November 1988 Revised April 2005

FAIRCHILD

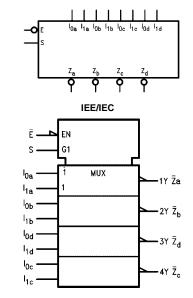
SEMICONDUCTOR®

74ACT158 Quad 2-Input Multiplexer

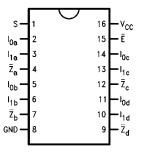
General Description

The ACT158 is a high-speed quad 2-input multiplexer. It selects four bits of data from two sources using the common Select and Enable inputs. The four buffered outputs present the selected data in the inverted form. The ACT158 can also be used as a function generator.

Features


- I_{CC} reduced by 50%
- Outputs source/sink 24 mA
- TTL-compatible inputs

Ordering Code:


Order Number	Package Number	Package Description				
74ACT158SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow				
74ACT158SJ	M16D	Pb-Free 16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
74ACT158MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				
74ACT158PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				
Device also available in	Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.					

Pb-Free package per JEDEC J-STD-020B.

Logic Symbols

Connection Diagram

Pin Descriptions

Pin Names	Description
I _{0a} –I _{0d}	Source 0 Data Inputs
I _{1a} –I _{1d}	Source 1 Data Inputs
Ē	Enable Input
S	Select Input
$\overline{Z}_{a} - \overline{Z}_{d}$	Inverted Outputs

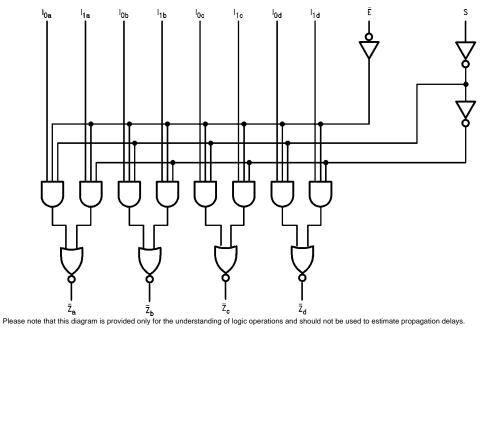
FACT™ is a trademark of Fairchild Semiconductor Corporation.

© 2005 Fairchild Semiconductor Corporation DS009930

www.fairchildsemi.com

Functional Description

The ACT158 quad 2-input multiplexer selects four bits of data from two sources under the control of a common Select input (S) and presents the data in inverted form at the four outputs. The Enable input (Ē) is active-LOW. When \bar{E} is HIGH, all of the outputs (Z) are forced HIGH regardless of all other inputs. The ACT158 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input.


A common use of the ACT158 is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The ACT158 can generate four functions of two variables with one variable common. This is useful for implementing gating functions.

Truth Table

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

	Outputs			
E	s	I ₀	I ₁	z
Н	Х	х	х	н
L	L	L	х	н
L	L	н	х	L
L	н	х	L	н
L	н	х	н	L

Logic Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC}) DC Input Diode Current (I _{IK})	-0.5V to +7.0V
$V_{I} = -0.5V$	–20 mA
$V_{I} = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (V _I)	–0.5V to V _{CC} + 0.5V
DC Output Diode Current (I _{OK})	
$V_0 = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	–0.5V to V _{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	±50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	±50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Junction Temperature (T _J)	140°C

Recommended Operating Conditions

Supply Voltage (V _{CC})	4.5V to 5.5V
Input Voltage (V _I)	0V to V_{CC}
Output Voltage (V _O)	0V to V_{CC}
Operating Temperature (T _A)	-40°C to +85°C
Minimum Input Edge Rate ($\Delta V/\Delta t$)	
V _{IN} from 0.8V to 2.0V	
V _{CC} @ 4.5V, 5.5V	125 mV/ns

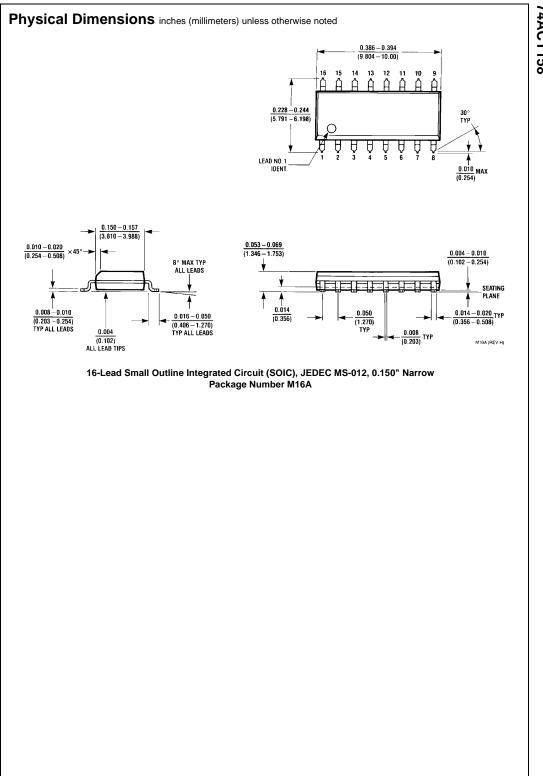
74ACT158

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variable. Fairchild does not recommend operation of FACT[™] circuits outside databook specifications.

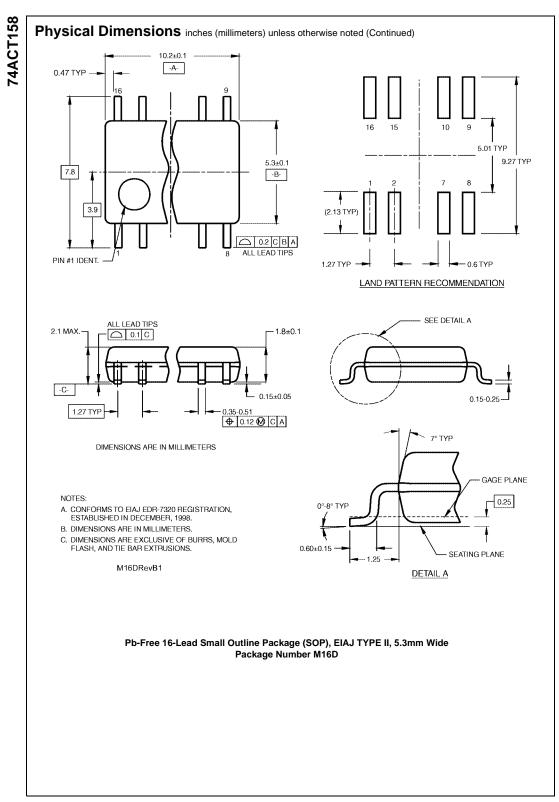
DC Electrical Characteristics

Symbol	Parameter	v _{cc}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions
Cymbol		(V)	Typ Guaranteed Limits		onits	Conditions	
V _{IH}	Minimum HIGH Level	4.5	1.5	2.0	2.0	V	V _{OUT} = 0.1V
	Input Voltage	5.5	1.5	2.0	2.0	v	or V _{CC} – 0.1V
V _{IL}	Maximum LOW Level	4.5	1.5	0.8	0.8	V	V _{OUT} = 0.1V
	Input Voltage	5.5	1.5	0.8	0.8	v	or V _{CC} – 0.1V
V _{OH}	Minimum HIGH Level	4.5	4.49	4.4	4.4	V	I _{OUT} = -50 μA
	Output Voltage	5.5	5.49	5.4	5.4	v	
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		3.86	3.76	V	I _{OH} = -24 mA
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 2)
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1	V	I _{OUT} = 50 μA
	Output Voltage	5.5	0.001	0.1	0.1	v	
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		0.36	0.44	V	I _{OL} = 24 mA
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μA	$V_I = V_{CC}, GND$
	Leakage Current	5.5		10.1	1.0	μΛ	
I _{CCT}	Maximum	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1V$
	I _{CC} /Input	5.5	0.6		1.5	mA	
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent	5.5		4.0	40.0		$V_{IN} = V_{CC}$
	Supply Current	5.5			40.0	μA	or GND

Note 2: All outputs loaded; thresholds on input associated with output under test.

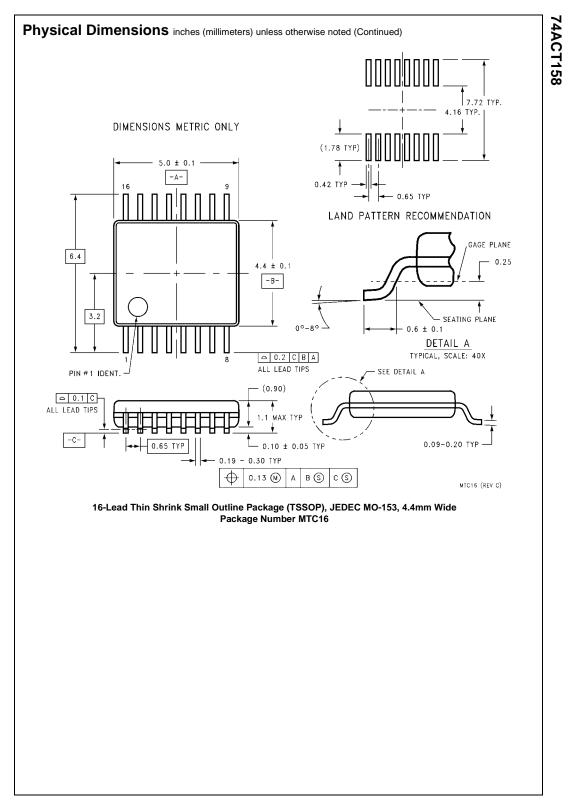

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

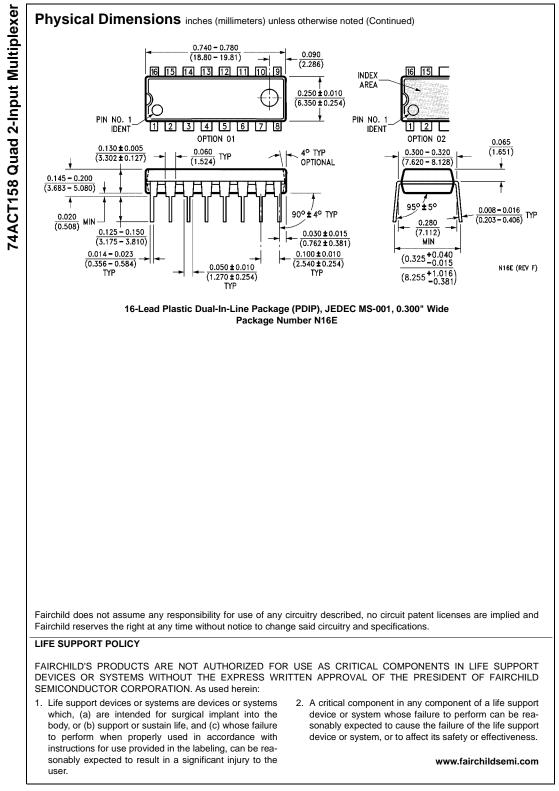
Symbol	Parameter	V _{CC} (V) (Note 4)	T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C ₁ = 50 pF		Units
			Min	Тур	Max	Min	Мах	
t _{PLH}	Propagation Delay S to \overline{Z}_n	5.0	2.5	6.0	9.5	2.0	11.0	ns
t _{PHL}	Propagation Delay S to \overline{Z}_n	5.0	1.5	5.5	9.0	1.5	10.0	ns
t _{PLH}	Propagation Delay \overline{E} to \overline{Z}_n	5.0	1.5	5.5	9.5	1.5	10.5	ns
t _{PHL}	Propagation Delay \overline{E} to \overline{Z}_n	5.0	1.5	5.5	9.5	1.5	10.5	ns
t _{PLH}	Propagation Delay I_n to \overline{Z}_n	5.0	1.5	4.5	8.0	1.0	8.5	ns
t _{PHL}	Propagation Delay I_n to \overline{Z}_n	5.0	1.5	4.0	6.5	1.0	7.5	ns


Note 4: Voltage Range 5.0 is 5.0V \pm 0.5V

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	45.0	pF	$V_{CC} = 5.0V$




74ACT158

www.fairchildsemi.com

6

www.fairchildsemi.com