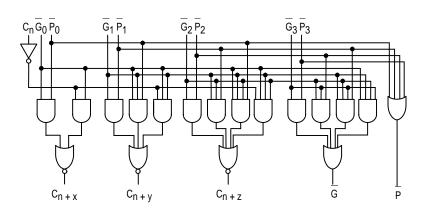
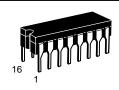

MOTOROLA

CARRY LOOKAHEAD GENERATOR


The MC54/74F182 is a high-speed carry lookahead generator. It is generally used with the F181, F381 or 29F01 4-bit arithmetic logic unit to provide high-speed lookahead over word lengths of more than four bits.

- Provides Lookahead Carries Across a Group of Four ALUs
- Multi-level Lookahead High-speed Arithmetic Operation Over Long Word Lengths

CONNECTION DIAGRAM DIP (TOP VIEW)

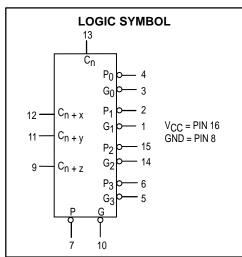

LOGIC DIAGRAM

MC54/74F182

CARRY LOOKAHEAD GENERATOR

FAST™ SCHOTTKY TTL

J SUFFIX CERAMIC CASE 620-09


N SUFFIX PLASTIC CASE 648-08

D SUFFIX SOIC CASE 751B-03

ORDERING INFORMATION

MC54FXXXJ Ceramic MC74FXXXN Plastic MC74FXXXD SOIC

MC54/74F182

FUNCTION TABLE

				Inputs					Outputs					
Сn	G ₀	P ₀	G ₁	P ₁	G ₂	P ₂	G ₃	P ₃	C _{n+x}	C _{n+y}	C _{n+z}	G	P	
Х	Н	Н							L					
L	Н	Χ							L					
Х	L	Χ							Н					
Н	Х	L							Н					
Х	Х	Х	Н	Н						L				
Х	Н	Н	Н	X						L				
L	Н	Χ	Н	X						L				
Х	X	Χ	L	X						Н				
Χ	L	Χ	Χ	L						Н				
Н	Χ	L	Χ	L						Н				
Х	Х	Х	Х	Х	Н	Н					L			
Х	X	Χ	Н	Н	Н	X					L			
Χ	Н	Н	Н	X	Н	X					L			
L	Н	Χ	Н	X	Н	X					L			
Х	Х	Χ	Χ	X	L	X					Н			
Х	Х	Χ	L	X	X	L					Н			
Х	L	Χ	Χ	L	X	L					Н			
Н	X	L	X	L	Χ	L					Н			
	Х		Х	Х	Χ	Х	Н	Н				Н		
	Χ		Χ	X	Н	Н	Н	Χ				Н		
	X		Н	Н	Н	X	Н	X				Н		
	Н		Н	X	Н	X	Н	X				Н		
	X		Χ	X	X	X	L	X				L		
	X		Χ	X	L	X	X	L				L		
	X		L	X	X	L	X	L				L		
	L		Х	L	Χ	L	X	L				L		
		Н		Х		Х		Х					Н	
		Χ		Н		Χ		Χ					Н	
		Х		Χ		Н		Χ					Н	
		Χ		X		Χ		Н					Н	
		L		L		L		L					L	

H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54,74	4.5	5.0	5.5	V
TA	Operating Ambient Temperature Range	54	- 55	25	125	°C
		74	0	25	70	
loн	Output Current — High	54, 74			-1.0	mA
loL	Output Current — Low	54, 74			20	mA

MC54/74F182

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

				Limits						0
Symbol	Parameter		Min Typ Max		Unit	Test Conditions				
VIH	Input HIGH Voltage			2.0			V	Guaranteed Input HIGH Voltage		
V _{IL}	Input LOW Volta	ige			0.8	V	Guaranteed Input LOW Voltage			
VIK	Input Clamp Diode Voltage					-1.2	V	I _{IN} = -18 mA	V _{CC} = MIN	
Vон	Output HIGH Voltage 54, 74		54, 74	2.5	3.4		V	I _{OH} = -1.0 mA	V _{CC} = 4.50 V	
			74	2.7	3.4		V	$I_{OH} = -1.0 \text{ mA}$	V _{CC} = 4.75 V	99
VOL	Output LOW Voltage				0.35	0.5	V	I _{OL} = 20 mA	V _{CC} = MIN	
IH	Input HIGH Current					20	μΑ	V _{IN} = 2.7 V	$V_{CC} = MAX$	Н
						100	μΑ	V _{IN} = 7.0 V	VCC = MAX	
		C _n Input				-1.2				
		P ₃ Input				-2.4				U,
I⊫	Input LOW P ₂ Input					-3.6	mA	V _{IN} = 0.5 V	VCC = MAX	
	Current	Current G ₃ , P ₀ , P ₁ Inputs				-4.8				
		G ₀ , G ₂ Inputs				-8.4				U,
		G ₁ Input				-9.6	1			
los	Output Short Circuit Current (Note 2)			-60		-150	mA	V _{OUT} = 0 V	V _{CC} = MAX	
ІССН	Power Supply Current (All Outputs HIGH)				18.4	28	mA	P ₃ , G ₃ = 4.5 V All Other Inputs = GND	V _{CC} = MAX	
ICCL	Power Supply Current (All Outputs LOW)				23.5	36	mA	G ₀ , G ₁ , G ₂ = 4.5 V All Other Inputs = GND	VCC = MAX	6

		54/74F			54	1F	74		
			T _A = +25°C V _{CC} = +5.0 V			to +125°C	T _A = 0°C		
) V ± 10%	V _{CC} = 5.0		
		C _L = 50 pF			C _L =	50 pF	C _L = 9		
Symbol	Parameter	Min	Тур	Max	Min	Max	Min	Max	Unit
^t PLH	Propagation Delay	3.0	6.6	8.5	3.0	10.5	3.0	9.5	no
^t PHL	C_n to C_{n+x} , C_{n+y} , C_{n+z}	3.0	6.8	9.0	3.0	11	3.0	10	ns
^t PLH	Propagation Delay	2.5	6.2	8.0	2.5	10.7	2.5	9.0	
^t PHL	$ \begin{array}{c} - & - \\ - &$	1.5	3.7	5.0	1.5	6.5	1.5	6.0	ns
^t PLH	Propagation Delay	2.5	6.5	8.5	2.5	10.5	2.5	9.5	
^t PHL	G_0 , G_1 , or G_2 to C_{n+x} , C_{n+y} , C_{n+z}	1.5	3.9	5.2	1.5	6.5	1.5	6.0	ns

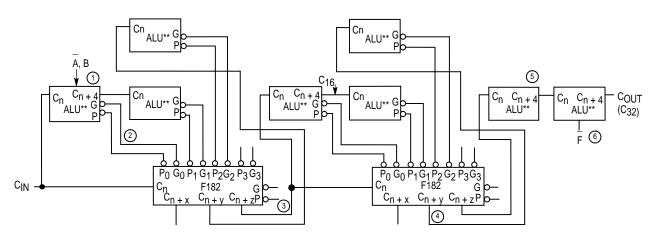
 For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
 No more than one output should be shorted at a time, nor for more than 1 second. **AC CHARACTERISTICS**

AC CHARACTERISTICS (Continued)

			54/74F		54	1F	74	lF	
			A = +25°	С	T _A = -55°C	to +125°C	T _A = 0°C		
			V _{CC} = +5.0 V C _L = 50 pF) V ± 10%	V _{CC} = 5.0		
						50 pF	C _L = 50 pF		
Symbol	Parameter	Min	Тур	Max	Min	Max	Min	Max	Unit
tPLH	Propagation Delay	2.0	7.9	10	2.0	12.5	2.0	11	
^t PHL	$\overline{P}_1, \overline{P}_2, \text{ or } \overline{P}_3 \text{ to } \overline{G}$	2.0	6.0	8.0	2.0	9.5	2.0	9.0	ns
^t PLH	Propagation Delay	2.0	8.3	10.5	2.0	12.5	2.0	11.5	ns
^t PHL	G _n to G	1.5	5.7	7.5	1.5	9.5	1.5	8.5	115
tPLH	Propagation Delay	2.5	5.7	7.5	2.5	11	2.5	8.5	ns
tPHL	P _n to P	2.5	4.1	5.5	2.5	7.5	2.5	6.5	115

FUNCTIONAL DESCRIPTION

The F182 carry lookahead generator accepts up to four pairs of active-LOW Carry Propagate (P $_0$ -P $_3$) and carry Generate (G $_0$ -G $_3$) signals and an active-HIGH Carry input (C $_n$) and provides anticipated active-HIGH carries (C $_n$ + $_x$, C $_n$ + $_y$, C $_n$ + $_z$) across four groups of binary adders. The F182 also has active-LOW Carry Propagate (P) and Carry Generate (G) outputs which may be used for further levels of lookahead. The logic equations provided at the output are:


$$C_{n+x} = G_0 + P_0C_n$$

 $C_{n+y} = G_1 + P_1G_0 + P_1P_0C_n$
 $C_{n+z} = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_n$

$$G = \frac{G_3 + P_3G_2}{P_3P_2P_1P_0} + P_3P_2P_1G_0$$

$$P = P_3P_2P_1P_0$$

Also, the F182 can be used with binary ALUs in an active—LOW or active-HIGH input operand mode. The connections (Figure 1) to and from the ALU to the carry lookahead generator are identical in both cases. Carries are rippled between lookahead blocks. The critical speed path follows the circled numbers. There are several possible arrangements for the carry interconnects, but all achieve about the same speed. A

28-bit ALU is formed by dropping the last F181 or F381.

^{**} ALUs may be either F181, F381, or 2901A.

Figure 1. 32-Bit ALU with Ripple Carry Between 16-Bit Lookahead ALUs

FETIME BU

Mfax is a trademark of Motorola, Inc.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and material registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81–3–3440–3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26668334

Customer Focus Center: 1-800-521-6274

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 1-602-244-6609

Motorola Fax Back System – US & Canada ONLY 1–800–774–1848

- http://sps.motorola.com/mfax/

HOME PAGE: http://motorola.com/sps/

