

PART NUMBER

CLC400ABPA-ROCS

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

National Semiconductor is now part of Texas Instruments.

Search <u>http://www.ti.com/</u> for the latest technical

information and details on our current products and services.

MICROCIRCUIT DATA SHEET

MNCLC400A-X REV 2A0

Original Creation Date: 11/24/98 Last Update Date: 03/09/99 Last Major Revision Date: 2/16/99

FAST SETTLING, WIDEBAND LOW-GAIN MONOLITHIC OP AMP

General Description

The CLC400 is a high-speed, fast-settling operational amplifier designed for low-gain applications. Constructed using a unique, proprietary design and an advanced complementary bipolar process, the CLC400 offers performance far beyond that normally offered by ordinary monolithic operational amplifiers. In addition, unlike many other high-speed operational amplifiers the CLC400 offers both high performance and stability without the need for compensation circuitry - even at a gain of +1.

The fast 12ns settling to 0.05% and its ability to drive capacitive loads makes the CLC400 an ideal flash A/D driver. The wide bandwidth of 200 MHz and the very linear phase ensure unsurpassed signal fidelity. Systems employing digital to analog converters also benefit from the use of the CLC400 - especially if linearity and drive levels are important to system performance.

The CLC400 provides a simple, high-performance solution for video distribution and line driving applications. The 50mA output current and guaranteed specifications for 100 ohm loads provide ample drive capability and assured performance.

Industry Part Number

NS Part Numbers

CLC400AE-QML* CLC400AJ-MLS CLC400AJ-QML**

CLC400A

Prime Die

UB1363B

Controlling Document

5962-8997001PA**, 2A*

Processing

MIL-STD-883, Method 5004

Quality Conformance Inspection

MIL-STD-883, Method 5005

Subgrp	Description	Temp ($^{\circ}$ C)
1 2 3 4 5 6 7 8 8 8 9 10 11	Static tests at Static tests at Dynamic tests at Dynamic tests at Dynamic tests at Functional tests at Functional tests at Functional tests at Switching tests at Switching tests at	+25 +125 -55 +25 +125 -55 +25 +125 +25 +25 +125 -55

Features

- -3dB bandwidth of 270MHz
- 0.05% settling in 12ns
- Low power, 150mW
- Low distortion, -60dBc at 20MHz
- Stable without compensation
- Overload and short circuit protection
- ± 1 to ± 8 closed-loop gain range

Applications

- Flash, precision A/D conversion
- Photodiode, CCD preamps
- IF processors
- High-speed communications
- Line drivers
- Video distribution
- High-speed communications

(Absolute Maximum Ratings)

(Note 1) Supply Voltage (Vs) <u>+</u>7V dc Output Current (Iout) <u>+</u>70mA Maximum Power Dissipation (Pd) (Note 2) 1.2W Junction Temperature (Tj) +175 C Storage Temperature Range -65 C to +150 C Lead Temperature (soldering, 10 seconds) +300 C Thermal Resistance Junction-to-ambient (ThetaJA) 134 C/W (Still Air) Ceramic DIP 82 C/W (500 LFPM) LCC (Still Air) TBD (500 LFPM) TBD Junction-to-case (ThetaJC) Ceramic DIP 28 C/W LCC TBD Package Weight (typical) 1070 mg Ceramic DIP LCC TBD ESD Tolerance (Note 3) ESD Rating 1000 V

- Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
 Note 2: The maximum power dissipation must be derated at elevated temperatures and is
- Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is Pdmax = (Tjmax TA)/ThetaJA or the number given in the Absolute Maximum Ratings, whichever is lower.
 Note 3: Human body model, 100pF discharged through 1.5K Ohms.

Recommended Operating Conditions

Supply Voltage (Vs)	
	<u>+</u> 5V dc
Closed Loop Gain Range	
	<u>+</u> 1 to <u>+</u> 8
Ambient Operating Temperature Range (Ta)	-55 C to +125 C

Electrical Characteristics

DC PARAMETERS: Open Loop Characteristics

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: Rl = 100 Ohms, Vs = \pm 5V dc. -55 C \leq Ta \leq +125 C (Note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
+Iin	Input Bias Current	RS = 500hm			-20	+20	uA	1, 2
	(noninverting)				-36	+36	uA	3
-Iin	Input Bias Current	RS = 500hm			-20	+20	uA	1
	(Inverting)				-30	+30	uA	2
					-36	+36	uA	3
Vio	Input Offset Voltage	RS = 500hm			-5	5	mV	1
	Vortage				-9	9	mV	2
					-8.2	8.2	mV	3
ROL	Transimpedance	TA = +25C	1		30		V/mA	1
IS	Supply Current	No Load				<u>+</u> 23	mA	1, 2, 3
PSRR	Power Supply Rejection Ratio	+VS = +4.5V to +5.5V -VS = -4.5V to -5.5V			45		dB	1, 2, 3
+RIN	Input Resistance		1		100		kOhm	1, 2
			1		50		kOhm	3
Iout	Output Current		1		50		mA	1, 2
			1		355		mA	3
CMRR	Common Mode	$VCM = \pm 2.0V$	1		45		dB	1
	Rejection Ratio	$VCM = \pm 1.2V$	1		45		dB	2, 3
Vout	Output Voltage Swing	No Load	1		2.8		V	1, 2
	2MTIIG		1		2.3		V	3

Electrical Characteristics

AC PARAMETERS: Closed Loop Characteristics

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: Rl = 100 Ohms, Rf = 250 Ohms, Vs = \pm 5V dc, and Av = +2. -55 C \leq Ta \leq +125 C (Note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
SSBW	Small Signal Bandwidth	-3dB bandwidth, Vout < 0.5VPP			150		MHz	4
	Danawiach		2		120		MHz	5
			2		150		MHz	6
GFPL	Gain Flatness Peaking	.1 to 40 MHz				0.3	dB	4
	reaking		2			0.4	dB	5,6
GFPH	Gain Flatness Peaking	No peaking over 40MHz				0.5	dB	4
	Peaking		2			0.7	dB	5,6
GFR	Gain Flatness Rolloff	.1 to 75 MHz				1.0	dB	4
	ROIIOII		2			1.3	dB	5
			2			1.0	dB	6
HD2	2nd Harmonic Distortion	2 VPP at 20 MHz				-45	dB	4
	Distortion		2			-45	dB	5
			2			-40	dB	6
HD3	3rd Harmonic	2 VPP at 20 MHz				-50	dB	4
	Distortion	n	2			-50	dB	5,6

AC PARAMETERS: Time Domain Response

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: Rl = 100 Ohms, Rf = 250 Ohms, Vs = $\pm 5V$ dc. -55 C \leq Ta \leq +125 C (Note 3)

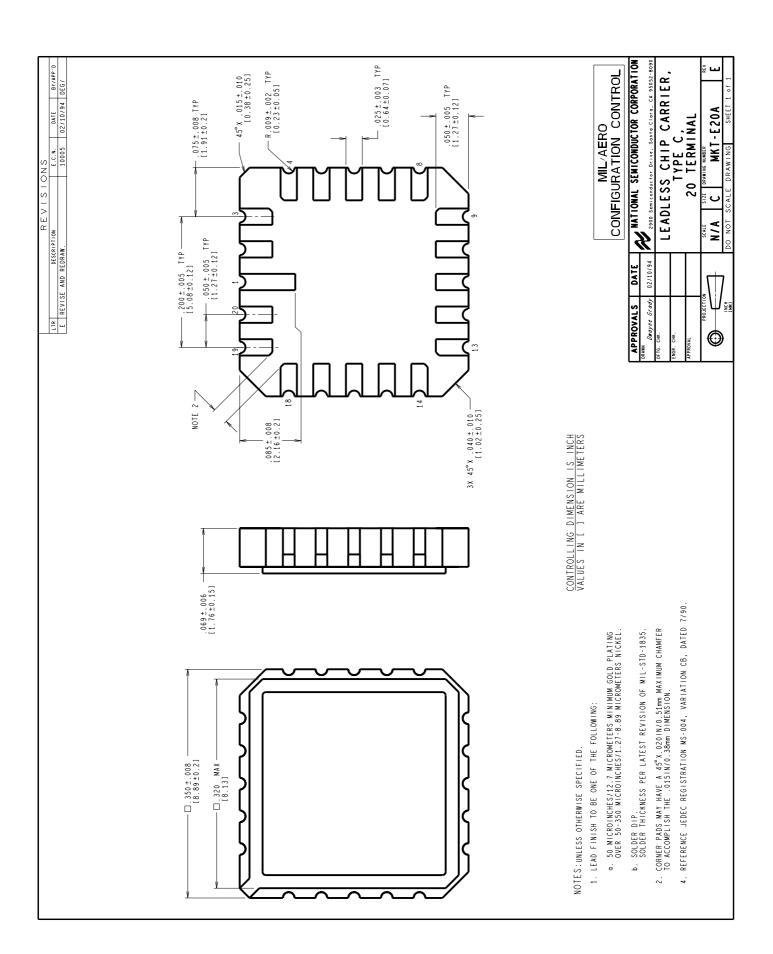
SR	Slew Rate	Av= +2, measured $\pm 1V$ with $\pm 3V$ step	1		430		V/uS	9, 10, 11
TRS	Rise Time	0.5V Step	1			2.4	nS	9, 10, 11
TRL	Fall Time	V Step 1				10	nS	9, 10, 11
TS	Settling Time	2V Step at 0.1% of fixed value	1			13	nS	9, 10, 11
		2V Step at 0.05% of fixed value	1			15	nS	9, 10, 11
OS	Overshoot	0.5V Step	1			10	90	9
			1			15	00	10, 11

Electrical Characteristics

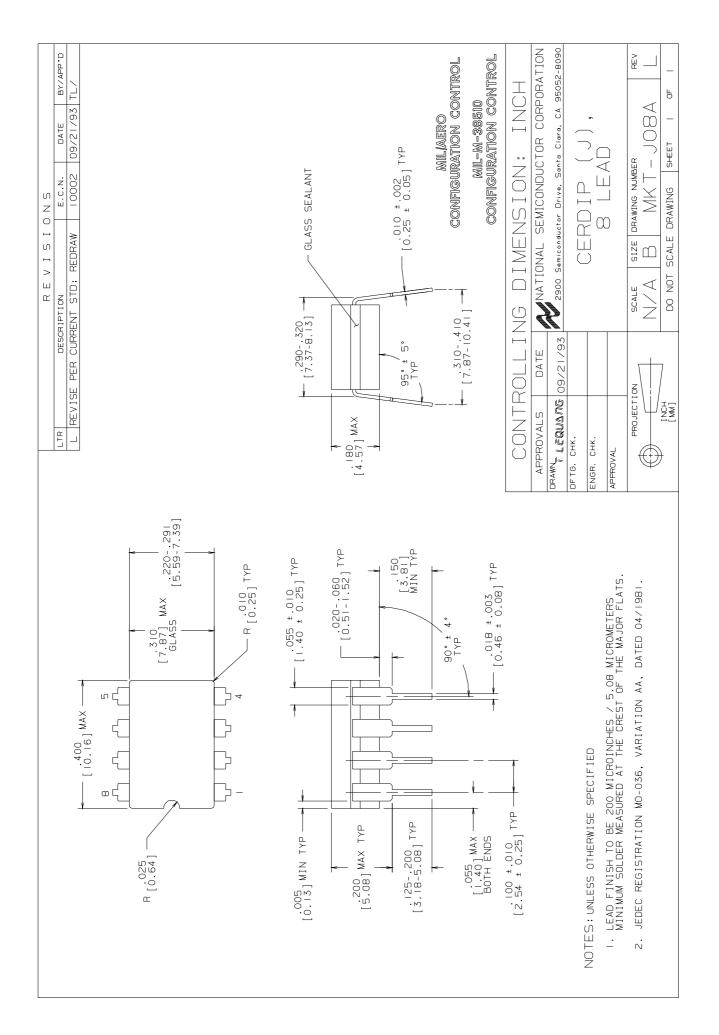
DC PARAMETERS: Drift Values

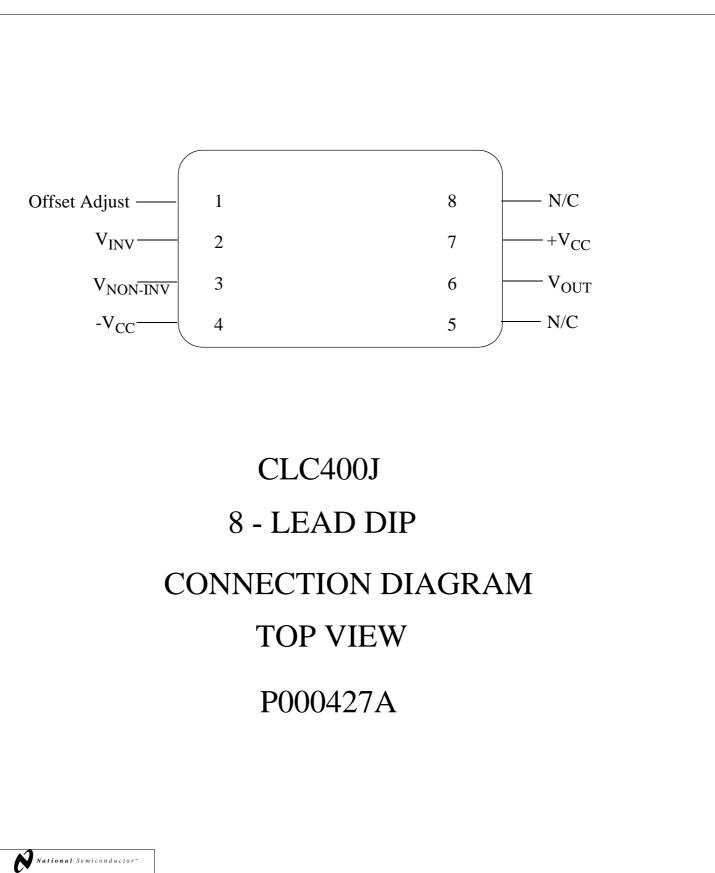
(The following conditions apply to all the following parameters, unless otherwise specified.)
DC: Rl = 100 Ohms, Vs = ±5V dc. -55 C ≤ Ta ≤ +125 C "Deltas not required on B-Level product. Deltas
required for S-Level (-MLS) product as specified on Internal Processing Instructions (IPI)." (Note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
+Iin	Input Bias Current (noninverting)	Rs = 500hm			-1.5	1.5	uA	1
-Iin	Input Bias Current (inverting)	Rs = 500hm			-1.5	1.5	uA	1
Vio	Input Offset Voltage	Rs = 500hms			-1.0	1.0	mV	1
IS	Supply Current	No Load			-2.0	2.0	mA	1

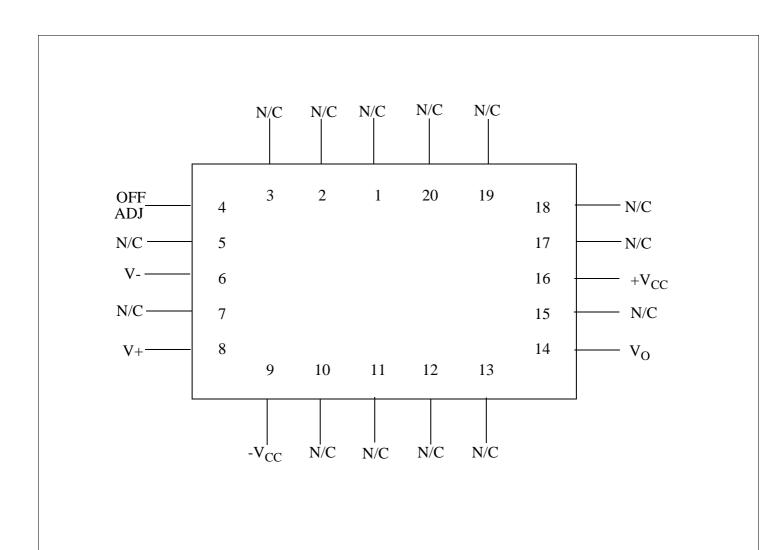

Note 1: Note 2: Note 3:

If not tested, shall be guaranteed to the limits specified in Table 1 Group A testing only. The algebraic convention, whereby the most negative value is a minimum and most positive is a maximum, is used in this table. Negative current shall be defined as convential current flow out of a device terminal.


Graphics and Diagrams


GRAPHICS#	DESCRIPTION
07081HRA3	CERDIP (J), 8 LEAD (B/I CKT)
07086HRA2	LCC (E), TYPE C, 20 TERMINAL (B/I CKT)
E20ARE	LCC (E), TYPE C, 20 TERMINAL(P/P DWG)
J08ARL	CERDIP (J), 8 LEAD (P/P DWG)
P000427A	CERDIP (J), 8 LEAD (PINOUT)
P000445A	LCC (E), TYPE C, 20 TERMINAL (PINOUT)

See attached graphics following this page.



BOI L L SE

MIL/AEROSPACE OPERATIONS 2900 SEMICONDUCTOR DRIVE SANTA CLARA, CA 95050

CLC400E 20 - LEAD LCC CONNECTION DIAGRAM TOP VIEW P000445A

Mational Semiconductor⁻⁻ MIL/AEROSPACE OPERATIONS 2900 SEMICONDUCTOR DRIVE SANTA CLARA, CA 95050

MNCLC400A-X REV 2A0

MICROCIRCUIT DATA SHEET

Revision History

Rev	ECN #	Rel Date	Originator	Changes
0A0	M0003157	02/18/99	Shaw Mead	Initial MDS Release
1A0	M0003241	03/09/99		Thermal data for Ceramic DIP added. Package weight for Ceramic DIP added. Gain Range in Recommended Op. Cond. corrected. CMRR subgroups corrected. Closed loop gain in AC conditions corrected. Rf = 250 Ohms added to AC conditions.
2A0	M0003273	03/09/99	Shaw Mead	Processing and QCI document reference added. Conditions for SR added.