 125°C
- Low On–Voltage 1.7 V typical at 8.0 A, 125°C
- Robust High Voltage Termination
- ESD Protection Gate–Emitter Zener Diodes

MGP15N60U

IGBT IN TO-220 15 A @ 90°C 26 A @ 25°C 600 VOLTS VERY LOW ON-VOLTAGE

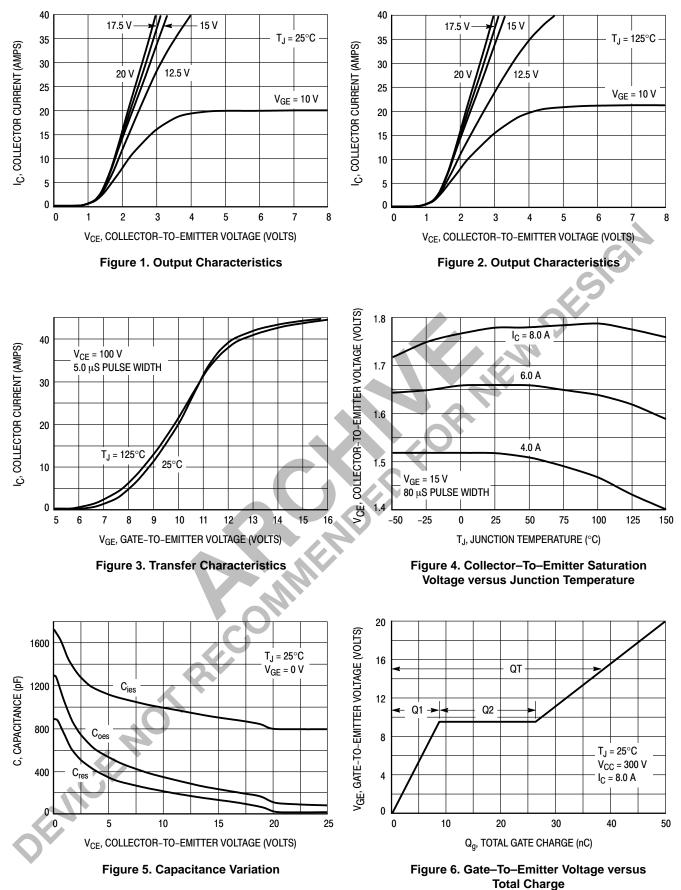
MAXIMUM RATINGS (T _J = 25°C unless otherwise	noted)
---	--------

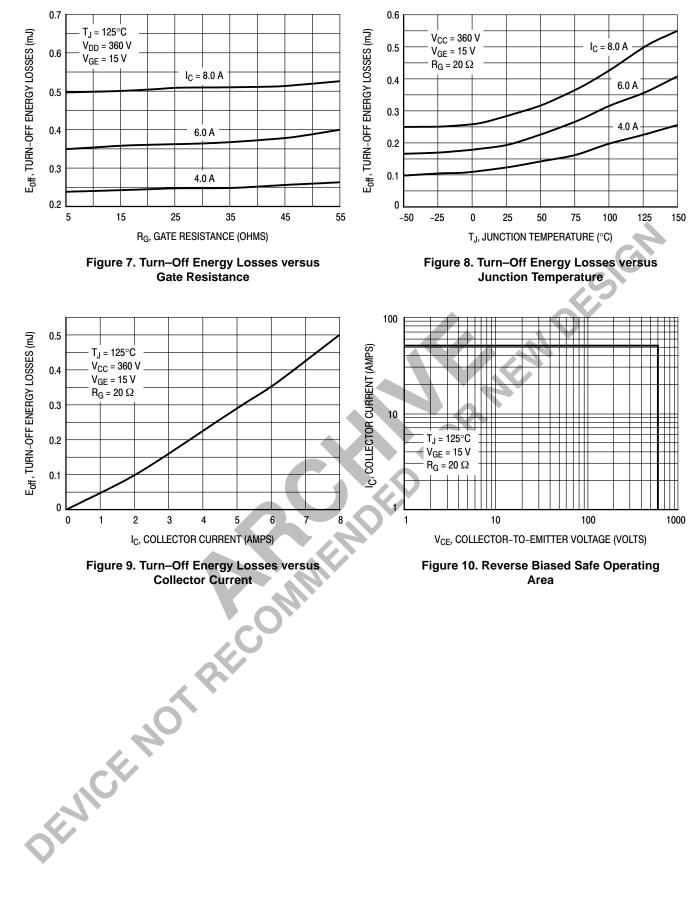
Rating	Symbol	Value	Unit	
Collector–Emitter Voltage	V _{CES}	600	Vdc	
Collector–Gate Voltage ($R_{GE} = 1.0 M\Omega$)	V _{CGR}	600	Vdc	
Gate-Emitter Voltage Continuous	V _{GE}	±20	Vdc	
Collector Current — Continuous @ $T_c = 25^{\circ}C$ — Continuous @ $T_c = 90^{\circ}C$ — Repetitive Pulsed Current (1)	I _{C25} I _{C90} I _{CM}	26 15 52	Adc Apk	
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	96 0.77	Watts W/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to 150	°C	
Thermal Resistance — Junction to Case – IGBT — Junction to Ambient	R _{θJC} R _{θJA}	1.3 65	°C/W	
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds	TL	260	°C	
Mounting Torque, 6–32 or M3 screw	10	10 lbf•in (1.13 N•m)		

(1) Pulse width is limited by maximum junction temperature. Repetitive rating.

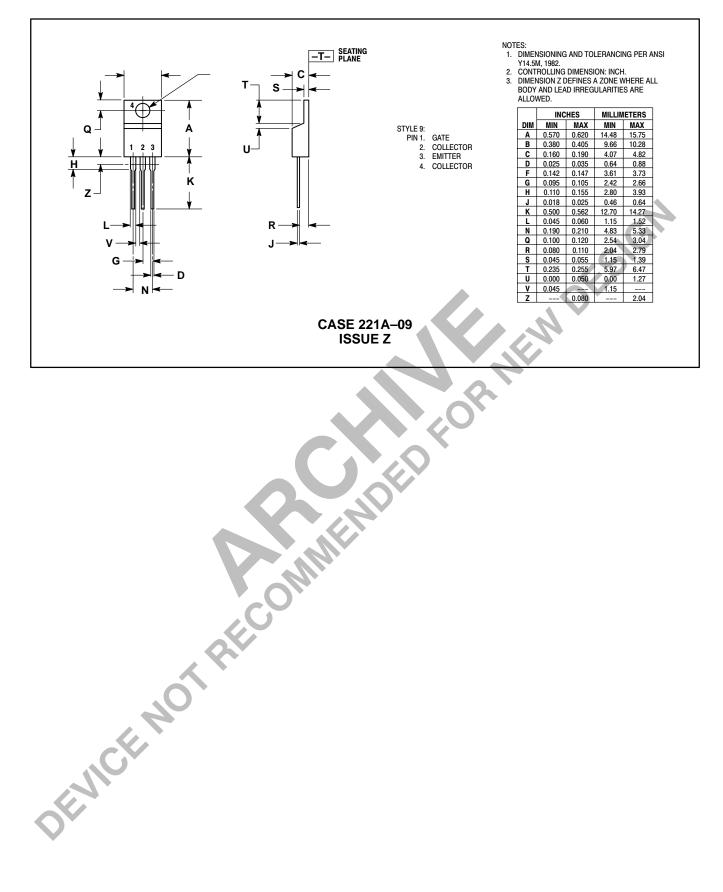
Designer's Data for "Worst Case" Conditions — The Designer's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

Designer's is a trademark of Motorola, Inc.


REV 2


ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

	racteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
$\begin{array}{l} \mbox{Collector-to-Emitter Breakdown Vo} \\ (V_{GE} = 0 \mbox{ Vdc}, \mbox{ I}_{C} = 25 \mu \mbox{Adc}) \\ \mbox{Temperature Coefficient (Positive)} \end{array}$	5	V _{(BR)CES}	600 —			Vdc mV/°C
Emitter-to-Collector Breakdown Vo	bltage (V _{GE} = 0 Vdc, I _{EC} = 100 mAdc)	V _{(BR)ECS}	15	_	_	Vdc
Zero Gate Voltage Collector Currer ($V_{CE} = 600 \text{ Vdc}, V_{GE} = 0 \text{ Vdc}$) ($V_{CE} = 600 \text{ Vdc}, V_{GE} = 0 \text{ Vdc}, T_{CE}$		ICES			10 200	μAdc
Gate–Body Leakage Current (V_{GE}	= \pm 20 Vdc, V _{CE} = 0 Vdc)	I _{GES}	_	_	50	μAdc
ON CHARACTERISTICS (1)						
	с С	V _{CE(on)}		1.4 1.3 1.7	1.7 2.0	Vdc
$ \begin{array}{l} \mbox{Gate Threshold Voltage} \\ \mbox{(V}_{CE} = V_{GE}, \mbox{ I}_{C} = 1.0 \mbox{ mAdc}) \\ \mbox{Threshold Temperature Coefficie} \end{array} $	nt (Negative)	V _{GE(th)}	3.0 —	5.5 10	7.0	Vdc mV/°C
Forward Transconductance (V _{CE} =	10 Vdc, I _C = 8.0 Adc)	9 _{fe}		7.0	_	Mhos
YNAMIC CHARACTERISTICS						
Input Capacitance		C _{ies}		806		- pF
Output Capacitance	(V _{CE} = 25 Vdc, V _{GE} = 0 Vdc, f = 1.0 MHz)	C _{oes}		78	_	
Transfer Capacitance		C _{res}	_	13	_	
WITCHING CHARACTERISTICS (1)					
Turn-On Delay Time		t _{d(on)}	—	35	_	ns
Rise Time	(V _{CC} = 360 Vdc, I _C = 8.0 Adc,	t _r	—	34	—	
Turn-Off Delay Time	$V_{GE} = 15 \text{ Vdc}, \text{ L} = 300 \mu\text{H}, \ R_{G} = 20 \Omega$	t _{d(off)}	—	105		
Fall Time	Energy losses include "tail"	t _f	—	200		
Turn–Off Switching Loss		E _{off}	_	250		μJ
Turn–On Delay Time		t _{d(on)}	_	36		ns
Rise Time	$(V_{CC} = 360 \text{ Vdc}, I_C = 8.0 \text{ Adc},$	t _r		39	_	
Turn–Off Delay Time	V _{GE} = 15 Vdc, L = 300 μH, R _G = 20 Ω, T _J = 125°C)	t _{d(off)}	—	206	—	
Fall Time	Energy losses include "tail"	t _f	—	255	_	
Turn–Off Switching Loss		E _{off}		510	—	μJ
Gate Charge		Q _T	_	39.2	_	nC
	(V _{CC} = 360 Vdc, I _C = 8.0 Adc,	0	_	8.7	_	1
	V _{GE} = 15 Vdc)	Q ₁		0.7		


Internal Emitter Inductance	LE				nH
(Measured from the emitter lead 0.25" from package to emitter bond pad)		—	7.5	—	

(1) Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%.

PACKAGE DIMENSIONS

to make changes whoof further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding to any product sherein. Motorola makes no warranty, representation or guarantee regarding to any product sherein. Motorola makes no warranty, representation or guarantee regarding to any product sherein. Motorola makes no warranty, representation or guarantee regarding to any product sherein. Motorola makes no warranty, representation or guarantee regarding to any product sherein. Motorola makes no warranty, representation or guarantee regarding to any product sherein any liability arising out of the application or use of any product or circuit, and and all liability. Including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and **(Motorola matkes of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.**

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

Customer Focus Center: 1-800-521-6274

 Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 1-602-244-6609

 Motorola Fax Back System
 - US & Canada ONLY 1-800-774-1848

 - http://sps.motorola.com/mfax/

HOME PAGE: http://motorola.com/sps/

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141,

4-32-1 Nishi-Gotanda, Shagawa-ku, Tokyo, Japan. 03-5487-8488

Mfax is a trademark of Motorola, Inc.